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HIGHLIGHTS

•	 Integrative Co-Design Framework: We synthesize current advances in sensing, models, accuracy/reliability assessment, and hardware into 
a sensor–model–deployment–assessment framework that organizes evidence and design trade-offs for cuffless blood pressure monitoring. 
The framework seeks to balance precision and efficiency by jointly considering low-power edge AI, streamlined sensor architectures, and 
adaptive computational models, providing a structured basis for reproducible and clinically meaningful wearable solutions.

•	 Pathways to Clinical Translation: We critically assess barriers to real-world deployment, offering actionable strategies to bridge the 
translational gap between laboratory innovations and scalable implementation in low-resource regions with minimal healthcare 
infrastructure.

•	 Interdisciplinary Synthesis: By integrating cutting-edge advances in materials science, digital health, and embedded AI, we provide evidence-
based recommendations to empower biomedical researchers, engineers, and data scientists in advancing equitable diagnostic solutions.

ABSTRACT  Accurate blood pressure (BP) monitoring is essential for pre-
venting and managing cardiovascular disease. Advancements in materials 
science, medicine, flexible electronic, and artificial intelligence (AI) have 
enabled cuffless, unobtrusive BP monitoring systems, offering an alterna-
tive to traditional sphygmomanometers. However, extending these advances 
to real-world cardiovascular care particularly in resource-limited settings 
remains challenging due to constraints in computational resources, power 
efficiency, and deployment scalability. This review presents a comprehen-
sive synthesis of AI-enhanced wearable BP monitoring, emphasizing its 
potential for personalized, scalable, and accessible healthcare. We system-
atically analyze the end-to-end system architecture, from mechano-electric 
sensing principles and AI-based estimation models to edge-aware deploy-
ment strategies tailored for low-resource environments. We further discuss 
clinical validation metrics and implementation barriers and prospective strategies. To bridge lab-to-field translation, we propose an innovative 
"sensor-model-deployment-assessment" co-design framework. This roadmap highlights how AI-enhanced BP technologies can support proactive 
hypertension control and promote cardiovascular health equity on a global scale.
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1  Introduction

Hypertension is a major risk factor for cardiovascular dis-
eases (CVDs), contributing significantly to global morbidity 
and mortality [1]. Accurate and continuous blood pressure 
(BP) monitoring is thus essential for early diagnosis, preven-
tive care, and personalized intervention [2], particularly in 
resource-limited settings where access to episodic clinical 
measurement is limited. Traditional cuff-based BP measure-
ment [3], despite its clinical acceptance, remains inherently 
episodic, cumbersome, and ill-suited for unobtrusive long-
term monitoring [4]. Cuffless BP estimation represents a 
paradigm shift in non-invasive monitoring by eliminating 
the need for traditional cuffs, supporting cost-effective, con-
tinuous BP monitoring during daily life and holds potentials 
for personalized, proactive hypertension management [5].

Recent advances in sensing technologies have further 
empowered this field, enabling the acquisition of high-
quality physiological data through increasingly miniatur-
ized and affordable wearable devices [6–9]. Concurrently, 
artificial intelligence (AI) has emerged as a transforma-
tive tool for analyzing these complex signals, significantly 
enhancing the accuracy and robustness of cuffless BP 
estimation [8]. These trends have created new opportuni-
ties for deploying AI-driven BP monitoring beyond tradi-
tional healthcare settings. In particular, resource-limited 
settings—including low- and middle-income countries 
(LMICs), remote communities, and underserved popula-
tions in high-income countries—represent environments 
where the potential impact of wearable BP monitoring 
is especially high [6, 10, 11]. These settings are often 
characterized by limited healthcare infrastructure, insuf-
ficient access to trained personnel, and high unmet needs 
for hypertension screening and management. Yet, deploy-
ing state-of-the-art AI-based BP estimation methods in 
such settings requires a fundamental rethinking of system 
design. Existing approaches [12, 13] typically assume 
ample computational resources and high-quality signals, 
whereas real-world deployments in resource-constrained 
settings must navigate variable signal quality, limited 
model capacity, strict energy budgets, intermittent con-
nectivity, and fragmented data ecosystems [14]. Scalable 
and reliable BP monitoring in such environments demands 
a delicate balance between model accuracy, algorithmic 
complexity, and hardware efficiency [15–17]. It requires 

coordinated advances in sensor technology, learning frame-
works, and edge-aware system deployment tailored to the 
realities of diverse populations and care infrastructures.

In this review, we provide an integrated perspective on the 
co-design of sensing, modeling, deployment and assessment, 
which is critical in real-world deployments but often has 
been neglected in prior reviews [7, 9, 18]. To be specific, 
we will systematically analyze the infrastructure, model, and 
deployment challenges of AI-based blood pressure estima-
tion in resource-limited settings and summarize promising 
solutions and emerging directions for scalable and acces-
sible healthcare. Figure 1 shows a system view that spans 
from hardware-proximal sensing, model design to execu-
tion across device–edge–cloud framework and comprehen-
sive assessment. First, advanced wearable sensing tech-
nologies such as optical [19], electrical [20], mechanical 
[21], acoustic [22], and electromagnetic [23] enable vari-
ous physiological signals acquisition. Second, the captured 
signals are further processed using physiological-based 
models, physics-based models, and data-driven machine 
learning models. These models are employed to estimate 
BP in three clinical scenarios, high-demand: beat-to-beat 
or BP waveform [24] for stress tests and acute monitoring; 
moderate-demand: intermittent BP for ambulatory follow-up 
and therapy titration; and low-demand: snapshot BP for spot 
checks. During the hardware deployment phase, challenges 
related to model optimization, compilation, scheduling, 
and adaptability across heterogeneous hardware platforms 
(microcontrollers, mobile devices, edge servers, and cloud 
platforms) will be discussed. Finally, we provide a compre-
hensive, system-level evaluation from both the model and 
device perspectives.

2 � Wearable Sensing Technology for BP 
Measurement

We start with a concise overview of wearable sensing tech-
nologies for BP measurement, including photoplethysmog-
raphy, electrical, acoustic, mechano-electric, and radar meth-
ods, focusing on their material innovation, sensor design, 
principles, performance, and limitations.

