Supporting Information for

High Initial Reversible Capacity and Long Life of Ternary SnO₂-Co-Carbon Nanocomposite Anodes for Lithium-Ion Batteries

Pan Deng¹, Jing Yang¹, Shengyang Li¹, Tian-E Fan^{2, *}, Hong-Hui Wu³, Yun Mou⁴, Hui Huang¹, Qiaobao Zhang^{1, *}, Dong-Liang Peng¹, Baihua Qu^{1, *}

¹Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China

²College of Automation and Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China

³Department of Chemistry, University of Nebraska-Lincoln, NE 68588 Lincoln, United States

⁴School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

*Corresponding authors. E-mail: bhqu@xmu.edu.cn (Baihua Qu); fante@cqupt.edu.cn (Tian-E Fan); zhangqiaobao@xmu.edu.cn (Qiaobao Zhang)

Supplementary Figures and Tables

Fig. S1 Morphology of a pure SnO₂; b N-c-SSC-1; c N-c-SSC-2; d N-c-SSC-3 S1 / S10 The morphology of the commercial SnO₂, N-c-SSC at the ratio of 1.25 mmol-Co(NO₃)₂·6H₂O and 5mmol-2-Mi (N-c-SSC-1), N-c-SSC at the ratio of 2 mmol-Co(NO₃)₂·6H₂O and 10mmol-2-Mi (N-c-SSC-2), N-c-SSC at the ratio of 2 mmol-Co(NO₃)₂·6H₂O and 20mmol-2-Mi (N-c-SSC-3) were observed by scanning electron microscope (FESEM) as shown in Fig. S1. The pure SnO₂ particles shows irregular shape with different morphologies in Fig. S1a. After adding ZIF-67, the frameworks of ZIF-67 can be observed in Fig. S1b-d. When the ratio of Co(NO₃)₂·6H₂O and 2-Mi is 1:4, the frameworks exhibit bigger (~600 nm) compared to that (~250 nm) in Fig. S1c, d. in which the morphology is a melange of regular frameworks and irregular commercial SnO₂ particles, and the commercial SnO₂ are attached to the frameworks. It comes out quite different that much more uniform particles are obtained when the ratio is 1:8, both of Fig. S1c and S1d exhibit the same polyhedral structure, the irregular SnO₂ particles can be noticed on the frameworks in Fig. S1c, which doesn't seem so obvious in Fig. S1d. This may be related to the higher carbon content.

Fig. S2 Charge and discharge curves of **a** commercial SnO₂, **b** N-c-SCC-1, **c** N-c-SCC-2 and **d** N-c-SCC 3 electrodes cycled between 0.01 and 3 V at 0.2 A g⁻¹

Fig. S3 Cycling performance of the commercial SnO_2 and N-c-SCC electrodes at a current density of 0.2 A $g^{\text{-}1}$

Fig. S4 Statistical ICE of some typical cells

Fig. S5 High-resolution XPS spectra of N1s in N-u-SCC-2 composite

Fig. S6 Cycling performance of **a** ultrafine SnO₂ electrode at a current density of 0.2 A g^{-1} , **b** N-u-SCC-1 electrodes at a current density of 0.2 A g^{-1} , **c** ultrafine SnO₂ electrode at a current density of 0.5 A g^{-1} , **d** N-u-SCC-1 electrodes at a current density of 0.5 A g^{-1} .

Fig. S7 a Nyquist plots of the three ultrafine SnO₂, N-u-SCC-1, N-u-SCC-2 electrodes. **B** Nyquist plots of N-u-SCC-2 electrodes before and after 100 cycles and the proposed equivalent circuit to fit the impedance data

Fig. S8 a Discharge/charge curves at different current densities of the N-u-SCC-2 electrode. **b** Rate performance of the N-u-SCC-2 electrode

Fig. S9 Cycling performance of the N-u-scc-2 electrode at a current density of a 1 A g^{-1} and b 2 A g^{-1}

Fig. S10 FESEM image of pure ultrafine SnO_2 **a** before and **b** after 100 cycled, of N-u-SCC 2 **c** before and **d** after 100 cycled. TEM images of N-u-SCC 2 **e** before and **f** after discharging to 1.0 V

Defined name	Mole dosage of Co(NO ₃) ₂ ·6H ₂ O	Mole dosage of 2-Melm	ICE (%)
	(mmol)	(mmol)	
N-c-SCC-1	1.25	5	
N-c-SCC-2	1.25	10	72.5
N-c-SCC-3	2.5	20	

 Table S1 Part of basic facts of the N-c-SCC composites

Table 1 lists synthetic formula and ICE about the three N-c-SCC composites.

