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HIGHLIGHTS

e Tailored crystallinity and defect engineering in ultrathin solid-state electrolytes enable enhanced nanoscale ion transport.
e Chemically stable and conformal interfaces mitigate interfacial failure and space charge effects in microbattery architectures.

e Spatial atomic layer deposition and scalable vapor-phase strategies enable 3D integration and monolithic interfacing of thin-film

microbatteries with internet of things device platforms.

ABSTRACT The rapid proliferation of microelectronics, coupled with the advent of the internet of o

things (I0T) era, has created an urgent demand for miniaturized, integrable, and reliable on-chip energy 4 j ) | o _
storage systems. All-solid-state thin-film microbatteries (TFMBs), distinguished by their intrinsic e b~ N
safety, compact design, and compatibility with microfabrication techniques, have emerged as promis- J / i< },;“”“won 'gv;,,o’;;
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stage, facing persistent challenges in materials innovation, interface optimization, and scalable manu-

facturing. This review critically examines the pivotal role of vapor deposition technologies, including
magnetron sputtering, pulsed laser deposition, thermal/electron-beam evaporation, chemical vapor
deposition, and atomic layer deposition, in the fabrication and performance modulation of TFMBs.
We systematically summarize recent progress in thin-film electrodes and solid-state electrolytes, with
particular emphasis on how deposition parameters dictate crystallinity, lattice orientation, and ionic
transport in functional layers. Furthermore, we highlight strategies for solid—solid interface engineering, three-dimensional structural design, and
multifunctional integration to enhance capacity retention, cycling stability, and interfacial compatibility. Looking ahead, TFMBs are expected
to evolve toward multifunctional platforms, exhibiting mechanical flexibility, optical transparency, and hybrid energy-harvesting compatibility,
thereby meeting the heterogeneous energy requirements of future IoT ecosystems. Overall, this review provides a comprehensive perspective on
vapor-phase-enabled TFMB technologies, delivering both theoretical insights and technological guidelines for the scalable realization of high-
performance microscale power sources.
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1 Introduction

The rapid miniaturization of electronic systems is driving
a global transition toward the internet of things (IoT), in
which densely networked, autonomous microscale devices,
including microelectromechanical systems (MEMS), radio-
frequency identification (RFID) tags, sensors, smart cards,
and implantable electronics, are reshaping paradigms of
energy storage and delivery at the microscale [1-7]. Such
devices impose stringent requirements on power sources,
demanding high energy and power densities, long-term reli-
ability, compact footprints, and seamless compatibility with
microfabrication processes. Conventional lithium-ion bat-
teries (LIBs) employing liquid electrolytes are intrinsically
limited by leakage risks, bulky form factors, and poor com-
patibility with microsystem integration [8—15]. In contrast,
all-solid-state thin-film microbatteries (TFMBs), fabricated
through sequential vapor deposition of cathode, solid-state
electrolyte (SSE), and anode layers on microdevice-compat-
ible substrates, provide a compelling pathway toward safe,
compact, and integrable energy solutions for next-generation
microsystems [16-22]. With total thickness below 1 mm and
volumes below 1000 mm? [23], TFMBs offer superior safety,
design flexibility, and mechanical robustness, rendering
them highly attractive for on-chip applications ranging from
IoT terminals and biomedical implants to flexible electronics
and aerospace platforms [24-29].

Among the enabling technologies for TFMB fabrica-
tion, vapor-phase deposition techniques, including magne-
tron sputtering (MS), pulsed laser deposition (PLD), ther-
mal and e-beam evaporation, chemical vapor deposition
(CVD), and atomic layer deposition (ALD), play a pivotal
role [30—40]. These methods provide atomic-level thickness
control, excellent film uniformity, and compatibility with
low-temperature microfabrication, thereby enabling precise
engineering of electrode/electrolyte interfaces and the con-
struction of multilayer functional architectures [8, 41-43].
Compared with solution-based methods, vapor-phase tech-
niques offer enhanced densification, structural integrity, and
interfacial ion transport, which are essential for long cycle
life and high areal energy density within confined geom-
etries [44, 45].

Despite significant progress, the practical deployment
of TFMBs remains constrained by critical challenges.
A major limitation lies in restricted areal capacity, as the
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micrometer-scale thickness of electrodes precludes the use
of conductive additives and limits active material loading
[46]. Recent strategies to address this issue include multi-
layer stacking, 3D structural design, and thick-film integra-
tion, all of which leverage the conformality and precision
of vapor-phase deposition to enhance energy storage per
footprint without compromising device integrity [8, 16]. In
parallel, coupling TFMBs with energy-harvesting technolo-
gies such as photovoltaics, thermoelectrics, and piezoelec-
trics has enabled the creation of self-sustaining autonomous
microsystems [47, 48]. Although the fundamental concept
of TFMBs has existed for more than five decades, with the
development of LiPON SSEs in the 1990s representing a
milestone, their commercialization remains limited, primar-
ily due to energy density bottlenecks, processing complexity,
and integration barriers [49, 50]. These constraints under-
score the urgent need for breakthroughs in material design,
interfacial engineering, and scalable processing.

In this review, we present a comprehensive analysis of
recent advances in vapor-deposited TFMBs, with a particu-
lar focus on structural design, interfacial modulation, and
multifunctional integration of key material components.
We systematically compare major vapor deposition tech-
nologies, evaluate their applicability for thin-film cathodes,
SSEs, and anodes, and examine how deposition parameters
influence film quality and electrochemical performance.
Emerging design strategies, such as multilayer assembly,
three-dimensional (3D) architectures, mechanical flexibil-
ity, and optical transparency, are also discussed, aiming
to bridge the gap between laboratory-scale prototypes and
practical microscale power solutions. Finally, we identify
key scientific challenges and outline future research oppor-
tunities for developing TFMBs with higher areal capacity,
extended cycle life, and broader microelectronic compatibil-
ity. By highlighting the central role of vapor-phase deposi-
tion in TFMB advancement, this review seeks to provide
both fundamental insights and practical guidance for the
scalable realization of high-performance on-chip power
sources in the IoT era.

2 Vapor Deposition Techniques
Vapor-phase engineering is central to the realization of

high-performance all-solid-state TFMBs, where the rapid,
uniform, and precisely controlled deposition of functional
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thin films is essential for achieving superior electrochemi-
cal properties, reliable interfacial stability, and scalable pro-
cessing. Among various fabrication routes, PVD techniques,
particularly MS and PLD, have been widely employed for
constructing both electrode and SSE layers, owing to their
capability to produce dense, conformal, and compositionally
controlled films with nanoscale thickness precision. Their
inherent compatibility with semiconductor microfabrication
protocols further enables direct integration of TFMBs with
microsystems and on-chip platforms.

Despite these advantages, PVD-based methods face limi-
tations, including high capital cost, low material utilization
efficiency, and restricted throughput in large-area manufac-
turing, which hinder their commercial scalability. Conse-
quently, CVD and emerging vapor-phase strategies have
attracted growing interest as complementary or alternative
approaches, offering superior conformality, step coverage,
and large-area uniformity. These attributes are particularly
advantageous for fabricating thin-film electrodes and SSEs
in intricate or 3D architectures. To provide a systematic
overview, Fig. 1 schematically illustrates the working prin-
ciples of representative vapor deposition techniques, while
Table 1 compares their advantages, limitations, and appli-
cation scopes. Together, these analyses serve as critical ref-
erences for rational material selection, device design, and
scalable TFMB manufacturing.

2.1 Physical Vapor Deposition (PVD)

PVD encompasses a class of high-vacuum thin-film tech-
niques in which material is vaporized from a solid source
and condensed onto a substrate, enabling dense and uniform
films with nanometer-scale precision. Common approaches
include MS, PLD, and thermal or e-beam evaporation, each
offering distinct merits in terms of film quality, composition
control, and process adaptability. MS and thermal evapora-
tion are particularly favored in industrial applications such
as microelectronics and optoelectronics, given their compat-
ibility with multilayer device architectures and roll-to-roll
processing. PVD methods provide precise control over thick-
ness, stoichiometry, and microstructure, thereby supporting
the engineering of complex electrode—electrolyte interfaces
and multilayer configurations. Nonetheless, throughput, cost,
and scalability challenges remain critical barriers, motivat-
ing the pursuit of alternative or hybrid deposition routes.

| SHANGHAI JIAO TONG UNIVERSITY PRESS

2.1.1 Magnetron Sputtering (MS)

MS is one of the most widely utilized PVD techniques,
enabling uniform and dense thin films across diverse
materials. In MS, energetic ions (typically Art), generated
within a plasma bombard a solid target, ejecting atoms
that condense on the substrate to form a film (Fig. 1a). By
tuning the discharge mode, DCMS is applied for conduc-
tive materials, while RFMS is used for insulators. Fur-
thermore, co-sputtering allows independent power control
over multiple targets, facilitating the synthesis of doped
or multi-component films, such as oxides, nitrides, and
alloys, an essential feature for electrode optimization. MS
has been widely used for the deposition of electrodes (e.g.,
LMO [51], LCO [52, 53], LTO [54], TiO, [55], Si [56,
57]) and SSEs (e.g., LiPON [58-61], LLZO [62], LATP
[63]). It has also enabled 3D nanostructures, such as verti-
cally aligned LMO nanowalls, which improve surface area
and electrochemical kinetics [64, 65].

Films deposited by MS are generally amorphous at
room or low temperatures. Although amorphous elec-
trolytes exhibit lower ionic conductivity than crystal-
line analogues, they provide significant benefits, includ-
ing alleviated stress accumulation, improved interfacial
conformity, and enhanced cycling stability. For instance,
RF-sputtered LisPO, films retain amorphous phases with
ionic conductivities above 107% S cm™!, while suppressing
crystallization-induced interfacial resistance [66]. Simi-
larly, amorphous nitrogen-doped Li—Al-Ti—P—O-N films
demonstrate dense microstructures and stable cycling [67,
68]. Compared with high-temperature PLD or CVD pro-
cesses that often yield crystalline phases prone to cracking
or grain boundary degradation, MS produces smooth and
conformal amorphous films that effectively suppress side
reactions and electrolyte penetration, thereby improving
coulombic efficiency. Moreover, deposition parameters
(e.g., power, pressure, gas composition) can be tailored to
modulate film density, defects, and stress states, ultimately
tuning Li* transport in isotropic amorphous matrices.

Despite these advantages, MS faces inherent drawbacks:
(1) moderate deposition rates limit throughput for thick films
(=1 pm), (2) complex vacuum systems raise cost, (3) lithium
volatility may cause non-stoichiometry and interfacial deg-
radation, and (4) poor step coverage hinders deposition on
high-aspect-ratio 3D structures. Thus, while MS remains

@ Springer
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Fig. 1 Schematic overview of representative vapor-phase thin-film deposition techniques widely applied in the fabrication of TFMBs. a Mag-
netron sputtering (MS) for depositing metals and oxides with high film uniformity and adhesion. b Pulsed laser deposition (PLD) enabling
stoichiometric transfer and epitaxial growth of complex oxides. ¢ Thermal evaporation as a cost-effective method suitable for low-melting-point
materials. d Electron-beam evaporation for processing refractory materials with efficient energy delivery. e Chemical vapor deposition (CVD)
for large-area deposition of dense and conformal thin films. f Atomic layer deposition (ALD) providing sub-nanometer thickness control and

excellent step coverage in 3D architectures

indispensable for lab-scale TFMB prototyping, further opti-
mization is necessary for industrial scalability.

2.1.2 Pulsed Laser Deposition (PLD)

PLD employs high-energy laser pulses to ablate a solid
target, generating a transient plasma plume of atoms, ions,
and clusters that deposit onto a substrate (Fig. 1b). The
process offers several advantages: (1) excellent stoichio-
metric transfer, particularly for multicomponent oxides; (2)
non-equilibrium growth enabling metastable or amorphous
phases with favorable ion transport; and (3) tunable pro-
cessing environments that allow reactive gas incorporation.
PLD has been widely applied to cathodes such as LMO [69],
LCO [70], Li,MnO; [71], LiFePO, [72], M0oO; [73], LTO
[74], and SSEs such as LiPON [75-77], LLZO [78-81], and
LATP [82]. Deposition parameters (e.g., laser fluence, sub-
strate temperature, pressure) strongly influence crystallinity,
microstructure, and ionic transport.

