Supporting Information for

SnS₂@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries

Shuaihui Li^{1, 2}, †, Zhipeng Zhao^{1, 2}, †, Chuanqi Li^{1, 2}, Zhongyi Liu^{1, 2}, *, Dan Li^{1, 2}, *

¹College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China

²Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China

†These authors have contributed equally

*Corresponding authors. E-mail: <u>liuzhongyi@zzu.edu.cn</u> (Zhongyi Liu); <u>danli@zzu.edu.cn</u> (Dan Li)

a <u>tum</u> <u>tum</u> d <u>200 mm</u>

Supplementary Figures and Tables

Fig. S1 a, b SEM and c, d TEM images of SnO2 hollow nanospheres precursor

Fig. S2 a, b SEM and c, d TEM images of SnO₂@C hollow nanospheres intermediate

Fig. S3 XRD patterns of SnO₂ and SnO₂@C

Fig. S4 a, b SEM images of the SnS2@C obtained at the sulfidation temperature of 320 $^{\circ}\mathrm{C}$

Fig. S5 a, b SEM and c, d HRTEM images of SnS2@C hollow nanospheres

Fig. S6 XRD pattern of SnS₂/C bulks

Fig. S8 a, b SEM of the bare SnS₂

Fig. S9 a Rate capability and b cycling performance of the bare SnS₂

Fig. S10. Raman spectrum of SnS₂/C bulks

Fig. S11 a SEM and b TEM images of SnS₂/C bulks

Fig. S12 N₂ adsorption/desorption isotherms of the a SnS₂/C bulks and b SnS₂@C hollow nanospheres

Fig. S13 The charge/discharge profiles of SnS2@C at different cycles at a current density of 0.2 A $g^{\text{-1}}$

Fig. 14 Experimental (dot) and simulated (line) Nyquist plots of SnO_2/C and $SnO_2@C$. Inset depicts the equivalent circuit

 Table S1 Resistance values simulated from modeling the experimental impedance spectra

Sample	$R_{\rm s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$
SnO ₂ /C	2.79	189.1
SnO ₂ @C	3.91	161.7

Fig. S15 a CV curves at various scan rates, b relationship between log *i* and log *v* plots of anodic and cathodic peaks, c contribution ratios of capacitive capacity of SnS_2/C at various scan rates

Structures	Materials	Cycling performance (mAh g ⁻¹)	Rate Capability (mAh g ⁻¹)	Refs.
0D	N, S-doped graphene aerogel/SnS ₂ nanocrystal	527 after 50 cycles at 0.02 A g^{-1}	340 at 0.8 A g ⁻¹	[1]
	Ultrafine SnS ₂ nanocrystals/rGO	418 after 100 cycles at 1 A g ⁻¹	260 at 10 A g ⁻¹	[2]
	SnS2 ultrafine nanocrystals/graphene	680 after 100 cycles at 0.2 A $\rm g^{-1}$	250 at 11.2 A g ⁻¹	[3]
	SnS ₂ -rGO composite	450 after 150 cycles at 0.5 A $g^{\text{-}1}$	340 at 2 A g ⁻¹	[4]
2D	2D SnS ₂ nanosheets	647 after 50 cycles at 0.1 A $\rm g^{-1}$	435 at at 2 A g^{-1}	[5]
	SnS ₂ @graphene	${\sim}520$ after 50 cycles at 0.03 A $g^{\text{-1}}$	300 at 7.29 A $g^{\text{-1}}$	[6]
	SnS ₂ -rGO composite	628 after 100 cycles at 0.2 A $g^{\text{-}1}$	544 at 2 A g ⁻¹	[7]
	SnS ₂ /graphene	650 after 100 cycles at 0.2 A $g^{\text{-}1}$	326 at 4 A g ⁻¹	[8]
	$2D SnS_2$ nanoarray	NA	400 at 10 A g ⁻¹	[9]
	Few-layered SnS ₂ /rGO	509 after 300 cycles at 0.2 A $g^{\text{-1}}$	337 at 12.8 A g ⁻¹	[10]
	Few-layered pseudocapacitive SnS ₂	338 after 150 cycles at 2.5 A $\rm g^{-1}$	172 at 12 A g ⁻¹	[11]
	SnS ₂ nanoplatelet@graphene	670 after 60 cycles at 0.02 A g ⁻¹	152 at 0.64 A g ⁻¹	[12]
	2D MXene/SnS ₂ composites	322 after 200 cycles at 0.1 A g^{-1}	78 at 2 A g ⁻¹	[13]
	2D SnS ₂ /CNTs hybrid	476.3 after 100 cycles at 0.05 A $g^{\text{-1}}$	265.5 at 3.2 A g ⁻	[14]
	SnS ₂ @graphene nanosheet arrays	378 after 200 cycles at 1.2 A $\rm g^{-1}$	348 at 3 A g^{-1}	[15]
	SnS_2 nanowall arrays	576 after 100 cycles at 0.5 A $g^{\text{-}1}$	${\sim}370$ at 5 A g^{1}	[16]
	SnS ₂ /graphene nanocomposites	615.2 after 100 cycles at 0.2 A $\rm g^{\text{-}1}$	501.5 at 2 A g ⁻¹	[17]
	SnS ₂ nanosheet assemblies	~420 after 100 cycles at 0.5 A g ⁻¹	500 at 5 A g ⁻¹	[18]
	SnS ₂ /rGO sandwich hybrid	843 after 100 cycles at 0.1 A $\rm g^{-1}$	335 at 8.4 A g ⁻¹	[19]
	SnS ₂ nanoplates	241.5 after 50 cycles at 0.1 A g^{-1}	77 at 5 A $g^{\text{-1}}$	[20]
	SnS ₂ /S-doped graphene	${\sim}300$ after 500 cycles at 2 A $g^{\text{-1}}$	150 at 5 A g ⁻¹	[21]
	Layered SnS ₂ cross-	716.2 after 100 cycles at 0.1 A $g^{\text{-}1}$	445 at 5 A $g^{\text{-1}}$	[22]