N-u-SCC-1			N-u-SCC-2		
element	Atomic fraction (%)	Mass fraction (%)	element	Atomic fraction (%)	Mass fraction (%)
С	17.21	5.43	С	23.97	9.68
Ν	19.24	6.93	Ν	21.23	9.80
0	25.73	11.00	0	33.70	18.46
Co	19.02	25.12	Co	6.63	11.23
Sn	18.80	51.53	Sn	14.48	50.83

Table S2 EDS results of the two N-u-SCC composites

Type of composite	ICE (%)	Current density (A g ⁻¹)	Capacity	cycles	Potential window	Year	Refs.
			$(mAh g^{-1})$				
SnO ₂ NC@N- RGO	61.3	0.5	1346	500	0.005-3 V	2013	[1]
Bowl-like SnO ₂ @C	68.4	0.4	963	100	0.005-3.0 V	2014	[2]
Core-shell SnO ₂ /C	69.3	0.1	750	100	0.01-3 V	2015	[3]
SnO ₂ @N-CNF	69.2	0.1	754@1 A g ⁻¹	300	0.01-3 V	2016	[4]
SnO ₂ /NC	51	0.5	491	100	0.01-2 V	2016	[5]
SnO ₂ /Co@C	66	0.2	800	100	0.01-2.5 V	2017	[6]
PDA-coated SnO ₂	61.3	0.16	~1200	300	0.01-3 V	2017	[7]
SnO ₂ -Mn-G	76.2	0.2	850	400	0.01-3 V	2017	[8]
Porous SnO ₂₋₆ /C	74.3	0.1	543@1 A g ⁻¹	1000	0.01-3 V	2018	[9]
NuSCC-2	82.2	0.2	975@0.2 A g ⁻¹	100	0.01-3 V	Our work	
			760@0.5 A g ⁻¹	400			

Table S3 Comparison of the ICEs and electrochemical properties of N-u-SCC-2 with some reported SnO_2/C anode materials for LIBs

Element	Value 1 (before cycling)	Value 2 (after 100 cycling)
Re	0.703	2.785
Rct	179	32.1
Zw-R	1.745	3079
Zw-T	40.23	5.412
Zw-P	0.867	0.640
Qct-T	0.0003	9.11E-05
Qct-P	0.526	0.646

Table S4 EIS fitting results of N-u-SCC-2 electrode before and after cycling

Supplementary References

- X. Zhou, L. J. Wan, Y.G. Guo, Binding SnO₂ nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152-2157 (2013). https://doi.org/10.1002/adma.201300071
- [2] J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S. Ding, X.W. Lou, Bowl-like SnO₂ @carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12803-12807 (2014). https://doi.org/10.1002/anie.201407917
- [3] D. Zhou, W.L. Song, L.Z. Fan, Hollow Core-Shell SnO₂/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 7(38), 21472-21478 (2015). https://doi.org/10.1021/acsami.5b06512
- [4] L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO₂/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. Small 12(7), 853-859 (2016). https://doi.org/10.1002/smll.201503315
- [5] X. Zhou, L. Yu, X.W. Lou, Formation of Uniform N-doped Carbon-Coated SnO₂ Submicroboxes with Enhanced Lithium Storage Properties. Adv. Energy Mater. 6(14), 1600451 (2016). https://doi.org/10.1002/aenm.201600451

- [6] Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu, L. Mai, Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO₂/Co Nanocubes for Highly Reversible Lithium Storage. Small 13(37), 1701504 (2017). https://doi.org/10.1002/smll.201701504
- [7] B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-Templated Formation of Polydopamine-Coated SnO₂ Nanocrystals: Anodes for Cyclable Lithium-Ion Batteries. Angew. Chem. Int. Ed. 56(7), 1869-1872 (2017). https://doi.org/10.1002/anie.201611160
- [8] R. Hu, Y. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L. Yang, M. Zhu, Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO₂–Mn– graphite ternary anode. Energy Environ. Sci. **10**(9), 2017-2029 (2017). https://doi.org/10.1039/C7EE01635B
- [9] R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO_{2-δ} nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303-311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009