Typically, PLD yields highly crystalline thin films, where
ordered lattices lower migration barriers and improve ionic
conductivity [38, 83]. However, excessive crystallinity may

© The authors

induce interfacial stress, crack formation, or grain boundary
degradation, undermining long-term stability. Conversely,
under tailored conditions, PLD can also yield amorphous or
metastable phases with isotropic Li* transport and enhanced
interface conformity. Additionally, PLD enables hetero-
structures and functionally graded films that reconcile high
conductivity with interfacial robustness [84]. Nevertheless,
scalability challenges remain: particulate formation during
ablation may compromise uniformity, deposition area is
limited by laser spot size, and high capital cost restricts
industrial adoption. While PLD is invaluable for materi-
als discovery and thin-film prototyping, its translation into
commercial TFMB manufacturing requires breakthroughs
in uniformity, throughput, and integration strategies.

2.1.3 Thermal Evaporation and E-beam Evaporation

Evaporation-based PVD methods, among the earliest thin-
film deposition techniques, remain attractive for their sim-
plicity and high deposition rates. In thermal evaporation,
source material is resistively heated within a crucible until
vaporized and condensed on the substrate (Fig. 1c). This

https://doi.org/10.1007/s40820-025-02002-w
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approach has been extensively used for metallic lithium
films with micron-scale thickness [40, 85, 86]. However,
film uniformity and step coverage are limited, especially
for complex geometries. Electron-beam evaporation (EBE)
improves control by using a focused electron beam to heat
high-melting-point materials (Fig. 1d), enabling deposi-
tion of Si, SiC [87], SnO, [88, 89], Li—Zn alloys [90], and
amorphous LLTO [91]. EBE achieves deposition rates of
0.1-100 pm min~', far exceeding those of MS and PLD [92].
Despite their efficiency, both methods are line-of-sight pro-
cesses with limited conformality, but their scalability and
simplicity make them well-suited for specific TFMB com-
ponents, especially Li anodes and buffer layers.

To overcome the intrinsic limitations of conventional
PVD, various hybrid and assisted vapor deposition strate-
gies have been developed to improve film uniformity, inter-
facial control, and process flexibility. PVD combined with
CVD integrates the high purity of physical deposition with
the conformality of chemical processes, enabling uniform
coatings on complex substrates [93]. ALD-assisted PVD
allows atomic-level modulation of interfacial composition,
such as controlled Li* concentration gradients, to mitigate
space-charge effects and reduce interfacial impedance [94].
Plasma-enhanced PVD facilitates surface reactions and film
densification at reduced temperatures, which is advanta-
geous for flexible or polymer-supported systems [36]. Recent
advances include high power impulse magnetron sputtering
(HiPIMS) for denser and more crystalline films [95], ion
beam assisted deposition (IBAD) for controlling surface
energy and texture [96], and hybrid sputtering combined
with sol—gel or spin-coating for scalable composite inter-
faces [97]. Reactive e-beam evaporation also enables low-
temperature synthesis of high purity oxide thin films com-
patible with flexible substrates [98]. Overall, these hybrid
and assisted approaches integrate the merits of physical and
chemical vapor deposition, providing a versatile and scalable
platform for producing dense, uniform, and compositionally
tailored thin films, thereby extending the applicability of
PVD to multifunctional and flexible TFMB architectures.

2.2 Chemical Vapor Deposition (CVD) and Its
Derivatives

As TFMBs gain prominence, demands for high-quality
films with structural tunability and nanoscale uniformity

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

have intensified. Beyond PVD, CVD and its derivatives
offer conformal deposition, 3D compatibility, and precise
interface engineering. In CVD, gaseous precursors react or
decompose on heated substrates to form continuous films
(Fig. le). Variants include metal-organic CVD (MOCVD),
plasma-enhanced CVD (PECVD), and laser-assisted CVD
(LCVD). Notably, PECVD enables low-temperature depo-
sition, making it suitable for flexible and polymer-based
devices.

2.2.1 Conventional CVD

Conventional CVD provides films with high phase purity,
uniformity, and composition control, alongside excellent
step coverage on complex substrates. It has been widely
adopted for TFMB cathodes and SSEs, including LCO
[99], LiPON [100, 101], and LTO [102]. Beyond planar
films, CVD enables structured electrodes such as LTO pil-
lar arrays [103], which increase surface area and kinetics.
Compared with PVD, CVD offers higher material utiliza-
tion and better scalability [104], although precursor cost,
safety, and chemical control present challenges.

CVD, as a high-temperature process, often yields crys-
talline films with fast Li* diffusion due to reduced migra-
tion barriers [105]. While this benefits rate performance,
crystallinity can also lead to stress accumulation and grain
boundary degradation. In addition, porous or nanoparticu-
late morphologies common in CVD films enlarge active
areas but may accelerate side reactions.

2.2.2 Atomic Layer Deposition (ALD)

ALD, a subclass of CVD, relies on self-limiting surface
reactions to achieve angstrom-level thickness control and
exceptional conformality (Fig. 1f). Its capability to coat
deep trenches, nanopores, and 3D scaffolds makes it highly
attractive for advanced TFMBs. ALD has been utilized
for LiPON electrolytes [106, 107], LTO anodes [108],
ultrathin Al,O5 coating [109], and protective interfacial
layers, which enhance stability and suppress side reac-
tions. Its deterministic growth and reproducibility enable
precise interface modulation to optimize ionic conductiv-
ity and battery lifespan. However, ALD’s low throughput
and high cost limit its large-scale adoption. Currently, it is

@ Springer
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primarily applied to performance-critical regions such as
interfaces or ultrathin coatings. Nevertheless, its evolving
role in high-fidelity nanostructuring underscores ALD as
a key enabling technology for next-generation TFMBs.
Table 2 summarizes correlations between deposition meth-
ods, film crystallinity, microstructure, and ionic conductiv-
ity, complementing Fig. 1 and offering a concise frame-
work for material and process selection.

3 Vapor Deposition for TFMBs Fabrication
and Integration

3.1 Architectural Framework and Design Strategies
for TFMBs

TFMBs are generally assembled in a multilayer planar
architecture comprising a current collector, cathode, SSE,
anode, and encapsulation layer (Table 3). The total thick-
ness is typically below 100 um, with individual layers rang-
ing from tens of nanometers to several micrometers. This
compact configuration enables seamless integration with
microelectronic systems, allowing efficient use of limited
volumetric space and delivering high energy density in spa-
tially constrained environments. Consequently, TFMBs are
particularly suited for next-generation portable, wearable,
and implantable electronics.

Each layer fulfills distinct electrochemical and structural
roles. Current collectors require high conductivity, electro-
chemical stability, and mechanical robustness. Noble metals
(Au, Pt) provide excellent properties but are cost-prohibitive.
Thus, bilayer metallization stacks (e.g., Ti/Pt, Cr/Pt) are typ-
ically used on the cathode side to compensate for the limited
conductivity of oxide cathodes. By contrast, the anode cur-
rent collector can adopt less stringent compositions due to
the intrinsically high conductivity of Li and its alloys. The
cathode layer must balance capacity and transport kinetics,
with thickness usually below 50 pm to mitigate Li* diffu-
sion constraints. LCO and LMO remain the most widely
adopted cathodes, offering high capacity, voltage stability,
and cycling durability. The SSE layer, typically 2-3 pm
thick, must ensure high ionic conductivity (107'-107* S
cm™!), negligible electronic transport, and robust chemi-
cal/mechanical compatibility with both electrodes. Among
candidate electrolytes, LiPON and its doped derivatives are
the most mature, combining stable interfaces with facile

© The authors

Table 1 Comparative overview of vapor deposition techniques for TFMB fabrication

Major limitations

Key advantages

Deposition technique Deposition rate Film uniformity Typical applicable materials

Sophisticated instrumentation, low growth

Slow-moderate Moderate-High Metals (Ag, Cu, Pt, Al, Ti, Ni), oxides Excellent film uniformity, compat-

MS

rate, risk of substrate damage, costly

targets

ible with refractory materials, broad

(LCO, LMO, V,0s, LiPON)

material versatility, strong adhesion to

substrates

Limited deposition area, volatile species

Capability to fabricate heterostructures,

Complex oxides (LLZO, LLTO, Li;0X)

Moderate

Moderate

PLD

refractory materials, high substrate tem-
by electron beam, limited step coverage

loss, slow rate and particle splashing
perature required, weak adhesion

cursors, high process cost

plex system maintenance
Extremely low growth rate, limited pre-

Poor thickness uniformity, unsuitable for
Expensive equipment, substrate damage
Harsh conditions, toxic precursors, com-

°

stoichiometric transfer, flexible control
Sub-A thickness control, excellent step

of film thickness
coverage, conformal coatings for 3D

to large-area coatings, low cost
purity films, relatively fast rate
and high-aspect-ratio structures

Simple setup, high film purity, scalable
wafer-level deposition

Suitable for refractory metals, high-
High-quality density films, scalable to
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Table 2 Comparison of vapor deposition techniques in terms of microstructure and electrochemical properties

Technique Crystallinity Microstructural features Ionic transport character- Electrochemical implications
istics
MS Amorphous at RT, tunable Dense, smooth, uniform Isotropic Li* diffusion, Superior interface stability
by annealing conductivity lower than and cycle life, but limited
crystalline films rate performance
PLD Highly crystalline, stoichi-  Dense films, heterostructure High conductivity, aniso- Excellent rate performance,
ometry preserved accessible tropic transport stability depends on micro-
structure
CVD High crystallinity, tunable by Porous/nanoparticle-like, Ordered lattice enables Enhanced rate due to
temperature/precursor large surface area high mobility, possible abundant sites, prone to
anisotropy interfacial instability
ALD Exceptional uniformity, sub- Conformal ultrathin interfa- Conductivity tunable by Effective for interface engi-

nm control cial layers
Thermal evaporation Poorly crystalline or amor-

phous density
E-beam evaporation

growth

Porous, columnar, low

Amorphous/low crystallinity Moderately dense, columnar Restricted ionic conduction

defect/stress engineering neering, reduces imped-

ance and enhances stability

Limited ionic conduction Primarily suited for metallic

current collectors

Mostly for metals/simple
oxides, limited for complex
TFMB systems

thin-film processability. The anode, often Li metal, Li alloys,
or LTO, must enable efficient (de)lithiation while maintain-
ing chemical and interfacial stability with the SSE. Its thick-
ness is generally tailored to match the cathode, preventing
imbalance and lithium plating.

Beyond intrinsic material properties, interfacial engineer-
ing critically governs ionic mobility, mechanical integrity,
and cycling stability. Interfaces should facilitate fast Li*
transport, suppress interdiffusion and parasitic reactions,
and ensure strong adhesion. These objectives are often
achieved via passivation layers, interfacial interlayers, or
compositional gradients. Importantly, the entire device stack
is commonly fabricated by vacuum-based vapor deposition

techniques, especially RE/DC magnetron sputtering, ena-
bling precise control of morphology, stoichiometry, and
nanoscale uniformity. Nevertheless, deposition parameters
must be carefully optimized for each material. For example,
LCO requires oxygen-rich conditions and post-annealing to
stabilize its layered phase, whereas LiPON properties are
highly sensitive to nitrogen flow and RF power. Furthermore,
thermal and mechanical mismatches across adjacent layers
can lead to stress accumulation, cracking, or delamination,
compromising device reliability. Therefore, co-optimization
of materials selection, deposition protocols, and interfacial
design is indispensable for high-performance TFMBs.