Table S2 Summary of the electrochemical performance of SnS_2 -based materials

linked/CNTs			
SnS ₂ nanosheets	414 after 50 cycles at 0.05 A $g^{\text{-1}}$	299 at 0.5 A g^{-1}	[23]
SnS ₂ /C nanospheres	570 after 100 cycles at 0.05 A $g^{\text{-}1}$	360 at at 1 A $g^{\text{-1}}$	[24]
3D SnS ₂ flowers/CNT	460 after 20 cycles at 0.02 A $g^{\text{-1}}$	180 at 1.28 A g ⁻¹	[25]
Flower-like SnS2@rGO	509 after 50 cycles at 0.1 A g^{-1}	102 at 0.4 A $\rm g^{\text{-}1}$	[26]
SnS ₂ /Sb ₂ S ₃ heterostructures/rGO	642 after 100 cycles at 0.2 A $g^{\text{-1}}$	567 at 4 A $\rm g^{-1}$	[27]
Hollow SnO ₂ /SnS ₂ hybrids	485.6 after 100 cycles at 0.3 A g^{-1}	245.4 at 2.5 A g ⁻	[28]
MoS ₂ @SnS ₂ nanoflakes/graphene	100 after 50 cycles at 0.08 A g ⁻¹	145 at 0.32 A g ⁻¹	[29]
SnO ₂ /SnS ₂ /CNTs composite	355 after 100 cycles at 0.05 A $\rm g^{-1}$	105 at 3.2 A g ⁻¹	[30]
SnS ₂ @C hollow nanospheres	626.8 after 200 cycles at 0.2 A $\rm g^{-1}$	304.4 at 5 A g^{-1}	This work
	linked/CNTs SnS2 nanosheets SnS2/C nanospheres 3D SnS2 flowers/CNT Flower-like SnS2@rGO SnS2/Sb2S3 heterostructures/rGO Hollow SnO2/SnS2 Hollow SnO2/SnS2 MoS2@SnS2 nanoflakes/graphene SnO2/SnS2/CNTs composite SnS2@C hollow nanospheres	linked/CNTs414 after 50 cycles at 0.05 A g-1SnS2 nanosheets414 after 50 cycles at 0.05 A g-1SnS2/C nanospheres570 after 100 cycles at 0.02 A g-13D SnS2 flowers/CNT460 after 20 cycles at 0.02 A g-1Flower-like SnS2@rGO509 after 50 cycles at 0.1 A g-1SnS2/Sb2S3 heterostructures/rGO 642 after 100 cycles at 0.2 A g-1Hollow SnO2/SnS2 hybrids 485.6 after 100 cycles at 0.3 A g-1MoS2@SnS2 nanoflakes/graphene 100 after 50 cycles at 0.08 A g-1SnO2/SnS2/CNTs composite 355 after 100 cycles at 0.05 A g-1SnS2@C hollow nanospheres 626.8 after 200 cycles at 0.2 A g-1	linked/CNTs414 after 50 cycles at 0.05 A g-1299 at 0.5 A g-1SnS2 nanosheets414 after 50 cycles at 0.05 A g-1299 at 0.5 A g-1SnS2/C nanospheres570 after 100 cycles at 0.05 A g-1360 at at 1 A g-13D SnS2 flowers/CNT460 after 20 cycles at 0.02 A g-1180 at 1.28 A g-1Flower-like SnS2@rGO509 after 50 cycles at 0.1 A g-1102 at 0.4 A g-1SnS2/Sb2S3 heterostructures/rGO642 after 100 cycles at 0.2 A g-1567 at 4 A g-1Hollow SnO2/SnS2 hybrids485.6 after 100 cycles at 0.3 A g-1245.4 at 2.5 A g-1MoS2@SnS2 nanoflakes/graphene100 after 50 cycles at 0.08 A g-1145 at 0.32 A g-1SnO2/SnS2/CNTs composite355 after 100 cycles at 0.05 A g-1105 at 3.2 A g-1SnS2@C hollow nanospheres626.8 after 200 cycles at 0.2 A g-1304.4 at 5 A g-1