Photoplethysmography (PPG) is a cost-effective and 
non-invasive optical technique that measures changes 
in peripheral blood volume to monitor cardiovascular 
parameters (Fig. 2a). The fundamental operation involves 
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light-emitting diodes (LEDs) illuminating tissue and pho-
todetectors capturing backscattered or transmitted light, the 
intensity of which is modulated by cardiac cycle-induced 
blood flow variations. It is noteworthy that over 95% of 
the total detected light intensity originates from static tis-
sue compartments (e.g., dermis, subcutaneous fat, muscle), 
with only a small variable component attributable to pulsa-
tile blood volume changes, underscoring the challenge of 
extracting clean hemodynamic signals [19]. The interaction 
between light and biological tissue is highly wavelength-
dependent. Ultraviolet light (10–380 nm) is predominantly 
absorbed by epidermal proteins, while visible (380–760 nm) 
and near-infrared (760–1300 nm) light penetrates several 
millimeters into tissue, allowing interrogation of deeper 
vasculature, with hemoglobin and water being the primary 
absorbers [25]. Widely adopted in wearable devices, PPG 
detects blood volume modulations driven by the cardiac 
cycle, enabling continuous cardiovascular monitoring (e.g., 
BP estimation) under appropriate calibration and constraints 
[19]. Recent innovations in flexible electronics have signifi-
cantly improved PPG performance. Organic light-emitting 
diodes (OLEDs) [26], polymer LEDs [27], and hybrid inor-
ganic–organic devices [28, 29] offer superior mechanical 
conformity to the skin, significantly improving signal acqui-
sition stability and reducing motion-induced artifacts [26, 
27]. Despite its advantages, the accuracy of PPG-based BP 
monitoring is compromised by motion artifacts, skin pig-
mentation, tissue thickness, ambient light interference, and 
even vasomotor activity [30, 31]. Additionally, PPG meas-
urements are typically taken at peripheral sites (e.g., wrist or 
finger), which may not fully reflect central blood pressure, 
potentially limiting clinical precision.

Electrocardiography (ECG) measures the heart’s electri-
cal activity through skin electrodes on the chest or limbs 
(Fig. 2b), capturing characteristic waveforms including the 
P wave (atrial depolarization), QRS complex (ventricular 
depolarization), and T wave (ventricular repolarization) 
[20]. Besides, bioimpedance (BioZ) sensing (Fig. 2c) com-
plements ECG by analyzing tissue electrical properties 
through applied high-frequency currents to detect arterial 
pulse-induced impedance variations, blood flow dynamics, 
and tissue dielectric properties [32, 33]. The performance 
of these electrical modalities is heavily dependent on the 
electrode–skin interface. Three primary electrode types are 
utilized: wet, dry, and non-contact. Wet electrodes (Ag/AgCl 
with hydrogel) [34] provide excellent initial signal quality 

and low impedance but suffer from long-term drying, irri-
tancy, and performance degradation [35]. Dry electrodes, 
fabricated from conductive polymers or metal coatings, offer 
improved durability and comfort for sustained use, though 
they can be more prone to motion artifact without hydrogel 
[36]. Besides, non-contact electrodes, employing capacitive 
coupling through an insulating layer or elastic electrolytes, 
represent a significant advancement by eliminating direct 
skin contact, thereby maximizing user comfort and minimiz-
ing irritation and motion artifacts, making them suitable for 
wearable health monitoring applications [37].

Auscultatory methods based on Korotkoff sounds 
(K-sounds) represent a classical approach reinvented for 
modern wearables. These acoustic signals are produced by 
turbulent blood flow when an artery is partially constricted. 
Figure 2d reproduces the “core” theory of the mechanism 
and compares the changes in K-sounds produced by normal 
and abnormal cardiac function. These sounds are catego-
rized into five phases, with the first (K1) marking the onset 
of SBP and the fifth (K5) denoting DBP as flow stabilizes 
[22]. While traditionally detected via stethoscope, modern 
approaches leverage acoustic sensors and signal process-
ing techniques to capture and analyze these sounds. Recent 
advances incorporate deep learning to model the complex 
temporal and spectral patterns of K-sounds [22], demonstrat-
ing promise for automated, auscultatory-based BP assess-
ment. Another application of acoustic sensing is the emerg-
ing flexible ultrasound technology (Fig. 2f). Leveraging the 
deep penetration and high spatiotemporal resolution of ultra-
sound waves, flexible ultrasound sensors have emerged as a 
powerful tool for non-invasively monitoring central blood 
pressure, which carries greater clinical significance than 
peripheral pressure [38, 39]. Acoustic sensors provide more 
direct physiological measures of pressure and flow, though 
often at increased cost and system complexity.

Mechano-electric sensors, which transduce mechani-
cal pressure or vibration into quantifiable electrical sig-
nals through physical contact, encompass a diverse fam-
ily including piezoresistive, capacitive, piezoelectric, and 
triboelectric types (Fig. 2e). Piezoresistive sensors operate 
on the principle of pressure-induced resistance change. 
Their performance is enhanced through material innovation 
(e.g., graphene porous networks [43], carbon nanotube/
PDMS composites [44]) and microstructure design (e.g., 
micropillars, honeycombs), achieving high sensitivity (> 1 
kPa⁻1), wide dynamic range, and excellent cyclic stability 
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(> 8000 cycles) [45]. Capacitive sensors measure pressure 
via capacitance changes [42]. Performance optimization 
focuses on microstructured dielectrics (e.g., micro-pyra-
mids [46] and others [47]) to concentrate stress and reduce 
modulus and optimized electrode materials (e.g., CNTs, 
ITO, metal coatings [48]) for flexibility and conductivity. 
This yields devices with exceptional sensitivity (down to 
0.1 Pa), rapid response (~ 10 ms), and low hysteresis, help-
ful for high-fidelity pulse waveform acquisition [46, 49]. 
Piezoelectric sensors convert mechanical deformation into 
electrical charge through intrinsic material polarization 
[50]. Strategies to boost sensitivity include nanoparticle 
doping (e.g., BaTiO₃ in PVDF [51, 52]) and microstruc-
turing (pyramids, waves [53]), achieving outputs exceed-
ing 685 mV N−1. Ultra-flexible, skin-conformable patches 
fabricated via techniques like laser lift-off enable stable 
long-term monitoring [54, 55]. Dynamic analyses have fur-
ther shown that piezoelectric sensors can faithfully capture 
arterial pulse waveforms, providing a mechanophysiological 
link to blood pressure [56]. Triboelectric sensors use contact 

electrification for self-powered sensing [7]. Nanostructured 
surfaces (e.g., nanogratings [57, 58]) and textile integration 
[59] have led to sensitive, comfortable, and robust devices 
[60, 61]. Moreover, system-level integration with wireless 
modules and low-power circuits has been achieved, allowing 
continuous, real-time hemodynamic monitoring in wearable 
form factors [62, 63], but these sensors still face challenges 
in static pressure detection and long-term stability.

Radar-based systems, particularly millimeter-wave 
radar (30–300 GHz), operate by emitting electromagnetic 
waves and analyzing the phase or frequency shift of signals 
reflected from the body surface, which vibrates minutely 
with each cardiac cycle (Fig. 2g). Systems like mmBP [64] 
employ advanced signal processing and neural networks to 
extract pulse signals and achieve accurate estimation, report-
ing deviations of 9.00% for SBP and 3.69% for DBP. Other 
systems integrate continuous-wave radar with BioZ and 
ECG to derive pulse arrival time (PAT) or pulse transit time 
(PTT) for BP estimation, showing strong statistical correla-
tions with reference methods [23, 64]. Radar methods enable 

Fig. 1   The sensor–model–deployment–assessment framework for AI-based cuffless BP estimation in real-world resource constraints
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Fig. 2   Working principle of wearable BP sensing. a Optical sensing (PPG). Adapted from [40], Electronics, 2014, published by MDPI, under 
the terms of the Creative Commons CC-BY license. Adapted with permission from [41], Copyright Springer Nature, 2019. b ECG sensing. 
Adapted from https://​www.​capit​alhea​rt.​sg/​what-​does-​an-​abnor​mal-​ecg-​mean/. c Bioimpedance sensing. Adapted with permission from [32], 
Copyright Springer Nature, 2022. d Korotkoff sounds. Adapted from [22], Frontiers in Cardiovascular Medicine, 2022, under the terms of the 
Creative Commons CC-BY license. e Mechano-electric sensing, including piezoresistive, capacitive, piezoelectric, and triboelectric sensing. i), 
iii), and iv) Adapted with permission from [7], Copyright Springer Nature, 2025. ii) Adapted from [42], with permission from the Royal Society 
of Chemistry. f Ultrasound sensing. Adapted with permission from [7], Copyright Springer Nature, 2025. g Radar sensing. Adapted with permis-
sion from [23], Copyright Elsevier, 2023

https://www.capitalheart.sg/what-does-an-abnormal-ecg-mean/
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unique non-contact operation but are still evolving in terms 
of accuracy and robustness.