Table 3 Representative functional materials and their targeted roles in TFMBs

Component Key requirements Representative materials
Cathode High capacity, electronic conductivity, chemical compat-  Layered oxides (LiCoO,, LiMn,0,, LiNiO,), polyanionic
ibility with electrolyte compounds (LiFePO,), transition metal oxides (V,0s,
Mo0O;, WO;)
Anode Adequate capacity, electrical conductivity, minimal vol- Li Metal, intercalation-type (Li TisO,,, TiO,, Nb,Os), alloy-
ume change, stable SEl/electrolyte interface type (Si, Sn, In, Mg), conversion-type (SnO,, Si;N,, SiC)
Solid electrolyte High ionic conductivity, electronic insulation, thermal/ LiPON, garnet (LLZO), perovskite (LLTO), antiperovskite

electrochemical stability, dense microstructure
Interface engineering Strong adhesion, electrochemical stability, suppression of

side reactions

Current collector
ity, lightweight

High electronic conductivity, chemical/mechanical stabil-

(Li;0X), NASICON (LATP)

Tailored interlayers depending on electrode/electrolyte
combinations

Pt, Au, Ag, Cu, Al, Ti, Ni

SHANGHAI JIAO TONG UNIVERSITY PRESS
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From a structural viewpoint, all-solid-state TFMBs can be
categorized into three representative architectures: classic
layer-by-layer, vertical (out-of-plane), and planar (in-plane)
configurations (Fig. 2). The classic layer-by-layer design,
pioneered by Bates et al. [110], relies on the sequential
deposition of cathode, electrolyte, and anode layers on a
flat substrate, followed by encapsulation. This architecture
demonstrates outstanding compatibility with standard micro-
fabrication processes, high device yield, and excellent scal-
ability, making it the most widely adopted configuration in
early TFMB demonstrations. Nevertheless, its reliance on
high-resolution lithographic patterning and stringent con-
trol over layer thickness and alignment imposes complexity,
while the limited electrode—electrolyte interfacial area con-
strains both power density and rate capability. In contrast,
vertical architectures, as demonstrated by Nakazawa et al.
[111], leverage columnar stacking of functional layers with
uniform thickness, thereby increasing electrode—electrolyte
interfacial contact and improving volumetric energy den-
sity. Such designs are particularly promising for applica-
tions requiring high areal energy within compact footprints.
However, these benefits come at the expense of fabrication
complexity: stringent requirements for film conformity, step
coverage, and multilayer alignment increase the risk of short
circuits and impose substantial challenges for scalable pack-
aging and integration. To mitigate these limitations, planar
architectures have emerged as an attractive alternative. In
these systems, cathode, electrolyte, and anode are laterally
patterned on the substrate surface, which simplifies device
encapsulation and enhances mechanical robustness. The
reduced stacking complexity also enables higher design
flexibility, allowing tailored geometries for unconventional
substrates, flexible electronics, and even curvilinear systems.

Such architectures are particularly suited for MEMS, bio-
medical implants, and wearable platforms where device form
factor, mechanical adaptability, and reliability are prioritized
over maximum volumetric density. In addition, advances
in lithographic techniques, inkjet patterning, and spatially
selective deposition have significantly expanded the manu-
facturability of in-plane designs, suggesting strong potential
for large-area integration and hybrid multifunctionality.

Collectively, the evolution from layer-by-layer to vertical
and planar configurations highlights the critical role of struc-
tural engineering in balancing scalability, energy density,
mechanical reliability, and integration capability, thereby
laying the foundation for next-generation TFMBs tailored
to diverse microelectronic ecosystems.

3.2 Cathode Materials and Structural Optimization
for TFMBs

Cathode materials constitute a decisive component of
TFMBs, directly governing energy density, rate capability,
and long-term cycling performance. Various chemistries
with layered, spinel, and olivine-type crystal structures
have been extensively explored, each exhibiting distinct Li*
transport kinetics, redox mechanisms, and structural evolu-
tion during cycling. To enable systematic investigation under
well-controlled environments, Hitosugi et al. [112] devel-
oped a fully vacuum-integrated platform that encompasses
thin-film deposition, device assembly, and electrochemical
testing without ambient exposure (Fig. 3a). This approach
effectively suppresses contamination and parasitic reactions,
thereby preserving the integrity of electrolyte—electrode
interfaces. Using this system, LCO films deposited by PLD
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Fig. 2 Schematic illustration of typical structural configurations of TFMB. a Classic stacked architecture with sequentially deposited multilay-
ers to maximize volumetric energy density. b Vertically integrated structure that enlarges interfacial area, thereby enhancing areal capacity and
rate performance. ¢ Planar configuration with laterally arranged electrodes, offering simplified fabrication and straightforward on-chip integra-
tion
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at 400 °C on annealed Au layers exhibited dominant (0001)
reflections, indicating strong c-axis orientation and high
crystallinity. Electrochemical measurements revealed out-
standing reversibility and minimal hysteresis, with excellent
rate performance (74% capacity retention at 20 C), under-
scoring the critical importance of clean and well-defined
interfaces.

For energy density optimization, Anapolsky et al. [113]
systematically investigated morphology and orientation con-
trol in LCO films with thicknesses up to 10 pm (Fig. 3c).
They demonstrated that thick-film cathodes require well-
preserved crystallographic orientation to maintain > 80%
charge utilization and long-term cycling stability. Specifi-
cally, a reduced oxygen partial pressure during sputtering
(e.g., 4% O, in Ar) suppressed the (003) peak even after
annealing, indicating the loss of c-axis orientation. By pre-
cisely controlling the texture, a 10 pm-thick LCO film deliv-
ered 600 pAh cm™2 at 0.1 C and > 95% retention after 100
cycles at 0.2 C (Fig. 3b). In contrast, orientation-deficient
films exhibited similar initial capacities but severe rate deg-
radation and cycling failure, highlighting the necessity of
texture engineering for thick-film cathodes. Kim et al. [114]
further advanced this field by depositing LCO films via MS
directly onto NASICON-type solid electrolytes. Post-anneal-
ing at 500 °C induced interfacial crystallization and bonding,
substantially reducing interfacial resistance and promoting
Li* transport, thereby offering a viable strategy to integrate
oxide cathodes with solid electrolytes in TFMBs. Interfa-
cial degradation caused by structural instability remains
a key bottleneck in cathode cycling. To address this, Xia
et al. [115] proposed an epitaxial interfacial pinning strat-
egy for layered oxides. By tuning O,/Ar flow ratios during
MS, they fabricated a coherent heterostructure comprising
a-MoO; and n-Mo,O,; (Fig. 3d). The n-Mo,O,, phase acted
as a structural anchor, reducing interlayer expansion from
16 to 2% (Fig. 3f). The resulting TFMB exhibited 67 mAh
g~ ! after 3000 cycles at 2 A g™, retaining ~ 74% capacity
(Fig. 3e). This illustrates the efficacy of epitaxial interface
design in suppressing lattice strain and capacity fade. Spinel-
structured LMO has also shown excellent applicability in
aqueous-compatible TFMBs. Fehse et al. [116] employed a
multilayer PLD strategy to deposit LMO films on Pt-coated
Si substrates (Fig. 3g—h). These cathodes exhibited pseudo-
capacitive response and superior rate capability, delivering
2.6 pAh cm™ at 348 C and demonstrating remarkable dura-
bility over 3500 cycles with a per-cycle retention of 99.996%
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(Fig. 3i). These results highlight the kinetic advantages of
spinel cathodes for high-power microdevices.

More recently, ternary layered oxides (e.g., Ni-Co—Mn
series, NMC) have attracted increasing attention. Wang
et al. [117] fabricated highly oriented Li(Nij sMn, ;Co ,)
0O, (NMC532) thin films by PLD, where Au nanoparticle
incorporation reduced interfacial charge-transfer resistance
and enhanced capacity, coulombic efficiency, cycling sta-
bility, and rate performance (Fig. 3j—1). Deng et al. [118]
further revealed that annealing temperature, composition,
and thickness critically influence Li* diffusion kinetics in
LiNi, ;;Co, 3Mn, 50, films, with optimal samples annealed at
450 °C showing high capacity at low rates and stable cycling
at higher rates. Similarly, Jacob et al. [119] reported highly
oriented NMC532 films deposited on stainless steel sub-
strates, achieving excellent densification and electrochemi-
cal performance. Collectively, these studies demonstrate
that deposition parameters, annealing protocols, and micro-
structural features are decisive for unlocking the potential of
NMC thin-film cathodes in TFMBs.

Olivine-type LiFePO, (LFP), characterized by a sta-
ble~3.4 V discharge plateau and a theoretical capacity of 170
mAh g~!, is another promising candidate owing to its abun-
dance and safety [120-122]. However, its poor electronic con-
ductivity (~ 1078-1071° S cm™"), low Li* diffusion coefficient
(~2.7%107° cm? s71), and relatively high activation energy
(~0.73 eV) restrict its rate performance [123]. To overcome
these challenges, film thinning and nanostructuring have been
pursued. Hirayama et al. [124] prepared vertically aligned LFP
nanopillar films on structured Pt-Ti—Si substrates by ther-
mally inducing nanoscale surface protrusions during photore-
sist decomposition (>400 °C). A 60 nm-thick nanopillar film
delivered 360 mAh g~! at 1 C, showcasing the advantages of
directed nanoarchitectures in facilitating Li* transport. Compo-
sition tuning has also been explored. Choi et al. [125] fabricated
highly transparent LiFe, ,Mn, PO, films via co-sputtering on
ITO-coated glass. By adjusting the target—substrate distance,
they modulated Mn content, with LiFe ;,Mn,, ,;PO, delivering
the best performance—45.7 pAh cm™2 pm~! due to dual Fe**/
Fe** (3.4 V) and Mn**/Mn?* (4.1 V) redox activity. Mn dop-
ing enhanced capacity without requiring conductive additives,
though excess Mn impaired ionic transport. Notably, these films
maintained > 80% transmittance, suggesting potential in trans-
parent and optoelectronic microsystems. Thus, strategic control
of crystallographic orientation, interface coherence, nanostruc-
turing, and compositional modulation has enabled cathodes in
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Fig. 3 Comprehensive characterization of TFMB fabrication platforms

, structural configurations, and electrochemical performance. a Sche-

matic of an all-in-vacuum fabrication and in situ evaluation system for TFMBs. Reproduced with permission from Ref. [112] Copyright 2016
Elsevier Publishing. b Top-view optical image of a single substrate containing ten integrated TFMB units. ¢ Schematic and cross-sectional SEM
image of a stacked TFMB. Reproduced with permission from Ref. [113] Copyright 2017 Elsevier Publishing. d Rietveld-refined XRD patterns
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images of the LMO thin film. i Discharge profiles of LMO-based TFMBs during galvanostatic cycling at high current density. Reproduced with
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TFMBs to evolve into multifunctional platforms with enhanced
energy density, cycling stability, and even optical transparency.

The electrochemical behavior of LCO thin films is strongly
governed by crystallinity and orientation, both sensitive to depo-
sition temperature [126]. At submicron thickness (<0.5 um),
surface energy promotes preferential (003) orientation at low
temperatures, whereas increased thickness (> 1 um) and high
deposition temperatures (~400 °C) favor orientations such as
(101), (104), or (110) due to strain effects [127]. Moderate heat-
ing improves crystallinity and grain size, enabling LCO thin
films to achieve 64 pAh cm=2 um™!, comparable to bulk LIBs
[128]. However, deposition or annealing above 500 °C, while
beneficial for crystallinity, is incompatible with microfabrica-
tion. Low-temperature RF sputtering (<300 °C) yields oriented
LCO films but often results in poor crystallinity and rapid fad-
ing [129]. For LMO thin films, deposition temperature dictates
growth mode and morphology. At 300 °C, limited adatom
mobility induces Volmer—Weber growth, forming nanosheet-
based island structures [130]. Raising deposition temperature to
600 °C followed by annealing at 700 °C produces highly crystal-
line 3D nanowall arrays, which enlarge electrolyte contact area,
shorten Li* diffusion pathways, and mitigate interfacial disor-
der. Compared to planar films, these 3D nanostructures mark-
edly reduce interfacial resistance and enhance rate capability in
LMO/LiPON/Li cells.

In brief, LCO benefits from high-temperature processing that
enhances crystallinity and capacity but faces integration chal-
lenges due to thermal incompatibility, highlighting the need
for optimized low-temperature strategies. By contrast, LMO
enables high-performance 3D nanostructures at moderate pro-
cessing conditions (~300 °C), offering cost-effectiveness and
environmental advantages. Remaining challenges lie in tailor-
ing deposition protocols for thick-film integration. A systematic
comparison of LCO and LMO thin films under different pro-
cessing conditions is summarized in Table 4.

3.3 Anode Materials and Interfacial Engineering
for TFMBs

The choice of anode material critically influences both the
energy density and cycling durability of TFMBs. Among the
available candidates, Li metal remains the most attractive
due to its ultrahigh theoretical specific capacity (3861 mAh
g~") and lowest redox potential (—3.04 V vs. H"), which
enable maximization of cell voltage and gravimetric energy
density. Owing to its relatively low melting point (180.5 °C),
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thermal evaporation has been widely adopted for depositing
Li thin films in TFMB architectures. Benefiting from the
lithium reservoir function of the cathode, the Li layer is typi-
cally fabricated with submicron thickness, thereby reducing
material consumption. However, poor intrinsic wettability
between Li and most ceramic SSEs severely hinders inter-
facial contact and ion transport. To overcome this issue, Luo
etal. [131] proposed a surface energy modulation approach
by incorporating carbon nanoparticles into molten Li. This
modification reduced the interfacial energy with SSEs or Cu
substrates, leading to improved wettability and uniform Li
deposition. The versatility of this strategy was demonstrated
across both garnet-type SSEs and metallic current collectors,
highlighting its potential for broader solid-state integration.
Beyond Li metal, alternative anodes have been explored to
address interfacial instability and dendrite growth. Alloy-
type (e.g., Si—Ge [132], Si—Cu [133]) and intercalation-type
(e.g., TiO, [134], LTO [135-137]) systems represent the
most investigated options. Among alloy-based anodes, sili-
con exhibits the highest theoretical capacity (~4200 mAh
g~!, Li, ,Si). Yet, its enormous volume change (~420%)
during lithiation leads to pulverization, poor mechanical
integrity, and rapid capacity fading [138]. Nanostructuring
has emerged as a promising mitigation strategy. For instance,
thin Si films of 250 nm and 1000 nm were compared [139],
where the thinner film exhibited improved initial perfor-
mance but suffered severe cracking after 30 cycles due to
stress-induced failure. The jagged morphology of as-depos-
ited Si layers further exacerbated localized stress concentra-
tion and delamination, underscoring the importance of stress
management in high-capacity thin-film anodes.

