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HIGHLIGHTS

® Integrative Co-Design Framework: We synthesize current advances in sensing, models, accuracy/reliability assessment, and hardware into
a sensor—model-deployment—assessment framework that organizes evidence and design trade-offs for cuffless blood pressure monitoring.
The framework seeks to balance precision and efficiency by jointly considering low-power edge Al, streamlined sensor architectures, and
adaptive computational models, providing a structured basis for reproducible and clinically meaningful wearable solutions.

e Pathways to Clinical Translation: We critically assess barriers to real-world deployment, offering actionable strategies to bridge the
translational gap between laboratory innovations and scalable implementation in low-resource regions with minimal healthcare
infrastructure.

e Interdisciplinary Synthesis: By integrating cutting-edge advances in materials science, digital health, and embedded Al, we provide evidence-
based recommendations to empower biomedical researchers, engineers, and data scientists in advancing equitable diagnostic solutions.

ABSTRACT Accurate blood pressure (BP) monitoring is essential for pre-

venting and managing cardiovascular disease. Advancements in materials
science, medicine, flexible electronic, and artificial intelligence (Al) have
enabled cuffless, unobtrusive BP monitoring systems, offering an alterna-
tive to traditional sphygmomanometers. However, extending these advances
to real-world cardiovascular care particularly in resource-limited settings
remains challenging due to constraints in computational resources, power
efficiency, and deployment scalability. This review presents a comprehen-
sive synthesis of Al-enhanced wearable BP monitoring, emphasizing its
potential for personalized, scalable, and accessible healthcare. We system-
atically analyze the end-to-end system architecture, from mechano-electric
sensing principles and Al-based estimation models to edge-aware deploy-
ment strategies tailored for low-resource environments. We further discuss

"sensor-model-deployment-assessment” co-design framework. This roadmap highlights how Al-enhanced BP technologies can support proactive
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clinical validation metrics and implementation barriers and prospective strategies. To bridge lab-to-field translation, we propose an innovative
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hypertension control and promote cardiovascular health equity on a global scale.
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1 Introduction

Hypertension is a major risk factor for cardiovascular dis-
eases (CVDs), contributing significantly to global morbidity
and mortality [1]. Accurate and continuous blood pressure
(BP) monitoring is thus essential for early diagnosis, preven-
tive care, and personalized intervention [2], particularly in
resource-limited settings where access to episodic clinical
measurement is limited. Traditional cuff-based BP measure-
ment [3], despite its clinical acceptance, remains inherently
episodic, cumbersome, and ill-suited for unobtrusive long-
term monitoring [4]. Cuffless BP estimation represents a
paradigm shift in non-invasive monitoring by eliminating
the need for traditional cuffs, supporting cost-effective, con-
tinuous BP monitoring during daily life and holds potentials
for personalized, proactive hypertension management [5].
Recent advances in sensing technologies have further
empowered this field, enabling the acquisition of high-
quality physiological data through increasingly miniatur-
ized and affordable wearable devices [6—9]. Concurrently,
artificial intelligence (AI) has emerged as a transforma-
tive tool for analyzing these complex signals, significantly
enhancing the accuracy and robustness of cuffless BP
estimation [8]. These trends have created new opportuni-
ties for deploying Al-driven BP monitoring beyond tradi-
tional healthcare settings. In particular, resource-limited
settings—including low- and middle-income countries
(LMICs), remote communities, and underserved popula-
tions in high-income countries—represent environments
where the potential impact of wearable BP monitoring
is especially high [6, 10, 11]. These settings are often
characterized by limited healthcare infrastructure, insuf-
ficient access to trained personnel, and high unmet needs
for hypertension screening and management. Yet, deploy-
ing state-of-the-art Al-based BP estimation methods in
such settings requires a fundamental rethinking of system
design. Existing approaches [12, 13] typically assume
ample computational resources and high-quality signals,
whereas real-world deployments in resource-constrained
settings must navigate variable signal quality, limited
model capacity, strict energy budgets, intermittent con-
nectivity, and fragmented data ecosystems [14]. Scalable
and reliable BP monitoring in such environments demands
a delicate balance between model accuracy, algorithmic
complexity, and hardware efficiency [15—17]. It requires

© The authors

coordinated advances in sensor technology, learning frame-
works, and edge-aware system deployment tailored to the
realities of diverse populations and care infrastructures.