Nevertheless, accurate BP estimation using wearable 
sensor modalities, such as PPG, ECG, bioimpedance, and 
tonometry, is challenged by multiple physiological and envi-
ronmental factors in practice [32, 65], including vasomo-
tor activity (e.g., vasodilation or vasoconstriction), motion 
artifacts, skin tone variations, temperature and respiratory 
influences, arterial stiffness, sensor placement inconsisten-
cies, contact-pressure drift, and physiological variability 
(e.g., heart rate, autonomic activity, blood viscosity) [31]. 
These factors distort sensor signals, complicating reliable 
BP measurement, particularly as vasomotor activity can 
counteract BP-related changes in PPG signals. Independent 
evaluations have underscored these challenges for commer-
cial cuffless systems in real-world settings [66–68]. Further 
comprehensive evaluation of continuous BP monitoring sen-
sors and their model will be even more necessary and critical 
which will be discussed later in this review.

3 � AI‑Based BP Estimation Model

Advancements in wearable sensing technologies have ena-
bled the acquisition of high-quality and varied physiological 
signals, which has spurred the development of AI-driven 
models for accurate, non-invasive BP estimation. This sec-
tion, we will introduce these AI-driven models and their 
limitations, which are essential for their effective implemen-
tation in continuous physiological monitoring.

Current research on AI-based BP estimation models 
encompasses diverse methodological paradigms, each con-
tributing to distinct aspects of accuracy, interpretability, 
and adaptability. Broadly, these methods can be catego-
rized into two primary technical routes: physics- or physi-
ology-informed models and machine learning models. Both 
approaches leverage observable hemodynamic signals and 
derived parameters such as PPG, ECG, pulse wave veloc-
ity (PWV), and pulse transit time (PTT) to estimate BP. 
However, these surrogate parameters do not directly reflect 
absolute BP values, necessitating calibration to establish a 
reliable mapping between the measured parameters and BP 
[69]. Mathematically, the cuffless BP estimation problem 
can be formulated as:

(1)BP = f�(x,Φ)

where x denotes the input vector derived from physiological 
measurements, Φ represents subject-specific physiological 
parameters, fθ is the mapping function parameterized by θ, 
the BP includes both beat-to-beat BP values (e.g., SBP and 
DBP) and the continuous BP waveform, reflecting dynamic 
hemodynamic changes over time. In the following, we will 
introduce the state-of-the-art BP methods, and the details of 
corresponding calibration strategies are referred to Note S1.

3.1 � Physics or Physiology Informed Network

Physics- or physiology-informed network (PPIN) incorpo-
rates cardiovascular and hemodynamic principles to model 
the relationship between physiological signals and BP. These 
models define the BP estimation mechanism through math-
ematical and biophysical equations rooted in domain knowl-
edge. In this context, fθ is a predefined function derived from 
hemodynamic principles or physics laws; θ represents uni-
versal constants (e.g., blood density, geometric ratios, or 
fluid constants [70]) that are assumed to be invariant across 
individuals. In contrast, Φ represents subject-specific cali-
bration parameters (e.g., baseline SBP₀ and DBP₀, refer-
ence PTT₀, and vascular elasticity coefficients [71, 72]). 
Unlike purely black-box AI methods, PPINs offer interpret-
able, knowledge-driven insights. The foundation of PPINs 
in blood pressure estimation is related to existing analytical 
techniques [7, 73], including the arterial BP physiological 
regulation, the arterial wall mechanics, and the arterial pulse 
wave propagation model.

The physiological regulation of arterial BP is influ-
enced by arterial compliance, cardiac output (CO), sys-
temic vascular resistance (SVR), and blood volume, 
Fig. 3a-i&ii. According to the Windkessel model, mean 
BP (MBP) = CO × SVR [74]. While CO is measurable, 
SVR is not, complicating BP modeling. Multi-wavelength 
pulse transit time (MWPTT [75]) and cardiovascular cou-
pling models with heart rate and systolic time interval 
[76] improve BP estimation accuracy by correlating these 
parameters to SVR. Typically, these related parameters are 
determined by physiological signals like ECG and PPG 
[77], Fig. 3a-iii. In addition, factors such as vascular resist-
ance, the renin–angiotensin–aldosterone system [78], arte-
rial diameter, skin temperature [79], and blood viscosity 
[80] influence SVR, requiring further quantitative research. 
Besides, a more complicated cardiovascular hybrid mod-
eling was developed by Shi et al. [81] to directly reconstruct 
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arterial BP waveforms from PPG signals. In practice, the 
Winkessel model estimates systemic arterial compliance and 
total peripheral resistance from pulse pressure data, com-
monly used in cardiovascular research [74]. It uses calibrated 
arterial pressure waveforms, suitable for real-time monitor-
ing. However, it assumes a lumped parameter system, limit-
ing accuracy for localized pressure dynamics and complex 
vascular geometries, and requires precise calibration.

Arterial BP can also be estimated from arterial wall 
mechanics, i.e., arterial elasticity or distensibility, using 
local PWV or diameter variation [82]. The Hughes equation 
[83] provides an empirical arterial elasticity-BP link, while 
the distension-based BP model proposes an exponential rela-
tionship, unproven in microcirculation. Flexible ultrasound 
[34] enables direct vessel diameter measurement (Fig. 3b-i) 
that posits an exponential relationship between BP and arte-

rial cross-sectional area: P(t) = Pde
�

(

A(t)

Ad
−1

)

 , where α is the 
vessel rigidity coefficient. However, α may vary with daily 
activities or physiological changes, posing challenges for 
long-term tracking accuracy without frequent recalibration. 
Alternatively, resonance sonomanometry [84] (Fig. 3b-ii) 
offers a calibration-free approach, capturing audio-induced 
arterial resonance. However, its application requires accurate 
arterial geometry measurement and has limited validation. 
These models leverage arterial wall biomechanics (e.g., elas-
ticity, stiffness) to estimate BP via vessel deformation and 
stress–strain analysis. They are suited for detailed arterial 
property analysis, such as age-related vascular stiffening or 
hypertension-induced remodeling studies, relying on imag-
ing modalities (e.g., ultrasound, MRI). While demanding 
high computational resources and expertise, they are lim-
ited by the need for high-resolution imaging and patient-
specific data and are sensitive to assumptions about arterial 
properties.