Supplementary References

- [1] L. Fan, X. Li, X. Song, N. Hu, D. Xiong, A. Koo, X. Sun, Promising dual-doped graphene aerogel/SnS₂ nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 10(3), 2637-2648 (2018). https://doi.org/10.1021/acsami.7b18195
- Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao, J. Qiu, Flexible paper-like free-standing electrodes by anchoring ultrafine SnS₂ nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484-15491 (2017). https://doi.org/10.1021/acsami.7b02394
- [3] Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Enhancing the cycling stability of Naion batteries by bonding SnS₂ ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energ. Environ. Sci. 9(4), 1430-1438 (2016). https://doi.org/10.1039/C5EE03262H
- [4] P.V. Prikhodchenko, D.Y.W. Yu, S.K. Batabyal, V. Uvarov, J. Gun, S. Sladkevich, A.A. Mikhaylov, A.G. Medvedev, O. Lev, Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2(22), 8431-8437 (2014). https://doi.org/10.1039/c3ta15248k
- [5] W. Sun, X. Rui, D. Yang, Z. Sun, B. Li et al., Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano **9**(11), 11371-11381 (2015).

https://doi.org/10.1021/acsnano.5b05229

- [6] T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H.K. Liu, Z. Guo, Enhanced sodium-ion battery performance by structural phase transition from twodimensional hexagonal-SnS₂ to orthorhombic-SnS. ACS Nano 8(8), 8323-8333 (2014). https://doi.org/10.1021/nn503582c
- [7] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Layered SnS₂reduced graphene oxide composite – a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854-3859 (2014). https://doi.org/10.1002/adma.201306314
- [8] Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Exfoliated- SnS₂ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7(4), 1325-1332 (2015). https://doi.org/10.1039/C4NR05106H
- [9] D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211-10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- [10] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS₂ on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481-489 (2015). https://doi.org/10.1002/adfm.201402833
- [11] R. Thangavel, A. Samuthira Pandian, H. V. Ramasamy, Y.-S. Lee, Rapidly synthesized, few-layered pseudocapacitive SnS₂ anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 9(46), 40187-40196 (2017). https://doi.org/10.1021/acsami.7b11040
- [12]X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS₂ nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. –Asian J. 9(6), 1611-1617 (2014). https://doi.org/10.1002/asia.201400018
- [13] Y. Wu, P. Nie, L. Wu, H. Dou, X. Zhang, 2D Mxene/SnS₂ composites as highperformance anodes for sodium ion batteries. Chem. Eng. J. 334, 932-938 (2018). https://doi.org/10.1016/j.cej.2017.10.007
- [14] S. Zhang, H. Zhao, M. Wu, L. Yue, J. Mi, One-pot solvothermal synthesis 2D SnS₂/CNTs hybrid as a superior anode material for sodium-ion batteries. J. Alloys Compd. 737, 92-98 (2018). https://doi.org/10.1016/j.jallcom.2017.11.389