The high sensitivity of Li/LiPON interfaces to ambi-
ent atmosphere and electron beam exposure complicates
structural characterization. Meng et al. [140] addressed
this challenge using cryogenic TEM (cryo-TEM) combined
with cryo-FIB preparation. Li was thermally evaporated
onto a LiPON SSE, and analysis revealed an 80 nm-wide
interfacial zone containing elemental gradients of N and P,
phase-segregated products, and amorphous-layered domains
(Fig. 4a—d). These findings provide mechanistic insights into
interphase formation and highlight the importance of inter-
face engineering in TFMBs. In addition to elemental and
alloy systems, semiconducting anodes have also been inves-
tigated. Guo et al. [141] introduced Cu,ZnSnS, (CZTS), a
well-known photovoltaic material, into microfabricated
TFMBs. The LCO/CZTS full cell with an active area of 0.52
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Table 4 Comparative of deposition conditions and electrochemical behavior of LCO and LMO thin-films

Key limitations

Preferred Orientation/Morphology  Crystallinity & electrochemical

Atmosphere

Deposition conditions

Material

behavior

> 500 °C incompatible with CMOS,
low-temperature films show poor
crystallinity and rapid fading

(~ 140 mAh-g™"), stable cycling
3D nanosheets or nanowall arrays Enlarged interface area, shortened = Thick-film fabrication difficult,

(Volmer—Weber growth)

capacity ~ 64 pAh-cm™2pm™"!

RT-300 °C: (003) orienta- High crystallinity above 500 °C,

(110), > 500 °C: best crystallinity

tion, >400 °C: (101)/(104)/

O, or O,/Ar

RT-500 °C

LCO [53, 129, 183] 1072-103 Torr (MS/PLD),

1072-10~! Torr (MS), 300-500 °C O, atmosphere
deposition, annealing up to

700 °C

LMO [130]

precise temperature control needed
to avoid phase instability and Mn

valence shifts

diffusion paths, improved rate

performance

mm? delivered superior electrochemical performance com-
pared with LCO/SnO, counterparts, retaining 4.2 nAh after
20 cycles and exhibiting higher coulombic efficiency. The
improved reversibility and compatibility highlight CZTS as
a promising multifunctional anode for miniaturized storage
systems. The compositional tuning of anodes also plays a
decisive role. Stewart et al. [142] investigated nitrogen-
doped tin oxynitride (SnO,N,) films via ALD. Nitrogen-rich
SnO,N, displayed higher capacities, lower discharge volt-
ages, and enhanced cycling stability due to facilitated Li*
transport and suppressed resistive phase formation, while
trace oxygen showed negligible adverse effects. In order to
alleviate stress-induced degradation, multilayer configu-
rations have been employed. Yang et al. [143] fabricated
binder-free multilayer Si/C thin films by MS, resulting in a
C/Si/C/Si/C architecture (Fig. 4e). The electrode delivered
an initial discharge capacity of 2316 mAh g~' and retained
1220.9 mAh g~! after 200 cycles at 0.2 C, corresponding to
90.1% capacity retention (Fig. 4f). Carbon layers acted as
elastic buffers to accommodate Si expansion and facilitated
stable SEI formation (Fig. 4g). Moreover, moderate deposi-
tion temperatures (100-300 °C) further improved film den-
sification and electrochemical stability.

Low-voltage intercalation anodes like LTO also
show promise due to their structural stability and neg-
ligible volume change. Pfenninger et al. [144] deposited
LTO thin films onto Al-doped LLZO SSEs using PLD
(Fig. 4h—j). The resulting interface demonstrated excellent
mechanical and electrochemical compatibility, delivering
capacities close to the theoretical value of 175 mAh g~!
(Fig. 4k). Stable cycling (90% retention over 22 cycles at
2.5 mA g7') and robust rate capability further highlight
the potential of oxide-based intercalation anodes in sup-
pressing dendrites and enhancing safety in microbattery
system. In a word, rational anode design, ranging from
elemental and alloy to conversion and intercalation types,
combined with advanced interface characterization and
multilayer engineering, is essential for achieving stable
and high-performance TFMBs. Future advances will rely
on strategies that ensure interfacial compatibility, stress
mitigation, and conformal film growth to enable scalable
integration into solid-state microbattery.

https://doi.org/10.1007/s40820-025-02002-w



Nano-Micro Lett. (2026) 18:159 Page 13 0f43 159

Li.La,Zr,O,, pellet
Substrate

100nm

d 0000000 I 4 300°
00000000 - C
e0000000 L0 —+200°C
@ - MO subetrate
Li metal 1,0 O 8 o by du £
@ > H i £ 44
! 33 ‘ <
| T
= O e N 4]
@ @ e <°;§ Interface E 3 a
LisN \ @ %‘ E ' 2
- — 3,8
e ° R
= 14
0 - T T T T
0.0 2.0x10°  4.0x10°  6.0x10°  8.0x10°
Re Z/ Ohm
fooom 100 J Cu o
~ current collector —
33000 9% i
5 g M0,
€250 —o— —a— *C/Si/C/SV/C (10/50/10/50/10 nm) 60 g thinfim "
& U 251
22000 « CE & 6 25Al25L.2,2,0,
3 \ 45 g pellet ﬂecn’ol;‘e” — Ts.
gl 2 Uit
30 7 wetal foil
£ 1000 B
F] <_J =
2 500 153
0 0 =20 i | 1
0 20 40 60 80 100 120 140 160 180 200 k 300y T=20C | ‘ B charge
Cycle number ' { —e—|discharge
250 4 ' ]
}::n i )
J i |
g ‘é 200 thedretical capdcity Li,Ti,O,,
Li* extraction < 150 H |
After dozens ——After hundreds %
<
_J‘_ of cycles of cycles § 100 - ; 5 )
‘ H |
2 504 i H |
25mAlg ! 12.5mAlg! 25mA/g | 2.5 mAlg
0.015C 10.07C 1 015C ! 0.015C
0 T T

T T LS TN s T L
2 4 6 8 10 12 14 16 18 20 22

Silicon film I Carbon film Il Copper foil Cycle | #

Fig. 4 Characterization of interfacial structures and failure mechanisms in TEMB electrodes and electrolytes. a Cryo-FIB-SEM cross-sectional
image of the Li/LiPON interface. b Cryo-STEM dark-field image of the Li/LiPON interface with corresponding elemental distribution. ¢ EDS
line scan of P and N signals along the dashed line in b, showing interfacial composition. d Schematic illustration of the multilayered interphase
formed at the Li/LiPON interface. Reproduced with permission from Ref. [140] Copyright 2020 Elsevier Publishing. e SEM image of a mul-
tilayered C/Si/C/Si/C thin-film electrode with alternating layers. f Cycling performance of the multilayered Si/C thin-film electrode, indicating
improved reversibility. g Schematic of failure mechanisms in multilayered Si/C thin-film anodes. Reproduced with permission from Ref. [143]
Copyright 2019 Elsevier Publishing. h Cross-sectional SEM image of an LTO thin film deposited on a solid electrolyte substrate via PLD. i
Nyquist plots of in-plane impedance measured with Pt contacts at 200 °C and 300 °C. j Schematic configuration of a half-cell with Li foil/
Lig 55Aly »sLa;Zr,0;, pellet/LTO thin film/Cu current collector. k Rate capability of the half-cell under varying current densities, showing dis-
charge capacity exceeding charge capacity. Reproduced with permission from Ref. [144] Copyright 2018 Wiley Publishing

) SHANGHAI JIAO TONG UNIVERSITY PRESS @ Springer




159 Page 14 of 43

Nano-Micro Lett. (2026) 18:159

3.4 Solid-State Electrolytes: Design Criteria,
Functionalization, and Thin-Film Engineering

Solid-state electrolytes (SSEs) serve as the ionic conductor and
electronic insulator in TFMBs, determining electrochemical per-
formance, interfacial stability, and cycling longevity. An ideal
SSE must satisfy three stringent requirements: (1) high Li* con-
ductivity (> 107 S em™) for efficient ion transport; (2) ultralow
electronic conductivity (<10~ S cm™") to suppress leakage and
self-discharge; and (3) high mechanical modulus and hardness
to resist dendritic penetration and maintain film integrity. In
addition, SSEs for TFMBs must be compatible with thin-film
fabrication, requiring low-temperature processability to avoid
electrode degradation and the ability to form dense, pinhole-
free, smooth films with minimal grain boundaries. Structurally,
SSEs can be classified into amorphous and crystalline phases.
Amorphous SSEs, though showing lower conductivity, provide
isotropic transport, absence of grain boundaries, and excellent
film formability, while crystalline SSEs generally possess higher
conductivities but suffer from grain-boundary impedance and
interfacial instabilities.

3.4.1 LiPON and Derivatives

LiPON remains the most widely employed SSE owing to its
exceptional chemical stability, wide electrochemical window
(5.5 V vs. Li*/Li), and ultralow electronic conductivity (1074 S
cm™"). However, its moderate ionic conductivity (1076 S cm™)
limits rate capability. To address this, doping strategies have
been pursued. Huang et al. [145] incorporated Mn into LiPON
via MS, forming Mn—O-P linkages that enhanced Li* mobil-
ity and reduced surface roughness, thereby doubling the ionic
conductivity to 5.0x 107° S cm™'. Subsequently, fluorine plasma
modification yielded LIPON@F films with enhanced conduc-
tivity (1.0 107 S em™), lower activation energy (0.39 eV),
and wider stability window (4.2 vs. 3.9 V for pristine LiPON)
(Fig. 5a—d) [146]. LiPON @F also exhibited superior humidity
resistance, retaining 85.5% conductivity after 120 h at 50% RH,
compared to 64.6% for pristine LiPON. These improvements
were attributed to defect passivation and phosphate network
modulation.

3.4.2 Emerging Crystalline SSEs

Zhao et al. [147] synthesized anti-perovskite Li;OCI
thin films via composite-target PLD, achieving

© The authors

room-temperature ionic conductivity of 2.0x 107 S
cm~'—two orders of magnitude higher than bulk ana-
logues, and demonstrated the first TFMB with Li;OCl
as the electrolyte (Fig. Se, f). Xu et al. [148] fabricated
amorphous Li; Al 3Ti; ,(PO,); films via MS, achieving
6.47x107% S cm™! conductivity and ultralow electronic
conduction (2.34x 107" S cm™) (Fig. 5g, h). Zhang et al.
[149] optimized amorphous Lij 35La 5cTiO5 thin films by
tuning oxygen partial pressure and post-annealing, reach-
ing conductivity of 5.32x 107> S cm™! and activation
energy of 0.26 eV (Fig. 6a—d). These studies highlight the
need to balance oxygen defect suppression and Li preser-
vation for high-performance oxides.

3.4.3 Low-Temperature Processing and Interface
Engineering

To mitigate the high processing temperatures of ceramic
SSEs, Rupp et al. [150] developed a multilayer fabrication
approach for lithiated Al-doped Li;La;Zr,0,, (AlI-LLZO)
thin films. Sequential Li;N/AI-LLZO bilayers deposited by
PLD and mild annealing stabilized the cubic phase at tem-
peratures 400 °C lower than conventional sintering, yield-
ing conductivity of (2.9+0.05)x 107> S cm™! (Fig. 6e—i).
This strategy reduces thermal budgets and enhances scal-
ability for TFMB fabrication.