Arterial pulse wave propagation models are well-known 
and fundamental to cuffless BP estimation, particularly those 
using PTT, PAT, or PWV (Fig. 3c). Classical models like 
Moens–Korteweg and Bramwell–Hill equations [70, 71], 
which link PWV with BP, are limited by idealized thin shell 
assumptions [85]. Ma et al. [83] introduced an analytical 
alternative based on the Fung hyperelastic model (Fig. 3c-
i), expressing BP as P = �PWV2 + � , avoiding reliance on 
empirical assumptions, though requiring further validation. 
Recent studies have improved PTT measurement using sig-
nals such as ballistocardiography (BCG) [86], impedance 

cardiography (ICG) [87], seismocardiography (SCG), pho-
nocardiography (PCG) [88], and multi-wavelength photo-
plethysmography (MWPPG, Fig. 3c-ii) [75, 89]. Modern 
extensions incorporate multimodal signal features to increase 
robustness [72, 90, 91]. Xiang et al. [79, 92] proposed multi-
modal physiological models integrating temperature, PPG, 
ECG, and IPG. These methods are suited to non-invasive 
BP estimation in clinical and wearable settings, especially 
for PTT or PWV techniques. It uses sensors to capture pulse 
wave signals (e.g., photoplethysmography, ECG) at multi-
ple arterial locations. While adaptable for continuous moni-
toring, it needs robust signal processing to mitigate noise. 
Accuracy relies on precise transit time and distance meas-
urements, which can be compromised by motion artifacts or 
anatomical differences. Furthermore, it may face challenges 
with complex wave reflections in impaired arteries.

In contrast to previous pulse analysis techniques, the vol-
ume clamp method, also known as the Penaz method [93, 
94] (see Fig. 3c-iii), employs advanced vascular control 
strategies for fingertip pulse monitoring. This approach uses 
a high-precision controller to apply targeted pressure, main-
taining constant vessel volume at the monitoring site to cap-
ture an optimal PPG signal. However, the method requires 
expensive, high-precision controllers and small cuffs to 
ensure precise pressure regulation and intimate contact with 
the finger. Additionally, it relies on initial calibration using 
an oscillometric method to ensure accuracy.

Recently, physics-informed neural networks (PINNs) 
embed physical laws such as continuity equations and non-
linear partial differential equations (PDEs) into the neu-
ral network’s training process were developed [95–100], 
enabling models to learn from data while simultaneously 
respecting known physiological principles. Originally 
demonstrated in domains such as fluid mechanics [95] and 
power systems [96], PINNs are increasingly being applied 
to cardiovascular modeling. Sel et  al. [97] employed 
a PINN architecture combining a two-layer CNN with 
bioimpedance signals, incorporating impedance-derived 
hemodynamic features (e.g., pulse wave velocity, arte-
rial volume) into the model, reducing the requirement for 
ground-truth training data by a factor of ~ 15. Building 
upon this, a physics-informed temporal networks (PITN) 
with temporal blocks and adversarial contrastive learn-
ing [98], a DeepONet constrained by the Navier–Stokes 
equation with time-periodic conditions and Windkessel-
type boundary conditions [99], and meta-learning with 
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physics-driven modeling [100], were developed, respec-
tively, to mitigate the interpretation and accuracy of the 
AI-based BP estimation. These examples illustrate the 
diversity of physical priors that can be embedded within 
PINNs. Some models enforce relatively simple hemody-
namic relations (e.g., continuity of blood flow or Windkes-
sel-type pressure–flow coupling), while others incorporate 
more complex formulations such as Navier–Stokes fluid 

dynamics or pulse wave propagation. Given the complex-
ity of blood pressure regulation, it is imperative to add 
physiologically informed constraints. Since no single 
PINN formulation can comprehensively encapsulate the 
full regulatory spectrum, existing approaches prioritize 
core equations that are both mechanistically grounded and 
generalizable across individuals. Thanks to PDEs detailed 
physiological process, these methods are best suited for 

Fig. 3   Physiology informed models for cuffless BP estimation. a Physiological regulation of arterial BP, influenced by CO, SVR, arterial com-
pliance, and blood volume, modeled through the Windkessel framework. Adapted with permission from [76], Copyright IEEE, 2022. b Arterial 
wall mechanics-based models estimate BP from vessel elasticity or diameter changes, incorporating flexible ultrasound and resonance sonoma-
nometry. i) Adapted with permission from the authors of [102]. ii) Adapted with permission from [84], Copyright Oxford University Press, 
2024. c Pulse wave propagation models based on PTT, PWV, MWPTT, and vascular control to infer BP with improved robustness under physi-
ological variability. i) Adapted with permission from [89], Copyright IEEE, 2016. ii) Adapted from [83], PNAS, 2019, under the terms of the 
Creative Commons CC-BY license. iii) Adapted from [94], Nat. Commun., 2021, under the terms of the Creative Commons CC-BY license
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advanced research or precision medicine, where complex, 
patient-specific blood pressure dynamics are modeled 
using sparse or noisy data while enhancing interpretabil-
ity [97]. The deployment of PINN requires significant 
computational resources, large datasets for training, and 
expertise in machine learning and hemodynamics. It is 
typically implemented in research-grade systems rather 
than real-time clinical settings. Most importantly, PINNs 
also depend on the quality of input data and may overfit if 
physical constraints are not well-defined [101].

A comparative analysis of their advantages and trade-
offs would enhance its utility for guiding model selection 
and implementations, summarized in Table S1.

3.2 � Machine Learning Model

Machine learning (ML)-based models have contributed 
significantly to the early development of cuffless BP esti-
mation by capturing complex, nonlinear relationships 
between physiological signals and BP values without rely-
ing on explicit physiological equations. Figure 4 illustrates 
the flowchart of the process. In this context, fθ is a train-
able function that maps inputs to BP estimations, θ denotes 
model hyperparameters (e.g., layer numbers, neurons 
count, and activation functions), Φ represents individual-
specific or context-related variables (e.g., demographic 
attributes [103–105]). Through joint optimization of fθ and 
Φ, ML models enhance both adaptability and accuracy 
across heterogeneous populations.

Traditional ML methods typically utilize handcrafted fea-
tures extracted from signals such as bioimpedance, PPG, or 
ECG, followed by regression-based models to estimate BP. 
Representative models include linear regression (LR), multi-
instance regression, support vector machines (SVM), ridge 
regression, random forests (RF), AdaBoost, and artificial 
neural networks (ANN) [106–108]. While computationally 
efficient and interpretable, their performance is often limited 
by feature quality and poor generalizability across subjects 
and conditions, though they remain useful in data scarcerios.

