Supporting Information for

Metal-Oleate Complex Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance

Yingying Cao^{1, #}, Kaiming Geng^{1, #}, Hongbo Geng^{2, *}, Huixiang Ang³, Jie Pei¹, Yayuan Liu¹, Xueqin Cao¹, Junwei Zheng⁴, Hongwei Gu^{1, *}

¹Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China

²School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China

³School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore

⁴College of Physics, Optoelectronic and Energy, Soochow University, Suzhou 215006, People's Republic of China

[#]These authors contributed equally to this work

*Corresponding authors. E-mail: <u>hongwei@suda.edu.cn</u> (Hongwei Gu); <u>hbgeng@gdut.edu.cn</u> (Hongbo Geng)

Supplementary Figures and Tables

Fig. S1 TGA plot of the metal-oleate complex precursor under N₂ and air atmospheres

Fig. S2 Raman spectra of MnO/CoMn₂O₄⊂GN and rGO

Fig. S3 Energy-dispersive X-ray spectroscopy (EDS) plots of CoMn_2O_4 and MnO/CoMn_2O_4 \sub{GN}

Fig. S4 a XRD pattern of the Co Mn_2O_4 . b Nitrogen adsorption-desorption isotherms and the pore size distribution curve of the Co Mn_2O_4

Fig. S5 XPS spectra of the CoMn₂O₄ and MnO/CoMn₂O₄⊂GN samples

Fig. S6 Cycling performance and coulombic efficiency of MnO/CoMn₂O₄ \subset GN at a current density of 5 A g⁻¹

Fig. S7 Cycling performance and coulombic efficiency of pure $CoMn_2O_4$ at a current density of 0.1 A g⁻¹

Fig. S8 Cycling performances of MnO/CoMn₂O₄ \subset GN, M1, M2, G1, and G2 at a current density of 1 A g⁻¹

Fig. S9 a SEM and b TEM images of MnO/CoMn₂O₄⊂GN after 150 cycles at 0.1 A g⁻¹

Fig. S10 a CV profiles of the pure CoMn₂O₄ electrodes at different scan rates with the potential range between 0.01 and 3.0 V. **b** The fitted lines and $\ln(i_p)$ versus $\ln(v)$ plots at different oxidation and reduction states. **c** The percentages of pseudocapacitive contribution at different scan rates. **d** Pseudocapacitive (red) and diffusion-controlled (blue) contribution to the charge storage of CoMn₂O₄ at 0.8 mV s⁻¹

Fig. S11 a CV profiles of the rGO electrodes at different scan rates with the potential range between 0.01 and 3.0 V. **b** The fitted lines and $\ln(i_p)$ versus $\ln(v)$ plots at different oxidation and reduction states. **c** The percentages of pseudocapacitive contribution at different scan rates. **d** Pseudocapacitive (red) and diffusion-controlled (blue) contribution to the charge storage of rGO at 0.8 mV s⁻¹

	$CoCl_2 \cdot 6H_2O \ (mmol)$	MnCl ₂ ·4H ₂ O (mmol)	GO (mg)
MnO/CoMn ₂ O ₄ ⊂GN	3.0	9.0	40
M1	1.5	9.0	40
M2	3.0	4.5	40
G1	3.0	9.0	80
G2	3.0	9.0	20

Table S1 The feed ratio of M1, M2, G1, and G2

Table S2 The content of each component of CoMn₂O₄

Element	Co K	Mn K	ОК	Total
Wt%	20.61	56.99	22.40	100

Table S3 The content of each component of $MnO/CoMn_2O_4 \subset GN$

Element	Co K	Mn K	ОК	СК	Total
Wt%	9.33	20.4	14.29	55.98	100