In summary, LiPON remains the benchmark SSE,
offering unmatched electrochemical stability, interfa-
cial reliability, and process versatility across deposition
platforms (RFMS, PLD, e-beam, ALD). Its amorphous
nature enables facile thin-film fabrication and excellent
compatibility with LCO cathodes and Li anodes, ensuring
dendrite-free cycling. Nevertheless, moderate ionic con-
ductivity (10‘6—10‘5 S cm‘l), deposition-rate limitations,
and moisture sensitivity remain challenges. Emerging
crystalline SSEs and engineered oxides offer promising
alternatives with higher conductivities, but often demand
high-temperature processing and face interfacial issues
(Table 5). Moving forward, the balance between conduc-
tivity, interfacial stability, and scalable low-temperature
processing will dictate the next-generation of SSEs for
TFMB applications.

https://doi.org/10.1007/s40820-025-02002-w
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as-deposited LIPON@F thin films. Reproduced with permission from Ref. [146] Copyright 2023 Elsevier Publishing. e Nyquist plot and fitted
impedance curves of a Li;OCl-based solid electrolyte at room temperature, with inset cross-sectional SEM image of the interfacial structure. f
Cycling performance of a Li/Li;OCI/Li symmetric cell. Reproduced with permission from Ref. [147] Copyright 2016 Wiley Publishing. g SEM
images of the LATP thin-film surface with inset AFM image, alongside cross-sectional morphology. h Complex impedance spectra of the LATP
thin-film electrolyte. Reproduced with permission from Ref. [148] Copyright 2016 Elsevier Publishing
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Fig. 6 Morphology, structural features, and ionic conductivity of perovskite- and garnet-type thin-film solid electrolytes for TFMBs. a Surface
SEM image and elemental mapping of amorphous LLTO thin films deposited under an O,:Ar ratio of 3:7. b Electrochemical impedance spectra
of LLTO thin films prepared under different O, partial pressures. ¢ Selected-area electron diffraction (SAED) patterns of LLTO thin films after
annealing at 300 °C. d Electrochemical impedance spectra of LLTO films annealed in different gas atmospheres. Reproduced with permission
from Ref. [149] Copyright 2022 Science Press and Springer Publishing. e Schematic of a multilayer deposition strategy for Al-doped LLZO thin
films fabricated via PLD. f Cross-sectional SEM image of a multilayer stack (delithiated Al-LLZO/Li;N) deposited at 300 °C on a MgO sub-
strate. g SEM image of the post-annealed thin-film structure at 660 °C, showing a consolidated ~330 nm film. h Nyquist plots of the multilay-
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for selected thin-film samples. Reproduced with permission from Ref. [150] Copyright 2019 Springer Nature Publishing

3.5 Fabrication and Integration of TFMBs

The rapid evolution of modern microelectronics has trig-
gered increasing demand for power sources that are not only
miniaturized, lightweight, and ultra-thin but also mechani-
cally flexible, low-power, and seamlessly integrable into
highly compact systems. In this regard, TFMBs, as a cru-
cial subclass of all-solid-state lithium batteries (ASSLBs),
have garnered extensive attention owing to their intrinsic
safety, exceptional volumetric energy density, and facile
compatibility with on-chip integration. Nevertheless, despite
substantial progress in individual material components,
the realization of fully integrated TFMBs remains nas-
cent. Key challenges persist, particularly those associated

© The authors

with interfacial stability, scalable thin-film processing, and
microstructural control. Successful construction of high-per-
formance TFMBs necessitates not only a profound under-
standing of the intricate physicochemical interactions among
electrodes, SSEs, and their interfaces, but also the develop-
ment of advanced fabrication techniques capable of deliver-
ing high-quality films with precise composition control and
interfacial conformity. Within this context, PVD techniques,
especially MS and PLD, have emerged as promising meth-
ods due to their industrial maturity, high deposition rates,
excellent uniformity, and scalability, rendering them highly
compatible with wafer-scale microfabrication processes.

In an early seminal study, Dudney et al. [151] fabricated a
high-voltage TFMB using a spinel LiNi, sMn; 0, (LNMO)

https://doi.org/10.1007/s40820-025-02002-w
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Table 5 Representative thin-film solid electrolytes for TFMBs

Material Ionic con- Electrochemi- Deposition References
ductivity cal window Method
(S-em™) W)
LiPON  6.4x1076 55 MS [140]
LLZO 2x107* 6 MS, PLD [150]
LLTO 82x107™ 2.8 MS, PLD [149]
Li;OCl 2x107 6 PLD [147]
LATP  246x1075 24 MS, PLD [148]

cathode, LiPON electrolyte, and Li metal anode. Cross-
sectional SEM/EDS analyses revealed elemental migration
and interfacial heterogeneity. The device operated stably
at 4.7 V, retaining 90% of its initial capacity after 10,000
cycles (<0.001% fading per cycle), with slight capacity loss
at higher currents attributed to gradual resistance buildup.
The first-cycle irreversible capacity (~40 mAh g~! at the
4V plateau) originated from the Mn>*/Mn** redox process
rather than electrolyte decomposition, while subsequent
voltage—capacity profiles remained unchanged over extended
cycling. The wide electrochemical window of LiPON effec-
tively suppressed parasitic reactions, enabling near-ideal
coulombic efficiency (Fig. 7a—c). This work validated spi-
nel-type cathodes in TFMBs and underscored the necessity
of optimizing phase purity and minimizing compositional
heterogeneity. To address the low capacity and rate limita-
tions of TiO, anodes, Xia et al. [152] designed an amor-
phous-crystalline heterostructure TiO, via room-temperature
MS. While amorphous TiO, offers rapid Li* transport but
poor electronic conductivity, crystalline TiO, ensures supe-
rior electronic transport yet limited Li* mobility. The het-
erostructure integrates both advantages: amorphous regions
provide rapid diffusion channels, rutile crystalline phases
enhance electronic conductivity, and heterointerfaces offer
additional Li* storage and internal electric fields, facilitat-
ing coupled ion—electron transport and stabilizing interfaces.
This synergistic design achieved a reversible capacity of 204
mAh g~! at 50 mA g~! and 73 mAh g~ at 1600 mA g~!
respectively, with nearly 100% retention over 400 cycles
and stable impedance (Fig. 7d—f), demonstrating an effec-
tive strategy for anode engineering in TFMBs.

Further advancing cathode design, Xia et al. [153] inte-
grated Li-rich Mn-based layered oxides (LMROs, e.g.,
Li,MnO3), into TFMBs. Compared with LMRO-based
LIBs, the LMRO/LiPON/Li configuration exhibited

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

enhanced stability by suppressing electrode degradation
(Fig. 7g). LiPON stabilized interfaces, reduced impedance,
and facilitated smooth Li* transport while preventing Mn
dissolution and O, release. Extended cycling induced a
controlled layered-to-spinel transition, improving crystal-
linity, conductivity, and Li* diffusion, thereby accelerating
ion—electron kinetics (Fig. 7h). The LMRO-TFMB main-
tained capacity over 1000 cycles, in stark contrast to con-
ventional LMRO-LIBs, which suffered severe degradation.
Transition-metal fluorides (TMFs) have also been studied
as high-capacity cathodes. Casella et al. [154] fabricated
Fe—LiF thin-film cathodes by co-evaporation and integrated
them into LiPON-based TFMB (Fig. 8a, b). Electrochemical
activation induced nanoscale reorganization, progressively
increasing voltaic efficiency and reversible capacity up to
480 mAh-g~! at room temperature (Fig. 8c). These findings
confirm the feasibility of conversion-type reactions in thin-
film configurations.

For high-voltage LCO cathodes (>4.55 V), Cui et al.
[155] implemented dual-surface/interior modification by
constructing a TI@LCO@LCPO trilayer (Fig. 8d). This
design suppressed irreversible phase transitions and cobalt
dissolution, retaining 75% of capacity after 500 cycles
(Fig. 8e). In situ XRD and DFT analyses confirmed revers-
ible lattice changes and suppressed oxygen redox, attrib-
uted to reinforced interfacial bonding and reduced vacancy
formation (Fig. 8f-i) [156]. In parallel, facet engineering
was demonstrated by Nb,O;@LCO nanosheets on rotated
(003) substrates, reducing Li* diffusion barriers and internal
stress. The optimized TFMB displayed 72.5% retention after
500 cycles at 1.4 C and an energy density of 1.148 mWh
cm~? [157]. Efforts to optimize anode-free TFMBs have
focused on stabilizing Li nucleation. Futscher et al. [158]
introduced an amorphous carbon (a-C) interfacial layer
deposited by DCMS between current collectors and SSEs
(Fig. 8j). Acting as a Li nucleation template, the a-C layer
minimized overpotential, enhanced plating uniformity, and
increased critical current density fourfold while reducing
lithium loss (Fig. 8k), thereby advancing anode-free TFMB
development.

Beyond material innovations, novel device architectures
are emerging [159-163]. Futscher et al. [164] proposed a
monolithically stacked TFMB configuration, wherein mul-
tiple units are vertically integrated on a common substrate
with precise lithographic patterning and nanoscale interfa-
cial control. Modeling predicted enhanced energy—power

@ Springer
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Fig. 7 Electrochemical properties, degradation pathways, and structural mechanisms of cathode-based TFMBs. a Cross-sectional SEM image
and corresponding EDS elemental mapping of the LNMO-based TFMB after 1000 cycles, showing structural integrity and elemental distribu-
tion. b Comparison of cumulative irreversible charges for LNMO electrodes in TFMBs versus conventional LIBs. ¢ Voltage profiles of LNMO-
based TFMBs at different cycle numbers under 0.1 C. Reproduced with permission from Ref. [151] Copyright 2015 Wiley Publishing. d Sche-
matic illustration of the device architecture of a TiO,-based TFMB. e Cycling performance comparison of TFMBs with A-TO, AC-TO, and
C-TO thin-film cathodes. f Schematic mechanism of performance enhancement in AC-TO thin-film electrode. Reproduced with permission from
Ref. [152] Copyright 2022 AIP Publishing. g Cross-sectional FESEM image and corresponding EDS mapping of an LMRO-based TFMB. h
Schematic illustration of the mechanism contributing to extended cycling life in LMRO-based TFMBs. Reproduced with permission from Ref.
[153] Copyright 2024 Elsevier Publishing

characteristics under practical limits such as CCD and ther-  and power > 10 kW kg~!, depending on cathode thickness
mal gradients (Fig. 9a). With NMC811 cathodes (4 pm),  (Fig. 9b, ¢). Similarly, Pecquenard et al. [165] demonstrated
Ragone plot indicated energy densities > 500 Wh kg='  an LCO/LiPON/Si TFMB fabricated directly on silicon

© The authors https://doi.org/10.1007/s40820-025-02002-w
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wafer, achieving 1700 pWh cm™2-pm™!

volumetric energy
density and exhibiting a reversible “memory effect” with
potential for adaptive microsystems (Fig. 9d—f). Huang et al.
[166] proposed a double-sided TFMB, fabricating symmet-
ric battery units on both sides of a substrate and electri-
cally paralleling them via conductive vias (Fig. 9g, h). This
architecture doubled areal capacity without increasing foot-
print and maintained robust electrochemical performance at
elevated temperatures (Fig. 9j). When extended to multilay-
ered 3D stacks, enhanced stress distribution and adhesion
mitigated delamination, enabling long-term stability.
Scalable, Si-compatible TFMB architectures have also
been reported. Wang et al. [167] employed MS to fabri-
cate iron oxysulfide cathodes and Si anodes, adopting an
in situ prelithiation strategy to balance lithium distribution
and improve mechanical durability. This system achieved
high-rate operation (34.4 mA cm™2), ultralong cycle life
(> 1,000,000 cycles), and integration into microfabricated
arrays (Fig. 10a), highlighting manufacturability.
Flexibility represents another frontier. Lee et al. [168]
demonstrated a TFMB-LED system on a mica substrate lam-
inated onto PDMS, delivering 106 pAh cm™2 and > 94.5%
retention after 100 cycles under repeated bending
(Fig. 10b—d). Inverted flexible TFMBs fabricated by Hussain
et al. [169] via substrate removal achieved 146 pAh cm~2 at
130 pA cm™ but required precise processing, raising com-
plexity. Together, these studies highlight that rational design,
interfacial engineering, and microfabrication-compatible
strategies can enable TFMBs with high capacity, thermal
stability, and robust integration, paving the way for next-
generation on-chip and wearable energy platforms.