Deep learning (DL) methods eliminate the need for 
manual feature engineering by automatically learning 
spatiotemporal representations from raw physiological 
signals. CNNs and their variants [109] such as AlexNet 
[110], MobileNet, EfficientNet, and ResNet capture spatial 
dependencies and hierarchical features from physiological 

signals, while Recurrent Neural Networks (RNNs) [111] and 
their advanced forms including Long Short-Term Memory 
(LSTM) [112] and Gated Recurrent Units (GRU) [113], are 
effective in modeling the temporal dependencies of BP-
related signals. Hybrid architectures, such as CNN-LSTM 
[114], CNN-GRU, CNN/RNN-attention [115–117], and 
Transformer-based models [13, 118], combine the strengths 
of spatial feature extraction and sequential learning, enhanc-
ing model robustness. Temporal Convolutional Networks 
(TCNs) [119] further improve long-range temporal learn-
ing without the need for recurrent connections, making them 
well-suited for real-time BP monitoring on edge devices.

The emergence of foundation models has introduced a 
paradigm shift in AI, with growing potential in physiologi-
cal signal analysis and cuffless BP estimation [12, 120, 
121]. These large-scale models leverage massive pretrain-
ing data and self-supervised learning to capture generaliz-
able representations across tasks and individuals. PaPaGei 
[121], the first open-source foundation model for PPG signal 
analysis, was pre-trained on 57,000 h of data from three 
public dataset. Its variants, PaPaGei-P and PaPaGei-S, tar-
get intra-subject and morphology-based consistency, with 
PaPaGei-S showing strong performance on cardiovascular 
tasks including blood pressure, hypertension, and heart 
rate estimation. SiamQuality [120] uses CNN-based self-
supervised architecture to learn quality-invariant represen-
tations from over 36 million ICU signal pairs. By pairing 
high- and low-quality signals, it demonstrates robustness to 
noise and outperforms conventional baselines on BP estima-
tion and atrial fibrillation detection. Liu et al. [12] explored 
instruction-tuned Large Language Models (LLMs) for cuf-
fless BP estimation, using ECG and PPG-derived features 
with domain-specific prompts. Fine-tuned LLMs outper-
formed task-specific baselines with an estimation error of 
0.00 ± 9.25 mmHg for SBP and 1.29 ± 6.37 mmHg for DBP. 
While foundation models offer notable generalization and 
adaptability, they still lag behind task-specific models in BP 
estimation accuracy and impose substantial computational 
demands.

Table 1 provides a comparative summary of representa-
tive studies on BP estimation using PPIN-, ML-, and DL-
based methods, detailing input signal types, algorithmic 
approaches, number of clinically recruited subjects, BP esti-
mation errors, and calibration strategies employed, compen-
sating recent works in standardized benchmarks [122, 123]. 
These efforts report statistically grounded, cross-dataset 
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results and enable fairer, repeatable comparisons. Neverthe-
less, the coverage remains incomplete, particularly lacking 
representativeness among older adults, hypertensive popula-
tions, diverse skin tones, and different types of devices. And 
physics-informed models additionally require standardized 
evaluations of constraint validity and failure modes. Addi-
tional model-level limitations are discussed in Sect. 4.3.

4 � Challenges and Solutions of BP Deployment 
in Resource‑Limited Settings

The deployment of AI-enhanced BP monitoring in resource-
limited settings introduces multifaceted challenges that 
extend beyond algorithmic accuracy. Limitations in com-
putational hardware, power supply, data availability, and 
healthcare infrastructure demand a holistic rethinking of 

system architectures and deployment paradigms. To achieve 
clinically viable, scalable, and accessible implementation, it 
is essential to integrate model efficiency with hardware fea-
sibility and real-world usability. This section systematically 
reviews representative computing architectures, resource-
aware optimization strategies and analyzes persistent barri-
ers and emerging solutions shaping the field.

4.1 � Resource‑Aware Computing Architectures

Deployment of AI models under resource constraints 
requires computing architectures that align model complex-
ity with hardware capabilities [124, 125]. Table 2 summa-
rizes representative academic efforts in deploying AI-based 
BP estimation, detailing input modalities, optimization 
techniques, hardware platforms, and performance metrics 

Fig. 4   A schematic overview of machine learning-based blood pressure estimation method. Traditional ML methods rely on handcrafted fea-
tures, whereas DL methods enable end-to-end estimation of beat-to-beat BP values, continuous BP waveforms, and 24-h dynamic BP values 
from multimodal physiological signals
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(e.g., latency, memory, energy, and clinical accuracy). All 
methods in Table 2 were validated in laboratory scenarios 
[68], including lab–static (controlled resting), lab–stress 
(acute perturbations such as cold pressor, posture/handgrip, 
pharmacologic stimuli). In parallel, Table 3 catalogs com-
mercial cuffless BP systems (e.g., Aktiia, Omron Heart-
Guide, Valencell) from peer-reviewed publications, FDA 
filings, and manufacturer whitepapers. This consolidated 
comparison facilitates cross-method evaluation and informs 
practical design decisions under real-world constraints.

Based on Tables 2 and S2, the deployability can be 
directly shaped by model-side factors: input configuration 
(sampling rate, window length, channels), model architec-
ture (depth, width, parameters), target metrics (accuracy, 
latency, robustness) and optimizations; hardware-side con-
straints: on-chip SRAM/Flash, compute throughput, and 
accelerator availability and AFE design.

As illustrated in Fig. 5, such deployments are typically 
structured into these tiers: on-device, edge, and cloud, 
facilitating adaptive distribution of computational tasks 
across hardware platforms with differing resource con-
straints [17, 126]. Accordingly, low-complexity models 
(e.g., physiology-informed and traditional ML models) 
align with an on-device tier where sensing, preprocess-
ing, and inference run locally on MCUs or ultra-low-power 
SoCs (e.g., Nordic nRF52840, ESP32-S3, and STM32N6) 
for maximal privacy and minimal latency/energy [124, 
127]. Mid-complexity models (e.g., compact deep net-
works) align with a device–edge tier where sensing and 
light preprocessing remain on the device, while the main 
inference runs on nearby NPUs/DSPs (smartphones/gate-
ways), balancing responsiveness, and compute [125]. 
High complexity (e.g., transformers and foundation mod-
els) align with a device–edge–cloud tier that keeps local 
preprocessing and lightweight inference while offloading 
heavy inference or training to the cloud, trading connec-
tivity, and latency for scalability [128]. Detailed deploy-
ment factors and the model–hardware selection strategy 
are provided in Note S2.

Together, these deployment strategies define a scal-
able design spectrum for BP monitoring from ultra-low-
power real-time inference to cloud-based precision ana-
lytics. Robust deployment in resource-limited settings 
requires coordinated optimization across the system stack, 
including AFE design, digital processing platforms, and 
AI model architecture [127, 129–131]. Representative 

processor platforms and associated trade-offs are summa-
rized in Table S2, with detailed implementation examples 
provided in Note S3.

4.2 � Optimization and Deployment Strategies for BP 
Estimation

Building upon the computing architectures described above, 
effective deployment of AI-driven BP estimation models in 
resource-limited settings requires a structured optimization 
pipeline that spans both algorithm-level design and graph-
level compilation (Fig. 6). This dual-layer pipeline enables 
scalable execution across heterogeneous platforms from 
ultra-low-power wearables to edge and cloud infrastructures.