- [15] W. Xu, K. Zhao, L. Zhang, Z. Xie, Z. Cai, Y. Wang, SnS₂@graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. J. Alloys Compd. 654, 357-362 (2016). https://doi.org/10.1016/j.jallcom.2015.09.050
- [16] P. Zhou, X. Wang, W. Guan, D. Zhang, L. Fang, Y. Jiang, SnS₂ nanowall arrays toward high-performance sodium storage. ACS Appl. Mater. Interfaces 9(8), 6979-6987 (2017). https://doi.org/10.1021/acsami.6b13613
- [17] J. Ye, L. Qi, B. Liu, C. Xu, Facile preparation of hexagonal tin sulfide nanoplates anchored on graphene nanosheets for highly efficient sodium storage. J. Colloid. Interf. Sci. 513, 188-197 (2017). https://doi.org/10.1016/j.jcis.2017.11.025
- [18] Y. Wang, J. Zhou, J. Wu, F. Chen, P. Li et al., Engineering SnS₂ nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. J. Mater. Chem. A 5(48), 25618-25624 (2017). https://doi.org/10.1039/C7TA08056E
- [19] F. Tu, X. Xu, P. Wang, L. Si, X. Zhou, J. Bao, A few-layer SnS₂/reduced graphene oxide sandwich hybrid for efficient sodium storage. J. Phys. Chem. C 121(6), 3261-3269 (2017). https://doi.org/10.1021/acs.jpcc.6b12692
- [20] Y. Xie, M. Fan, T. Shen, Q. Liu, Y. Chen, SnS₂ nanoplates as stable anodes for sodium ion and lithium ion batteries. Mater. Technol. **31**(11), 646-652 (2016). https://doi.org/10.1080/10667857.2016.1208451
- [21] P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng et al., Scalable synthesis of SnS₂/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale 9(39), 14820-14825 (2017). https://doi.org/10.1039/C7NR06044K
- [22] H. Li, M. Zhou, W. Li, K. Wang, S. Cheng, K. Jiang, Layered SnS₂ cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries. RSC Adv. 6(42), 35197-35202 (2016). https://doi.org/10.1039/C6RA04941A
- [23] J. Zhao, X. Yu, Z. Gao, W. Zhao, R. Xu, Y. Liu, H. Shen, One step synthesis of SnS₂ nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chem. Eng. J. **332**, 548-555 (2018). https://doi.org/10.1016/j.cej.2017.09.110
- [24] J. Wang, C. Luo, J. Mao, Y. Zhu, X. Fan, T. Gao, A.C. Mignerey, C. Wang, Solidstate fabrication of SnS₂/C nanospheres for high-performance sodium ion battery anode. ACS Appl. Mater. Interfaces 7(21), 11476 (2015). https://doi.org/10.1021/acsami.5b02413

- [25] Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS₂ flowers/carbon nanotubes network: Extraordinary rate capacity for sodium-ion battery. Mater. Lett. 186(Supplement C), 57-61 (2017). https://doi.org/10.1016/j.matlet.2016.09.089
- [26]Z. Yu, X. Li, B. Yan, D. Xiong, M. Yang, D. Li, Rational design of flower-like tin sulfide @ reduced graphene oxide for high performance sodium ion batteries. Mater. Res. Bull. 96, 516-523 (2017). https://doi.org/10.1016/j.materresbull.2017.04.048
- [27] S. Wang, S. Liu, X. Li, C. Li, R. Zang, Z. Man, P. Li, Y. Wu, G. Wang, SnS₂/Sb₂S₃ heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chem. - Eur J. 24, 3873-3881 (2018). https://doi.org/10.1002/chem.201705855
- [28]K. Wang, Y. Huang, X. Qin, M. Wang, X. Sun, M. Yu, Synthesis of hollow SnO₂/SnS₂ hybrids and their application in sodium-ion batteries. ChemElectroChem 4(9), 2308-2313 (2017). https://doi.org/10.1002/celc.201700309
- [29]X. Zhang, J. Xiang, C. Mu, F. Wen, S. Yuan, J. Zhao, D. Xu, C. Su, Z. Liu, SnS₂ nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS₂ nanosheet composites as lithium and sodium battery anodes. Electrochim. Acta 227, 203-209 (2017). https://doi.org/10.1016/j.electacta.2017.01.036
- [30] S. Zhang, H. Zhao, L. Yue, Z. Wang, J. Mi, Fixed-bed assisted synthesis SnO₂/ SnS₂/CNTs composite for enhanced sodium storage performance. J. Alloys Compd. 717, 127-135 (2017). https://doi.org/10.1016/j.jallcom.2017.05.055