3.6 Interface and Interphase Evolution

The interfacial structure and its dynamic evolution at the
solid—solid electrode/electrolyte junctions play a deci-
sive role in determining the electrochemical performance,
cycling stability, and rate capability of TFMBs [170-173].
Unlike conventional liquid-electrolyte LIBs, TFMBs adopt
a planar, layer-by-layer solid-state configuration in which
electrodes and electrolytes are coupled via defined two-
dimensional contact interfaces. Due to the limited inter-
facial area and inherent lattice/chemical mismatches, such
interfaces are highly susceptible to degradation during
repeated lithiation/delithiation, leading to delamination,

© The authors

stress accumulation, and increased interfacial resistance.
These challenges underscore the necessity of elucidating
interfacial evolution mechanisms and developing effective
stabilization strategies. However, direct probing of buried
solid—solid interface remains inherently difficult, necessitat-
ing advanced, non-destructive techniques capable of resolv-
ing structural and chemical transformations with high spatial
resolution.

Katie et al. [174] constructed a model Li/LiPON/NiO
TFMB (Fig. 11a), employing neutron reflectometry (NR)
to investigate the buried LiPON/NiO interface. Fitting
experimental data with a five-layer structural model (treat-
ing LiPON as semi-infinite) enabled extraction of scatter-
ing length density (SLD) profiles. Upon Li deposition, the
SLD of the NiO layer decreased to~5.2x 107® A~2, indi-
cating lithiation and formation of Li,NiO,. Concurrently,
a thin Li layer (~2.4 nm) with SLD close to metallic Li
(-0.88 x 107® A~2) emerged at the LiPON/NiO interface.
Even after Li stripping, a residual Li-rich interphase (SLD =~
-0.1x107° 10%_2) persisted, confirming the dynamic restruc-
turing of the solid—solid boundary.

To spatially resolve interfacial chemistry, Uhart et al.
[173] combined ion milling with auger electron spectros-
copy (AES) to construct high-resolution elemental depth
profiles across TFMB cross-sections (Fig. 11b). At the LCO/
LiPON interface, a bilayer interfacial structure was identi-
fied (Fig. 11c): an upper Li-rich, Co-deficient region and a
lower nearly delithiated Co,05-like layer. While effective,
ion-beam and TEM-based routes risk beam-induced dam-
age, motivating the pursuit of non-destructive alternatives.
Using operando neutron depth profiling (NDP), Notten
et al. [175] monitored extended cycling of LCO/Li;PO,/Si
TFMBs, revealing progressive formation of a Si-containing
interlayer at the Si/SSE boundary due to Si diffusion, which
impeded Li" transport and induced continuous capacity
fading over 250 cycles. Complementarily, Thompson et al.
[176] employed potentiostatic analysis to show that in amor-
phous Si, Li* diffusion within the Li,Si phase—not inter-
facial charge transfer—constitutes the rate-limiting step,
providing critical mechanistic insight.

LiPON, as the most widely developed amorphous SSE
in TFMBs, is particularly vulnerable to environmental
degradation, especially under air exposure [177]. Meng
et al. [171] utilized in situ scanning transmission electron
microscopy (STEM) combined with electron energy loss
spectroscopy (EELS) to probe the LCO/LiPON interface

https://doi.org/10.1007/s40820-025-02002-w
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Fig. 9 Modeling, architecture, and integration of stacked TFMBs for improved energy and thermal management. a Lumped thermo-electric
model illustrating in-plane heat dissipation of series-stacked TFMBs through lateral cooling channels. b Ragone plot of a simulated stacked
TFMB with a 4 pm-thick NMC811 cathode per cell, showing limitations from voltage efficiency, critical current density, and thermal gradi-
ents. ¢ Energy-power characteristics of stacked TFMBs using LCO and NMC811 cathodes of varying thicknesses, with dashed lines indicat-
ing charge/discharge rates. Reproduced with permission from Ref. [164] Copyright 2023 Springer Nature Publishing. d FIB-SEM micro-
graph of an encapsulated TEMB consisting of Li, ,TiO, sS, /LiPON/Si layers and Ti current collectors. e Electrochemical performance of the
Li, ,TiO, 5S, ;-based TFMB, including capacity versus current density and cycling stability. f Photograph of encapsulated TFMB dies fabricated
on an 8-inch silicon wafer, demonstrating wafer-scale integration. Reproduced with permission from Ref. [165] Copyright 2015 Wiley Publish-
ing. g Schematic of a three-cell 3D-stacked LIB fabrication process. h Optical image of the assembled 3D-stacked LIB. i X-ray image confirm-
ing the stacked cell configuration. j Cycling performance of the 3D-stacked LIB at 125 °C, highlighting stability under elevated temperature
conditions. Reproduced with permission from Ref. [166] Copyright 2024 Wiley Publishing

(Fig. 11d). Even without cycling, a disordered LCO-
derived layer formed spontaneously. Under in situ charg-
ing, high-valence Co species and insulating Li,0/Li,0,
compounds emerged (Fig. 11e, f), impeding interfacial Li*
transport. Subsequent studies under elevated temperatures
(80 °C) further confirmed accelerated interphase growth,
sharply increasing interfacial resistance and capacity fad-
ing [178]. Wang et al. [179] using in situ TEM directly
observed the formation of electrochemically unstable
nanocrystalline interphases that developed voids upon
cycling, creating bottlenecks for ion conduction.
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To enable external manipulation of interfaces, Meng
et al. [180] developed freestanding LiPON (FS-LiPON)
membranes via a combination of spin coating, RFMS, and
solvent-based film transfer (Fig. 11g—i). Comprehensive
characterization (SSNMR, DSC, nanoindentation) revealed
that uniform and dense Li deposition could be achieved at
Cu/FS-LiPON interfaces even without applied pressure, par-
ticularly when a gold seed layer was introduced to mitigate
interfacial stress. This strategy offers a perspective avenue
for pressure-free solid—solid contact engineering in TFMBs.
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In short, interfacial and interphase phenomena in TFMBs
are highly dynamic, governed by material selection, electro-
chemical cycling, and environmental conditions. Emerging
in situ/operando characterization techniques, including NR,
NDP, AES, STEM-EELS, and TEM, are providing unprec-
edented insights into interfacial evolution. These findings
establish a mechanistic foundation for rational interface
design and highlight pathways toward overcoming interfa-
cial bottlenecks that currently limit the long-term reliability
and scalability of TFMBs.

© The authors

3.7 Interfacial Modification Strategies for TFMBs

Interfacial instability, manifested in both chemical and
structural forms, remains a major limitation to achieving
long-term stability and high performance in TEFMBs. Owing
to the intrinsic solid—solid contact between electrode and
electrolyte layers, interfacial regions frequently suffer from
mechanical delamination, chemical interdiffusion, and slug-
gish Li* transport kinetics. Consequently, targeted interfa-
cial engineering is essential to minimize resistance, suppress

https://doi.org/10.1007/s40820-025-02002-w
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parasitic reactions, and enable robust electrochemical
cycling. To enable precise diagnosis of interfacial behavior
in TFMBs, Stewart et al. [181] proposed an integrated diag-
nostic methodology based on microfabricated test structures.
By simultaneously fabricating TFMB stacks and equivalent
diagnostic components, electrochemical impedance spec-
troscopy (EIS) was performed to construct equivalent circuit
models of individual layers and interfaces (Fig. 12a, b). The
analysis revealed that the anode/SSE interface, particularly
under dynamic cycling, exhibits pronounced kinetic instabil-
ity, which was identified as the dominant degradation path-
way. This diagnostic framework gives valuable insight for
interface-specific optimization in advanced TFMBs. Sastre
et al. [182] constructed a multilayer TFMB architecture (Si/
MgO/Ti/Pt/LCO/Li-Nb—O/LLZO) to research cathode/SSE
interfacial behavior. A lithiated Nb,Oj5 diffusion layer was
introduced in situ at the LLZO/LCO interface, which sig-
nificantly reduced interfacial impedance and facilitated fast
charge transport (Fig. 12¢, d). The Nb-rich interphase acted
as a Li*-conductive buffer, mitigating lattice mismatch and
electronic insulation, thereby enhancing long-term cycling
stability. To further evaluate cathode/SSE compatibility,
Kim et al. [114] investigated the interface between sput-
tered LCO and a NASICON-type SSE (Li, ;AljsTi; ;(PO,);,
LATP). A 500 nm LCO film was deposited via RF sputtering
and post-annealed at 500 °C to induce crystallization. The
assembled TFMB (Pt/LCO/LICGC/LiPON/Li) was tested
at 0.01 C and 30 °C within 3.3-4.2 V. Although elemental
interdiffusion was negligible over 10 cycles, the initial cou-
lombic efficiency was only 68%, primarily due to structural
defects within the LCO film [183]. Nonetheless, this study
demonstrates the feasibility of creating chemically stable
cathode/SSE interfaces via thermal activation. Xia et al.
[184] examined interfacial degradation in an anode-free
TFMB composed of an amorphous FeO,S, cathode, LiPON
SSE, and Li metal anode. Severe structural disruption
occurred at both FeOXSy/LiPON and LiPON/Li interfaces,
leading to rapid capacity fading. To address this, a dual-
interface engineering strategy was proposed by introducing
amorphous Al,O; interlayers at both cathode/SSE and SSE/
anode interfaces (Fig. 12e, f). The Al,O5 buffer effectively
suppressed Fe diffusion, mitigated Li-vacancy formation,
and stabilized impedance evolution during cycling, thereby
enhancing cycling stability and rate capability. This dual-
interface route presents a generalized strategy for stabilizing
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both electrochemical and mechanical aspects of solid—solid
interfaces.

The formation of unstable nanocrystalline interfacial lay-
ers during cycling has been widely recognized as a key origin
of high resistance and Li* transport bottlenecks. Wang et al.
[179] employed in situ TEM to capture real-time Li* trans-
port dynamics at all-solid-state interfaces. Their observa-
tions revealed void formation and interfacial reconstruction
driven by electrochemical/mechanical instabilities, verifying
the critical role of interfacial microstructure in governing
Li* migration. To address the poor wettability and limited
adhesion between metallic Li and LiPON, Kim et al. [185]
introduced an ultrathin Al,O; surface-modification layer via
face-to-face target sputtering (FTS) (Fig. 12g, h). Time-of-
flight secondary ion mass spectrometry (TOF-SIMS) char-
acterization revealed that without modification, Li exhibited
poor adhesion and tended to delaminate from the current
collector. With the Al,Oj; interlayer, interfacial contact was
significantly improved, delamination was suppressed, and
Li nucleation became more uniform. Post-cycling analysis
confirmed a substantial reduction in interfacial resistance,
validating the efficacy of this engineering strategy (Fig. 12i).

Overall, interfacial resistance in TFMB arises mainly
from chemical/electrochemical incompatibility, poor
contact, and strain induced by lithiation/delithiation.
Interfacial engineering, through dielectric nanopar-
ticle incorporation, ion-conductive interlayers, and
thermal treatment, has proven effective in mitigating
these issues. For instance, BaTiO5 nanoparticles at the
LiCrg ¢sNig 4sMn, 50,_s/LiPON interface reduce local
potential differences, thereby promoting Li* migration
and improving both capacity and rate performance [186].
Similarly, LiNbOj; interlayers at the LCO/LiPON inter-
face regulate Li* distribution: low-temperature deposition
extracts surface Li* to boost low-rate capacity, while high-
temperature deposition forms a Li*-rich interphase that
lowers resistance [187]. Thermal treatment has also been
shown to restore crystallinity and optimize Li* pathways,
as demonstrated in LMO and LCO interfaces [188, 189].
Collectively, these strategies, encompassing nanoparticle
modification, ion-conductive buffers, thermal annealing,
and structural reconstruction, substantially enhance inter-
facial compatibility, lower resistance, and improve electro-
chemical performance. Continued progress in interfacial
material design and high-resolution characterization will

https://doi.org/10.1007/s40820-025-02002-w
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be critical for enabling stable, integrable, and high-per-
formance TFMBs.

4 Emerging Strategies and Novel Approaches
4.1 3D TFMBs and Spatial ALD

Conventional 2D TFMBs inherently suffer from limited
areal energy and power densities due to constrained elec-
trode—electrolyte interfacial areas and degradation of Li*
transport kinetics with increasing film thickness [190, 191].
To overcome these bottlenecks, 3D TFMBs have emerged as
promising solution. By exploiting high-aspect-ratio micro-
structures, 3D TFMBs significantly expand the effective
electrochemical surface area without enlarging the device
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footprint, thereby enhancing both energy and power den-
sities [191, 192]. Depending on the fabrication route, 3D
TFMBs can be broadly classified into two categories: (1)
those constructed on pre-patterned 3D substrates and (2)
self-standing electrode-based configurations.