4.2.1 � Algorithm‑Level Optimization

At the algorithm level, model architecture and parameter 
design must account for memory, energy, and latency con-
straints while preserving estimation accuracy. Lightweight 
manually designed models [141, 145, 149] (e.g., MobileNet, 
SqueezeNet) and hardware-aware Neural Architecture 
Search (NAS)[139, 163] methods can generate compact 
models that fit on constrained devices. A typical NAS frame-
work comprises three core components [163]: a search space 
defining possible architectures and hyperparameters (e.g., 
layer type, kernel size, depth, width); a search algorithm 
(e.g., reinforcement learning, evolutionary methods); and a 
performance estimator that evaluates candidates using full 
training or proxy methods like weight sharing. The models 
can be prepared through dynamic graph frameworks (e.g., 
PyTorch, TensorFlow, PaddlePaddle); they are commonly 
pretrained on large-scale datasets such as MIMIC-II/III/
IV [140–142, 145, 146, 148, 151] and fine-tuned on edge-
deployable datasets [119, 136]. Signal-level optimization 
such as adaptive windowing, downsampling, filtering, and 
dimensionality reduction (e.g., PCA) further reduce com-
putational load. This stage defines the foundational neural 
architecture and pretrained weights to improve convergence 
and generalization. These efforts ensure reliable signal-to-
model mappings as a basis for further optimization.

Compression techniques further reduce model size 
and computational cost. These strategies can be applied 
synergistically [127, 136] and tailored to target hardware 
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constraints via automated frameworks such as AdaDeep 
[131].

Pruning reduces model complexity by eliminating 
redundant weights or structural components (e.g., neu-
rons, channels) [138]. Unstructured pruning (e.g., mag-
nitude-based) yields sparse weight matrices, while struc-
tured pruning targets high-level computational units (e.g., 
neurons, channels, kernels, or entire blocks), yielding a 
regular architecture optimized for hardware acceleration 
and parallelism [164]. Energy-aware pruning [165] selec-
tively removes components based on energy cost metrics, 
enhancing overall power efficiency.

Quantization reduces numerical precision (e.g., FP32 to 
INT8) for compatibility with integer-only compute engines 
such as MCUs or NPUs [147, 151]. The widely supported 
frameworks include TFLite, CMSIS-NN, TensorRT, and 
QNNPACK.

Knowledge Distillation (KD) transfers knowledge 
from large “teacher” models to smaller “student” models 
through various strategies [166]: response-based, where 
the student mimics the teacher’s soft outputs; feature-
based, which transfers intermediate representations (e.g., 
hidden states); relation-based, capturing inter-sample or 
inter-layer dependencies.

Low-Rank Factorization approximates large weight 
matrices with rank-decomposed components, enabling 
faster inference and model simplification with minimal 
retraining [167]. It is particularly effective when layers 
exhibit strong linear dependencies. Common techniques 
include canonical polyadic decomposition and tucker 
decomposition [168], where convolutional layers were 
successfully factorized and fine-tuned to maintain model 
performance.

Model Personalization enhances real-world robustness by 
adapting models to individual variability [76, 138]. Person-
alized adaptation strategies such as transfer learning, feature 
sharing, and parameter-efficient fine-tuning (e.g., Low-Rank 
Adaptation (LoRA), QLoRA) were widely used [116, 119, 
169]. Continual and incremental learning [149, 170] further 
support long-term adaptation by updating model parame-
ters in real time, mitigating performance drift without full 
retraining. In multi-user scenarios, federated learning ena-
bles decentralized model updates without raw data exchange, 
preserving privacy [171]. While not yet widely adopted for 
BP estimation, split learning offers promising potential for 
ultra-constrained settings by enabling partial computation 
offloading to edge servers [172], balancing local adapta-
tion and efficiency. These strategies allow the same model 

Table 3   Overview of the representative commercial cuffless BP systems

*Accuracy metric: ME ± SD (mmHg)

Device Input Method SBP errors* DBP errors* Clearance Calibration References

Aktiia PPG signal PWA 1.3 ± 7.11 − 0.2 ± 5.46 FDA/CE Monthly cuff [152]
Omron HeartGuide Oscillometric Oscillometry − 0.9 ± 7.6 − 1.1 ± 6.1 FDA No [153]
Valencell PPG, demographics ML 0.0 ± 7.9 0.4 ± 7.4 – No [154]
Healthstats Radial pressure Tonometry  < 5 ± 8  < 5 ± 8 FDA Weekly cuff
Sotera Visi Mobile ECG, PPG PAT/PTT − -1.88 ± 6.17 − 1.65 ± 3.62 FDA Initial cuff BP, recali-

brate ≥ 24 h
Biobeat BB-613WP PPG PWTT​ − 0.1 ± 3.6 0 ± 3.5 FDA Periodic cuff [155]
LiveOne Pressure/tonometry ML 0.0 ± 6.9 1.2 ± 5.7 FDA Demographic [156]
NanoWear Sim-

pleSense
PPG, ECG, heart 

sound, thoracic 
impedance, activity, 
demographics

Ensemble ML − 2.94 ± 4.82 − 0.77 ± 3.75 FDA Initial cuff BP, peri-
odic update

[157, 158]

PyrAmes/Boppli Capacitive sensor 
array

ML − 0.7 ± 7.7 1.4 ± 4.7 FDA Demographic [159]

Biospectal/OptiBP camera PPG ML 1.5 ± 6.7 − 0.2 ± 4.1 CE Cuff [160]
Samsung Galaxy-

watch
PPG PWA − 2.05 ± 15.5 − 5.58 ± 22.5 CE Every 28 days cuff [161]

CART-I PPG PWA 1.74 ± 6.69 − 3.24 ± 6.51 Korea MFDS Two-step cuff 
(+ periodic)

[162]
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backbone to generalize across users while adapting to tem-
poral or population-specific physiological differences.

4.2.2 � Graph‑Level Compilation Optimization

Once model architecture and parameters are finalized, the 
trained models are compiled into static computation graphs 

(e.g., ONNX, TFLite, PaddlePaddle IR), which are then 
lowered into hardware-executable code through compila-
tion toolchains (e.g., TVM, CMSIS-NN, or TensorRT) 
[173] with graph- and tensor-level optimizations [130]. 
Core graph-level optimizations include graph simplification 
(e.g., constant folding, operator fusion, layout transforma-
tion), tensor scheduling (e.g., tiling, unrolling, vectorization) 
[174], memory planning for buffer reuse and alignment, and 
auto-tuning for device-specific kernel scheduling. These 
optimizations maximize efficiency across diverse hardware 
in BP estimation field, including MCUs, NPUs, and AI 
ASICs [140, 144, 150].

Compiled binaries are integrated into firmware stacks 
alongside drivers and real-time operating systems (RTOS) 
kernels, enabling efficient on-device inference. At runtime, 
lightweight execution engines (e.g., TFLite Micro, CMSIS-
NN) manage memory and task scheduling under RTOSs or 
bare-metal conditions [175]. Dynamic scheduling techniques 
[176] have been introduced to enable dynamic adaptation to 
context, improving responsiveness and energy efficiency in 
daily use. For instance, dynamic routing selectively activates 
sub-networks based on input complexity [126], while early 
exit [125] architectures terminate inference once confidence 

Fig. 5   Scalable resource-aware computing architectures for wearable BP monitoring. Three computing paradigms aligned with model complex-
ity and system capabilities: on-device, edge, and cloud

Fig. 6   End-to-end optimization pipeline for deploying AI-driven BP 
estimation on resource-limited devices. The process spans algorithm-
level design, compression and personalization, followed by graph-
level compilation, system integration, and runtime scheduling
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thresholds are met. Intermittent scheduling enables peri-
odic or event-driven inference aligned with physiological 
rhythms[146, 150]. In addition to purely on-device execu-
tion, hybrid and offload scheduling schemes [17, 125] can 
alleviate local computational burdens by distributing infer-
ence across edge servers or the cloud. In such designs, some 
researches [128, 137, 177] conduct lightweight signal pre-
processing on-device, while offloaded heavier computation 
tasks.

4.3 � Infrastructure, Model, and Deployment Barriers

AI-driven wearable BP monitoring in resource-limited set-
tings faces complex and interdependent barriers spanning 
infrastructure, model design, practical deployment, and 
ethical considerations, which limit clinical translation and 
real-world reliability.

Infrastructure barriers are foundational. Low-cost, 
energy-constrained wearable devices, and basic smart-
phones severely limit computational capacity, memory, and 
data storage [16, 178]. These limitations hinder real-time 
inference, long-term logging, and scalable data integration. 
Unreliable power supply and intermittent network connec-
tivity further complicate deployment, making edge-only, or 
edge-first AI processing essential [179]. Moreover, the lack 
of standardized data ecosystems and interoperability across 
heterogeneous devices further hinders scalable and coordi-
nated BP monitoring efforts [14].

Model-level barriers present a critical bottleneck. First, 
physiological non-specificity remains a foundational barrier: 
Hemodynamic features extracted from non-invasive signals 
(e.g., PPG, mechano-electric) are modulated by vasomotor 
tone, autonomic state, contact pressure, motion, temperature, 
and device/subject identifiers, leading to feature shifts that 
are weakly or non-uniquely associated with BP [11]. Sec-
ond, the burden of calibration and drift is substantial: Many 
systems require frequent recalibration, and calibration-heavy 
designs often perform similarly to strong non-physiological 
baselines (e.g., calibration BP and time). Third, evaluation 
and implementation flaws, over-optimistic results due to data 
leakage, hyperparameter tuning on test sets, calibration leak-
age, and selective metrics. Fourth, subgroup fairness and 
robustness, small, cohort-biased datasets, and weak gener-
alization protocols limit robustness across real-world condi-
tions such as ambulatory, exercise, and thermal variability 

[6]. Performance disparities across subgroups (e.g., elderly, 
hypertensive, different skin tones, or arterial stiffness levels) 
remain under-explored, posing fairness concerns. Lastly, the 
absence of prospective, real-time clinical trials prevents reg-
ulatory adoption and obscures the actual benefit of cuffless 
BP systems in long-term management. Early solutions using 
hardware-aware neural architecture search, model quanti-
zation, federated learning, and lightweight personalization 
show promise [178].

Deployment barriers include energy constraints, mainte-
nance challenges, user trust, and the absence of validation 
in daily life. In LMICs deployment scenarios, power and 
hardware constraints must be explicitly aligned with report-
ing requirements. Clinical applications range from beat-to-
beat estimation in critical care, to intermittent 30–60-min 
monitoring in ambulatory management, to daily or weekly 
tracking for lifestyle support. These scenarios entail dis-
tinct trade-offs in sensing complexity, model latency, and 
energy consumption. Table S3 contextualizes these trade-
offs, linking use cases to deployment constraints and guid-
ing resource-aware system design. Continuous health moni-
toring imposes substantial energy demands, while reliable 
charging remains impractical in many resource-limited set-
tings due to unstable electricity infrastructure [14]. Devices 
must be sturdy, intuitive, and require minimal maintenance, 
as high device loss and limited local support can critically 
limit adoption [11]. Acceptance studies have highlighted 
user concerns around data accuracy, trust, and loss of human 
interaction, emphasizing the need for transparency and 
human–AI collaboration [180].

Beyond technical constraints, ethical and regulatory bar-
riers remain. Insufficient transparency, algorithmic bias, 
data privacy issues, and lack of governance infrastructure 
continue to limit trust and equitable access in many regions 
[6, 180]. Integrative deployment strategies combining edge 
inference with human-in-the-loop oversight and community 
health can alleviate trust barriers and enhance usability [10].

Despite these challenges, encouraging precedents from 
adjacent domains demonstrate that meaningful clinical 
impact is possible through thoughtful system-level design. 
Wearable systems have shown real-world utility in fetal and 
maternal monitoring, arrhythmia detection, and hearing 
screening when paired with frugal hardware and edge-opti-
mized AI [15, 16, 179]. For instance, Ryu et al. developed a 
wireless network of soft, flexible sensors capable of compre-
hensive maternal and fetal monitoring including HR, uterine 
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activity, and fetal movements across both high- and low-
resource settings [15]. Their system was validated in clinical 
environments ranging from tertiary hospitals to rural clinics, 
demonstrating the feasibility of low-cost, wearable-based 
monitoring even in infrastructure-limited environments. 
Similarly, Chan et al. presented an off-the-shelf otoacoustic 
emission probe using low-cost hardware and AI-based sig-
nal interpretation to enable newborn hearing screening in 
LMICs [16]. This study illustrates how combining frugal 
hardware design with intelligent signal processing can make 
clinical-quality screening accessible at scale. Recent work 
demonstrated that AI models optimized for consumer smart-
watches can achieve clinical-grade performance in detect-
ing critical physiological events such as loss of pulse, with 
fully edge-based, energy-efficient inference [179]. These 
successes may offer valuable design patterns translatable to 
cuffless BP monitoring. At the infrastructure level, low-cost 
sensing and edge AI reduce reliance on cloud connectivity 
and power-hungry processing.

5 � Evaluation and Validation

5.1 � Model Evaluation Metrics

Accurate evaluation is critical to ensure that AI-based cuf-
fless BP estimation systems are clinically valid and prac-
tically deployable [40]. Researchers usually use a variety 
of metrics to evaluate model performance against reference 
methods (e.g., intra-arterial or auscultatory cuff-based meas-
urements), including mean error (ME), standard deviation of 
error (SDE), mean absolute error (MAE), root mean squared 
error (RMSE), and mean absolute percentage error (MAPE) 
[181] for waveform-based methods. Tracking metrics such 
as time-series RMSE or mean tracking error are employed 
to assess a model’s responsiveness to BP fluctuations in 
dynamic monitoring scenarios. Correlation coefficient (e.g., 
Pearson’s r) and Bland–Altman plots evaluate trend align-
ment and agreement with reference values.