The advent of conformal thin-film deposition techniques,
particularly ALD, has enabled the precise layer-by-layer
construction of TFMBs on substrates with complex geom-
etries. Gregorczyk et al. [193] pioneered a fully conformal
TFMB comprising of Ru/LiV,0s/Li,PO,N/SnN,/TiN/Cu
multilayers grown by ALD on 3D silicon scaffolds, dem-
onstrating electrochemical performance consistent with
finite-element simulations. Similarly, Lethien et al. [194]
deposited Al,0,/Pt/TiO,/Li;PO, multilayers on silicon
microtube arrays, achieving areal capacities nearly two
orders of magnitude higher than planar analogs despite
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ultrathin active layers (< 100 nm). Building upon this con-
cept, Lethien’s group [195] realized a high-performance 3D
LMO electrode via ALD on functionalized current collectors
(Fig. 13a, b), achieving stable operation at 4.1 V vs. Li/Li*
and delivering capacities of 180 pAh cm™2 for a 100 nm film
at 0.05 C, without requiring prelithiation. TEM and X-ray
transmission microscopy confirmed excellent conformal-
ity and interfacial integrity, highlighting ALD’s potential
for CMOS-compatible TFMB fabrication. Despite its pre-
cision, ALD is intrinsically limited by its ultralow growth
rate (~1.2 ;\/cycle) and high cost, constraining scalabil-
ity for practical 3D TFMBs. Thus, alternative conformal
deposition methods are being actively explored. Talin et al.
[196] compared 2D and 3D TFMBs fabricated via PVD
on conical and cylindrical micropillar arrays (Fig. 13c, d).
The inferior performance of 3D devices was attributed to
non-uniform film coverage arising from the line-of-sight
nature of PVD, implying the importance of morphological
uniformity. Extending this concept, Ruzmetov et al. [197]
fabricated nanowire-based core—shell TFMBs using PVD
(Fig. 13i), achieving nanoscale operability but with limited
power density because of structural discontinuities. These
findings emphasize that conformal deposition is a pivotal
factor in enabling high-performance 3D TFMBs.

In another approach, Wang et al. [198] combined PECVD,
thermal evaporation, and MS to construct an all-solid-state
Li-Se TFMB (Fig. 13h). A vertical graphene nanosheet
(VGs) host (~600 nm) was first deposited onto stainless
steel via PECVD, followed by conformal Se cathode coat-
ing, LiPON SSE deposition by MS, and Li metal anode
deposition. The interconnected VGs framework provided
high conductivity and mechanical resilience, suppressing
polyselenide shuttling and ensuring stable operation over
5000 cycles at 25 pA cm™2 with a capacity of 5.1 pAh cm™2.
This highlights the promise of 3D carbon frameworks for
stabilizing interfaces and mitigating volume fluctuations in
selenium-based cathodes.

Beyond templated-assisted deposition, self-standing
electrodes based on vertically aligned nanostructures (e.g.,
nanorods, nanowalls, nanotubes) have also been pursued
due to their high surface area and facile ion/electron trans-
port [43]. Research efforts have primarily focused on self-
standing anodes such as LTO, Si, and TiO, [199-201],
while robust 3D cathode development remains challenging
due to the high-temperature synthesis required. Xia et al.
[130] addressed this limitation by using a controlled PVD
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approach to construct 3D LMO cathodes via Volmer—Weber
island growth (Fig. 13e) during DCMS at 300 °C, fol-
lowed by post-annealing at 600-700 °C to yield crystalline
nanosheet arrays. The resulting semi-3D TFMB exhibited
reduced interfacial resistance and enhanced capacity rela-
tive to planar analogs (Fig. 13f, g). Expanding this strat-
egy, a-MoO;_, and MnO,_, nanostructures were fabricated
directly via reactive DCMS as cathodes for 3D TFMBs with
amorphous LiPON and Li anodes [202], achieving specific
capacities of 266 mAh g~! at 50 mA g~! and 92.7% capacity
retention over 1000 cycles. More recently, a low-temperature
(180 °C) reactive sputtering protocol enabled the fabrication
of 3D Li,MnO, nanosheet arrays, followed by Li* injec-
tion through LiPON and mild annealing [64]. The resulting
tunnel-type intergrowth cathode delivered 185 mAh g™ at
50 mA g~ and retained 81.3% capacity after 1000 cycles,
demonstrating compatibility with both rigid and flexible
substrates.

In summary, PVD-based strategies for 3D cathode design
offer notable advantages in process simplicity, microfabrica-
tion compatibility, and potential wafer-level integration. How-
ever, limitations in active material loading and film thickness
continue to restrict areal capacity. Future research should focus
on hierarchical 3D structures with optimized porosity, thick-
ness gradients, and layer conformality to balance performance
with scalability. While PVD remains attractive for integration,
the practical implementation of 3D TFMBs will likely require
hybrid approaches that leverage the precision of ALD with the
throughput of alternative scalable methods.

4.1.1 ALD on Pre-patterned Substrates

The intrinsically slow growth rate necessitates prolonged
deposition to achieve sufficient film thickness, severely
limiting throughput. ALD also requires stringent reaction
control, complex precursor management, and high technical
expertise, all of which increase equipment and operational
costs. Furthermore, costly and sometimes toxic precursors,
coupled with high energy consumption, further undermine
economic feasibility for large-scale production.

4.1.2 PVD for Self-supported Nanostructures

PVD provides versatile material deposition but is limited in
processing certain high-performance cathodes, restricting

https://doi.org/10.1007/s40820-025-02002-w
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material diversity. Its typical growth mode constrains 3D
film thickness, thereby limiting areal capacity and energy
density. From an economic perspective, PVD involves
higher fabrication costs and lower throughput compared
with conventional LIB manufacturing. Additionally, sur-
face roughness in PVD-fabricated 3D structures complicates
downstream assembly and may require post-treatment, fur-
ther increasing process complexity and cost.

Overall, both ALD and PVD exhibit clear potential
for 3D TFMB fabrication, yet face intrinsic challenges in

SHANGHAI JIAO TONG UNIVERSITY PRESS

scalability, cost, and structural control. Addressing these
issues will require innovative process design and materials
strategies, ultimately enabling the translation of 3D TFMBs
into practical microelectronic and IoT applications.

4.2 Co-Deposition and Synergistic Processes

The rational design of electrode microstructures at the
nanoscale has emerged as an effective strategy to regulate
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ion/electron transport kinetics and thereby enhance the over-
all electrochemical performance of TFMBs. In particular,
co-deposition of functional components and the construc-
tion of synergistically integrated architectures offer new pos-
sibilities to overcome intrinsic limitations of conventional
thin-film electrodes. Wang et al. [203] employed oblique
angle pulsed laser deposition to fabricate titled columnar
Li,MnO; thin film, where the anisotropic morphology
provided accelerated Li* diffusion channels and enhanced
redox activity. The resulting films exhibited significantly
improved capacity and rate performance compared with
planar counterparts. Building on this, the same group [204]
developed Li,MnO;—Au hybrid columnar composite elec-
trodes by simultaneous oblique deposition, embedding Au
nanocolumns into the Li,MnO; framework. Due to geomet-
ric shadowing, an angular deviation of ~ 19° between the
Au nanostructures and the incident flux was observed, ena-
bling high-quality epitaxial growth (Fig. 14a). This compos-
ite design created dual conduction pathways—continuous
electronic transport through Au columns and ionic transport
through the Li,MnO; matrix—yielding markedly improved
capacity retention and rate capability (Fig. 14b). These
findings underscore the potential of co-deposition-induced
heterostructures in achieving synergistic electrochemical
enhancements.

Despite its high operating voltage and compatibility with
thin-film platforms, LCO suffers from severe structural
degradation during prolonged cycling. To address this, Dai
et al. [205] developed an in situ Al-doped and Al,O5-coated
LCO thin-film cathode via MS (Fig. 14c). Al incorporation
simultaneously formed a LiAl;Co,_,O, solid solution that
enhanced Li* diffusivity and structural integrity, while gen-
erating metallic Al-based conductive pathways. Meanwhile,
the conformal Al,O; coating effectively suppressed parasitic
interfacial reactions and stabilized the cathode—electrolyte
interface. As a result, the modified LCO electrode delivered
a high areal capacity of 40.2 pAh cm=2 pm™"! over 240 cycles
at 2.5 pA cm~2 with 94.14% retention, whereas the pristine
electrode failed after 110 cycles. Furthermore, at a high
current density of 100 pA cm™2, the modified film deliv-
ered 43.5 pAh cm™ pm™!, representing a 38.97% improve-
ment over the unmodified sample (31.3 pAh cm™ pm™").
These results highlight the effectiveness of synergistic dop-
ing—coating strategies in simultaneously optimizing bulk and
interfacial properties for durable TFMBs.

© The authors

Garnet-type LLZO have attracted considerable attention
due to its excellent thermal stability, broad electrochemi-
cal window, and high Li* conductivity. However, achieving
dense and stable LLZO thin films with high ionic conductiv-
ity remains challenging. Buecheler et al. [206] reported a co-
sputtering approach using Li,0, LLZO, and Ga,O; targets to
synthesize Ga-doped LLZO (Ga-LLZO) thin films, followed
by post-deposition annealing. Upon annealing at 700 °C, a
tetragonal-to-cubic phase transformation yielded polycrys-
talline cubic Ga-LLZO films with in-plane ionic conduc-
tivity up to 1.6x 107> S cm™" at 30 °C. Grazing-incidence
XRD (GIXRD) confirmed the temperature-dependent phase
evolution. Follow-up work [207] demonstrated that excess
Li and Al doping suppressed porosity, promoted densifica-
tion, and mitigated proton-exchange degradation. Optimized
Al-doped LLZO film (~400 nm thick) achieved 1.9 X 1073
S cm™! ionic conductivity with excellent air stability and
compatibility for TFMB integration (Fig. 14d, e). Never-
theless, limited film density and Li volatility during high-
temperature processing remained key issues. To solve this,
Sastre et al. [208] synthesized submicron Ga- or Al-doped
LLZO films via co-sputtering and annealing at 700 °C,
achieving ionic conductivity as high as 1.9x 107 S ecm™!—
one order of magnitude higher than conventional LiPON
and comparable to bulk sintered LLZO. This breakthrough
establishes a new performance benchmark for garnet-type
thin-film SSEs, offering a scalable pathway for high-power,
vacuum-compatible TFMBs.

The application of Li metal anodes in TFMBs is often
hampered by dendritic growth, particularly in polycrystal-
line LLZO, where grain boundaries and defects act as pref-
erential channels for dendrite initiation. Amorphous LLZO
(aLLZO), with its dense, grain-boundary-free microstruc-
ture and negligible electronic conductivity, provides a viable
solution. Romanyuk et al. [209] fabricated aLL.ZO films by
MS and tuned Li stoichiometry to enhance ionic conduc-
tivity by up to four orders of magnitude while maintaining
electronic insulation (Fig. 14f, g). Symmetric Li/aLLZO/
Li cells demonstrated dendrite suppression under current
densities up to 3.2 mA cm™~2. Moreover, TFMBs with 70 nm-
thick alLLZO electrolytes operated stably over 500 cycles at
10 C. When employed as an interfacial buffer atop crystal-
line LLZO, alLLZO significantly reduced interfacial imped-
ance and increased critical current density (Fig. 14h). These
results affirm the pivotal role of amorphous garnet-type films
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in enabling dendrite-free Li metal anodes, thereby advancing
the safety and lifespan of TFMBs.

4.3 Roll-to-Roll and Wearable Systems of Flexible
TFMBs

With the accelerating advancement of portable and wearable
electronics, the development of flexible and scalable energy
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storage systems has become a key enabler for next-genera-
tion device integration. Owing to their ultrathin and planar
architectures, TFMBs are ideally suited for such applica-
tions. Recent progress has therefore focused on roll-to-roll
fabrication strategies and mechanically adaptive designs to
meet the requirements of high energy density, structural ver-
satility, and large-area manufacturability.
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4.3.1 Foldable Architectures and Micro-origami
Strategies

To adapt TFMBs to foldable and curvilinear systems, sev-
eral design prerequisites must be met: (1) electrodes and
electrolytes must exhibit sufficient mechanical elasticity
or be integrated with compliant substrates; (2) interfacial
stress must be effectively mitigated to avoid delamination
and microcracking; and (3) precise alignment during multi-
layer integration may be facilitated by external fields, such as
magnetics [210]. In this context, Schmidt et al. [211] intro-
duced a “micro-origami” strategy that employed mechanical
fold lines to realize spatially compact TFMBs with mini-
mal performance loss in confined geometries. This concept
substantially enhanced energy and integration density in
space-limited platforms. Extending this approach, Meng
et al. [212] demonstrated an anode-free TFMB constructed
on ultrathin stainless steel (1075 pm) substrates using a dry
patterning process compatible with roll-to-roll manufactur-
ing (Fig. 15a). The fabricated devices offered customizable
geometries, high volumetric energy density, and excellent
electrochemical reversibility, while maintaining mechanical
robustness. Importantly, this process enabled scalable inte-
gration via high-throughput patterning, rapid electrochemi-
cal screening, and multilayer encapsulation, representing a
significant step toward the commercial implementation of
flexible TFMBs.