In addition, recent studies have advocated more rigorous 
and reproducible practices that directly probe physiologi-
cal discriminability, calibration dependence, and real-world 
robustness: (1) Leakage-free evaluation, using subject-wise 
splits to prevent information leakage from the same indi-
vidual. (2) Baseline comparisons against non-physiologi-
cal models (e.g., models rely solely on non-measurement 

features such as calibration BP, population-average BP, 
demographics, or time of day) [12, 182] to assess physiolog-
ical signal utility. In the Microsoft Research Aurora Project 
[67], all models based on waveform features produced errors 
comparable to those of a baseline model using only calibra-
tion BP and time. In parallel, include cuff-anchored base-
lines (e.g., periodic upper-arm cuff recalibration) to assess 
any added benefit beyond calibration. (3) Feature attribution 
(e.g., explainable methods such as SHAP [65]) and abla-
tion studies are recommended to quantify the contribution 
of input features to the final estimations. (4) BP changes 
(ΔBP) tracking under induced BP changes (e.g., physical 
exercise, vasomotor provocation tasks such as cold pres-
sor tests, mental stress tasks, or pharmacological interven-
tions) and over long time to assess dynamic adaptability. (5) 
Individual-level evaluation, identifying error distributions 
across subgroups (e.g., elderly, hypertensive, different skin 
tones/arterial stiffness), addressing fairness and robustness. 
(6) Lab-to-ambulatory with concurrent logging of motion, 
skin temperature, contact pressure, posture, and other con-
textual variables, to assess degradation in non-ideal settings. 
(7) Reporting and metrics, explicitly document calibration 
burden and schedules, and release protocols/device settings/
code where possible to enable reproducibility.

5.2 � On‑Device Evaluation

In addition to model robustness and fairness evaluations, 
on-device evaluation focuses on assessing the system-level 
performance and robustness of BP estimation models when 
deployed on resource-limited wearable platforms. Key sys-
tem-level metrics [17, 127, 136, 139, 145] include model 
size, inference latency (ms), floating point of operations 
(FLOPs), memory footprint (KB), energy consumption 
(mJ), and clinical accuracy which are assessed to ensure 
that the system meets real-world requirements under diverse 
operating conditions. Comparisons between edge and server 
inference typically show tolerable accuracy degradation 
(~ 8%–10%), confirming the feasibility of wearable BP esti-
mation. Beyond these core metrics, robust on-device evalua-
tion should further encompass assessments of system robust-
ness and long-term usability. This includes: (1) Robustness 
to motion artifacts and environmental noise [7], by testing 
model performance under controlled motion scenarios 
(e.g., walking, wrist rotation) and across varying ambient 
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conditions (light, temperature, humidity), using both syn-
thetic and real-world datasets. (2) Battery impact analysis 
[183], quantifying the additional power consumption intro-
duced by BP estimation tasks, and evaluating its effect on 
overall device battery life under typical usage patterns. 3) 
OTA update robustness, validating the integrity and consist-
ency of model performance following over-the-air updates, 
ensuring clinical reliability is maintained post-update.

Finally, the lack of standardized benchmark datasets 
and testing protocols for on-device BP estimation poses a 
challenge to cross-study comparisons. Establishing such 
benchmarks—including standardized motion protocols, 
battery stress tests, and runtime performance evaluation 
guidelines—would greatly enhance the comparability of 
published results and accelerate progress toward clinically 
robust wearable BP monitoring systems.

5.3 � Standard Requirements

To enable clinical translation, cuffless BP estimation meth-
ods must align with internationally recognized standards, 
many of which were initially developed for cuff-based sys-
tems but are now widely referenced for wearable and cuf-
fless technologies. These standards define acceptable error 
thresholds, data distribution requirements, validation pro-
tocols, and reference measurement methods. The AAMI/
ESH/ISO standard [184] mandates static testing with normal 
data distribution and fixed thresholds, along with a demo-
graphically diverse (e.g., age, gender, arm circumference) 
subject pool. The British Hypertension Society (BHS) stand-
ard [185] provides a grading system (A–D) based on the 

cumulative percentage of errors within 5, 10, and 15 mmHg 
(CP5, CP10, CP15), requiring independent accuracy for both 
SBP and DBP. The IEEE 1708-2014/2019 standards were 
the first tailored for ‘cuffless wearable BP devices’ [42, 46], 
which introduce the use of mean absolute difference (MAD) 
and mean absolute percentage difference (MAPD) as key 
metrics and emphasized dynamic testing (e.g., postural and 
motion). The ISO 81060-3:2022 standard, targeting continu-
ous automated sphygmomanometers, adopts a relaxed crite-
rion with simplified requirements [186]. More recently, the 
European Society of Hypertension (ESH) [103] released an 
application-driven protocol specifically for cuffless BP sys-
tems, incorporating six evaluation scenarios and advanced 
statistical modeling (e.g., mixture of multivariate normal 
distributions). These standards provide essential benchmarks 
for assessing model performance, guiding validation efforts, 
and determining clinical acceptability. The specific metrics 
and performance thresholds summarized in Table 4 and the 
grading framework [92] illustrated in Fig. 7 offer a com-
prehensive overview of the prevailing regulatory landscape.

6 � Summary

The integration of non-invasive sensing, artificial intel-
ligence, and resource-efficient deployment offers trans-
formative potential for cardiovascular health monitoring, 
particularly in blood pressure management in low- and 
middle-income countries. Wearable AI-driven BP moni-
toring systems show promise for hypertension screening 
and long-term care, though current cuffless wearables are 
best suited as trend-tracking companions. Key challenges 

Table 4   Summary of BP validation standards

Standard Sample size Reference method Acceptance criteria

AAMI/ESH/ISO  ≥ 85 Sphygmomanometer/ invasive arterial line ME ≤  ± 5 mmHg, SD ≤ 8 mmHg
BHS 85 Sphygmomanometer Grade A: CP5 ≥ 60%, CP10 ≥ 85%, CP15 ≥ 95%

Grade B: CP5 ≥ 50%, CP10 ≥ 75%, CP15 ≥ 90%
Grade C: CP5 ≥ 40%, CP10 ≥ 65%, CP15 ≥ 85%
Grade D: Worth than Grade C

IEEE 1708-2014/2019  ≥ 85 Sphygmomanometer/ invasive arterial line Phase 1: MAD ≤ 7 mmHg
Phase 2: Grade A: MAD ≤ 5 mmHg
Grade B: 5 < MAD ≤ 6 mmHg
Grade C: 6 < MAD ≤ 7 mmHg
Grade D: MAD > 7 mmHg

ESH 2023 85–175 Auscultatory/24-h oscillometric ME ≤  ± 5 mmHg, SD ≤ 8 mmHg
ISO 85 Invasive arterial line |ME|≤ 6 mmHg, SD ≤ 10 mmHg
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include developing high-fidelity, low-cost, and energy-
efficient sensors, lightweight, low-power models that can 
accurately distinguish BP changes from confounding fac-
tors, and addressing the issue of frequent calibration. Fur-
thermore, leveraging regional resources to enable scalable 
deployment of BP models is crucial. Data scarcity, lack of 
standardized datasets, and the need for robust evaluation 
batteries also impede progress. Clinical deployment faces 
challenges related to regulation, ethics, and trust, necessi-
tating standardized validation frameworks and independent 
assessments. Future solutions should be designed for global 
impact, prioritizing frugality, resilience, interpretability, and 
clinical meaningfulness to democratize cardiovascular diag-
nostics and support accessible care.
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permission directly from the copyright holder. To view a copy of 
this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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