4.3.2 Flexible Substrates and Low-Temperature
Fabrication

The integration of TFMBs onto flexible substrates, such
as polyimide (PI) [213-215], stainless steel foils [148,
216-219], yttria-stabilized zirconia (YSZ) [220], and mica
[221, 222], has shown great promise for wearable systems.
However, conventional deposition of lithium-containing
cathodes (e.g., LCO) requires annealing above 600 °C,
which is incompatible with polymer substrates. To overcome
this limitation, low-temperature fabrication strategies have
been explored to directly deposit amorphous or low-crystal-
line cathodes onto polymer supports. For instance, Kun et al.
[215] reported a MoO5/LiPON/Li TEMB fabricated entirely
on PI at room temperature via sputtering (Fig. 15b). Despite
moderate crystallinity, the device displayed stable capac-
ity retention (125 pAh cm™ pm™! after several hundred
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cycles) and robust high-rate cycling (62.0 pAh cm™2 pm™!
at 10 C for 550 cycles). Mechanical stress analyses further
revealed that cathode bulk resistance strongly depended on
both depth-of-discharge and bending strain (Fig. 15c, d),
emphasizing the coupling between mechanical deformation
and electrochemical performance in flexible systems. Yet,
trade-offs between low-temperature processability and elec-
trochemical quality remain a key bottleneck, requiring fur-
ther optimization of both materials and fabrication protocols.

4.3.3 Transparent TFMBs for Next-Generation Displays

The exponential growth of transparent electronics has stimu-
lated the demand for optically transparent energy storage
devices [190]. Benefiting from their submicron-scale architec-
ture, TFMBs can be readily integrated into optoelectronic sys-
tems. Two main strategies have emerged: (1) the development
of wide-bandgap, optically transparent electrodes; and (2) pat-
terned or semi-transparent thin-film configurations [125, 223].
Choi et al. [224] fabricated sub-stoichiometric SiN) g5 thin-film
anodes via MS with tunable N, flux, achieving optical transmit-
tance of 55%—78% and reversible capacities above 1000 mAh
g~! for 100 cycles. Likewise, transparent LTO and LMO films
deposited on transparent conductive oxides (TCOs) exhibited
reversible electrochromic behavior during lithiation/delithiation
[225]. Pat et al. [226, 227] further realized fully transparent LFP/
Li;PO,/LTO TFEMBEs, retaining 80% optical transmittance after
100 cycles, thereby validating their practical potential. Alterna-
tively, Oukassi et al. [228] employed photolithography and etch-
ing to construct grid-patterned LCO/LiPON/Si TFMBs on glass
(Fig. 15e—g), which displayed ~60% UV-visible transmittance
and stable capacity output. While grid configurations enhance
transparency, they inevitably reduce the electrochemically active
area. Future strategies should therefore focus on intrinsically
transparent electrode/electrolyte systems to simultaneously bal-
ance optical and electrochemical performance.

4.3.4 TFMBs for Smart Contact Lenses and Biomedical
Applications

Smart contact lenses represent a frontier in wearable bioel-
ectronics, requiring miniaturized, conformal, and biocom-
patible energy storage solutions. Choi et al. [229] obtained
a flexible TFMB fabricated on PI using off-axis sputtered
LFP films, annealed at a reduced temperature of 400 °C

https://doi.org/10.1007/s40820-025-02002-w
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ACS Publishing. b Process scheme of a flexible MoOs-based TFMB constructed on a multilayer polyimide substrate; inset shows the custom-
built bending apparatus. ¢ Cross-sectional morphology of the flexible TFMB under severe bending conditions. d Comparison of discharge
capacities between bent and unbent TFMBs, demonstrating mechanical reliability. Reproduced with permission from Ref. [215] Copyright 2019
Elsevier Publishing. e Schematic illustration of transparent TFMB architecture. f Cross-sectional SEM image and corresponding EDS elemen-
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(Fig. 15h—j). The resulting devices achieved an energy den-  The process demonstrated compatible with CMOS fabri-
sity of 70 pWh cm™2 and successfully powered an embed-  cation and scalability to large-area production, facilitating
ded glucose sensor for over 11.7 h under humid conditions.  integration with biosensors, microdisplays, and Al-assisted
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Table 6 Electrochemical properties of representative thin-film electrode materials

Material Capacity Cycle life Deposition method References
LCO 58 uAh cm™2 pm’l > 75% retention after 1,000 cycles MS, PLD [86]

LMO 37 uAh cm™2 ~75% retention after 1,000 cycles MS, PLD [69]
LMRO 33.7 uAh cm™2 ym™! ~75% retention after 1,000 cycles MS [153]
LNMO 122 mAh g~! > 75% retention after 10,000 cycles PLD [151]
LNCM 24.6 uyAh cm~2 pm~! ~75% retention after 500 cycles PLD [118]

LFP 14.6 yAh cm™2 pm™! ~96% retention after 70 cycles MS, PLD [229]

Li; ,TiOy 5S, | 64 pAh cm™ pm™! >75% retention after 1,200 cycles MS [165]
MoO;_, 125 uAh cm=2 um™! ~85% retention after 550 cycles MS [214]

LTO 175 mAh g~} ~90% retention after 22 cycles MS, PLD [144]

modules for real-time health monitoring and vision enhance-
ment. This work represents a significant milestone toward
the practical development of wearable biomedical platforms
powered by TFMBs.

S Multifunctional Integrated Energy
Harvesting and Storage Systems

To achieve autonomous operation in emerging microsystems,
researchers have pursued multifunctional architectures that inte-
grate TFMBs with solar cells, piezoelectric and thermoelectric
devices, energy harvesters, and sensors, thereby coupling energy
harvesting with on-chip storage. Early demonstrations date back
to 2002, when TFMBs were proposed as bypass components
in solar panels, replacing conventional diodes to mitigate par-
tial shading losses [230]. Subsequently, millimeter-scale self-
powered sensors were developed using two series-connected
micro-solar cells and a Cymbet TFMB, regulated by an inte-
grated power management unit [231, 232]. In this system, the
TFMB discharged in active mode and recharged under ambient
illumination during sleep mode. Furthermore, integration of 16
microscale TFMBs (500 um X 500 um) provided 51.3 V output
for MEMS devices, serving as an emergency energy buffer dur-
ing transient shading [233]. These results highlight the potential
of direct photovoltaic-TFMB integration for stable, autonomous
microsystem power under fluctuating illumination. Beyond pho-
tovoltaics, multifunctional TFMB integration has been extended
to mechanical and thermal energy harvesting. For instance, pie-
zoelectric vibration harvesters embedded in unmanned aerial
vehicle (UAV) wing beams generated ~0.0781 mAh at 4.0 V,
with the harvested energy stored in TFMBs for localized power
delivery [234]. Similarly, RF and thermoelectric energy have
been co-harvested and regulated through a DC/DC converter,
with the collected energy stored in a 30 mm? on-chip TFMB

© The authors

fabricated via sputtering and thermal evaporation. This device
employed a TiOS cathode, LiPON electrolyte, and Li anode,
underscoring the versatility of vapor deposition methods in real-
izing multifunctional integration [235].

Vapor-phase deposition techniques play a central role in
enabling such architectures. MS provides dense films with
tunable crystallinity, composition, and thickness, supporting
multilayer configurations such as LCO/LMO cathodes, LiPON
electrolytes, and porous 3D architectures. PLD offers precise
stoichiometric transfer, particularly advantageous for complex
oxides in piezoelectric and thermoelectric modules. Thermal
and e-beam evaporation remain indispensable for Li deposition
and high-melting-point materials, respectively, with reactive
e-beam evaporation demonstrated for LIPON synthesis [236].
Meanwhile, ALD enables sub-nanometer control and confor-
mal coating, ideal for interface engineering and multifunctional
composite construction. In a word, heterogeneous integration of
TFMBs with energy harvesting modules through vapor depo-
sition techniques provides a robust pathway to couple energy
generation with storage, advancing autonomous, multifunctional
microsystems.

6 Conclusion and Outlook

This review underscores the central role of vapor deposi-
tion techniques in advancing TFMBs, highlighting recent
progress in material deposition, interfacial engineering, and
structural innovation. Since the first demonstration of an
LCO/LiPON/Li prototype in 1996 [237], TEMBs have made
steady progress. Yet, compared with the rapid commerciali-
zation of LIBs, their industrial translation remains limited by
complex fabrication, high costs, and insufficient investment.
The accelerating demand for autonomous microsystems in
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IoT and wearable electronics has reignited interest, but criti-
cal bottlenecks in large-scale manufacturability and long-
term reliability must still be resolved.

From a materials perspective, cathode development remains
less mature than in bulk LIBs. LCO remains dominant due to
its stable cycling, but higher-voltage, higher-capacity cathodes
are required for next-generation TFMBs, necessitating low-tem-
perature deposition compatible with semiconductor processes.
Achieving crystallinity under constrained thermal budgets and
developing cost-effective, thermally stable current collectors
represent ongoing challenges. On the electrolyte side, amor-
phous LiPON remains irreplaceable owing to its electrochemi-
cal stability and compatibility with Li metal, while amorphous
garnet-type thin films (e.g., aLLZO) offer enhanced conductiv-
ity but face challenges in film uniformity and interface stabil-
ity. For anodes, Li metal remains widely adopted, yet concerns
regarding thermal instability and integration drive exploration of
alternatives such as LTO, which combines structural reversibil-
ity with negligible volume change. A quantitative comparison
of the state-of-the-art performance metrics across the principal
material systems is systematically summarized in Table 6.

From a processing perspective, PVD techniques such as MS,
PLD, and e-beam evaporation remain central for producing
conformal, compositionally precise films but are constrained
by low deposition throughput, inefficient material utilization,
and high equipment costs. While reactive e-beam evaporation
and parameter optimization can enhance deposition efficiency,
hybrid strategies that integrate PVD with CVD or additive man-
ufacturing hold promise for scalable fabrication of complex elec-
trode/electrolyte architectures. The development of roll-to-roll
vapor deposition platforms with high throughput and large-area
uniformity will be critical to advancing TEFMB industrialization.

Interfacial stability remains a key barrier. Side reactions at
Li/LiPON and cathode/electrolyte interfaces generate resis-
tive interphases, increasing impedance and polarization.
Artificial buffer layers (e.g., Al,0O5 via ALD), structural
reconstruction, and thermal treatments have demonstrated
effectiveness in suppressing degradation, yet further innova-
tions in nanoscale interfacial engineering are essential. The
transition from planar to 3D architectures provides a path-
way to enhance areal energy density beyond the typical < 1
mWh c¢m~2 of planar TFMBs, but scalable fabrication of
high-aspect-ratio microstructures is still constrained by con-
formality, cost, and process complexity. Composite designs
integrating interconnected electronic/ionic networks may

| SHANGHAI JIAO TONG UNIVERSITY PRESS

provide a practical route toward scalable high-performance
3D TFMB:s.

Future microsystems demand not only high energy and
power densities but also multifunctionality, including flex-
ibility, transparency, and integration with energy harvest-
ing units (e.g., photovoltaic, piezoelectric, thermoelectric).
Vapor-phase deposition methods are indispensable in con-
structing these multifunctional systems by enabling confor-
mal buffer layers, sequential stacking of functional films, and
thermal management coatings. The synergistic integration of
TFMBs with energy harvesters will be pivotal for achieving
energy-autonomous microsystems.

Looking forward, convergence with artificial intelligence,
including machine learning-driven materials discovery, high-
throughput screening, and digital twin modeling, offers trans-
formative opportunities for accelerating TFMB development.
These approaches will facilitate predictive design, process opti-
mization, and automated synthesis of advanced architectures,
bridging fundamental research with industrial-scale manufac-
turing. In conclusion, while TFMBs are still at an early stage
of technological maturity, continued innovations in material
design, interface engineering, and scalable vapor deposition
platforms, coupled with emerging Al-driven methodologies,
are expected to unlock their potential as indispensable power
sources for next-generation microelectronics.
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