In this review, we provide an integrated perspective on the
co-design of sensing, modeling, deployment and assessment,
which is critical in real-world deployments but often has
been neglected in prior reviews [7, 9, 18]. To be specific,
we will systematically analyze the infrastructure, model, and
deployment challenges of Al-based blood pressure estima-
tion in resource-limited settings and summarize promising
solutions and emerging directions for scalable and acces-
sible healthcare. Figure 1 shows a system view that spans
from hardware-proximal sensing, model design to execu-
tion across device—edge—cloud framework and comprehen-
sive assessment. First, advanced wearable sensing tech-
nologies such as optical [19], electrical [20], mechanical
[21], acoustic [22], and electromagnetic [23] enable vari-
ous physiological signals acquisition. Second, the captured
signals are further processed using physiological-based
models, physics-based models, and data-driven machine
learning models. These models are employed to estimate
BP in three clinical scenarios, high-demand: beat-to-beat
or BP waveform [24] for stress tests and acute monitoring;
moderate-demand: intermittent BP for ambulatory follow-up
and therapy titration; and low-demand: snapshot BP for spot
checks. During the hardware deployment phase, challenges
related to model optimization, compilation, scheduling,
and adaptability across heterogeneous hardware platforms
(microcontrollers, mobile devices, edge servers, and cloud
platforms) will be discussed. Finally, we provide a compre-
hensive, system-level evaluation from both the model and
device perspectives.

2 Wearable Sensing Technology for BP
Measurement

We start with a concise overview of wearable sensing tech-
nologies for BP measurement, including photoplethysmog-
raphy, electrical, acoustic, mechano-electric, and radar meth-
ods, focusing on their material innovation, sensor design,
principles, performance, and limitations.
Photoplethysmography (PPG) is a cost-effective and
non-invasive optical technique that measures changes
in peripheral blood volume to monitor cardiovascular
parameters (Fig. 2a). The fundamental operation involves

https://doi.org/10.1007/s40820-025-02003-9
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light-emitting diodes (LEDs) illuminating tissue and pho-
todetectors capturing backscattered or transmitted light, the
intensity of which is modulated by cardiac cycle-induced
blood flow variations. It is noteworthy that over 95% of
the total detected light intensity originates from static tis-
sue compartments (e.g., dermis, subcutaneous fat, muscle),
with only a small variable component attributable to pulsa-
tile blood volume changes, underscoring the challenge of
extracting clean hemodynamic signals [19]. The interaction
between light and biological tissue is highly wavelength-
dependent. Ultraviolet light (10-380 nm) is predominantly
absorbed by epidermal proteins, while visible (380—760 nm)
and near-infrared (760-1300 nm) light penetrates several
millimeters into tissue, allowing interrogation of deeper
vasculature, with hemoglobin and water being the primary
absorbers [25]. Widely adopted in wearable devices, PPG
detects blood volume modulations driven by the cardiac
cycle, enabling continuous cardiovascular monitoring (e.g.,
BP estimation) under appropriate calibration and constraints
[19]. Recent innovations in flexible electronics have signifi-
cantly improved PPG performance. Organic light-emitting
diodes (OLEDs) [26], polymer LEDs [27], and hybrid inor-
ganic—organic devices [28, 29] offer superior mechanical
conformity to the skin, significantly improving signal acqui-
sition stability and reducing motion-induced artifacts [26,
27]. Despite its advantages, the accuracy of PPG-based BP
monitoring is compromised by motion artifacts, skin pig-
mentation, tissue thickness, ambient light interference, and
even vasomotor activity [30, 31]. Additionally, PPG meas-
urements are typically taken at peripheral sites (e.g., wrist or
finger), which may not fully reflect central blood pressure,
potentially limiting clinical precision.

Electrocardiography (ECG) measures the heart’s electri-
cal activity through skin electrodes on the chest or limbs
(Fig. 2b), capturing characteristic waveforms including the
P wave (atrial depolarization), QRS complex (ventricular
depolarization), and T wave (ventricular repolarization)
[20]. Besides, bioimpedance (BioZ) sensing (Fig. 2c¢) com-
plements ECG by analyzing tissue electrical properties
through applied high-frequency currents to detect arterial
pulse-induced impedance variations, blood flow dynamics,
and tissue dielectric properties [32, 33]. The performance
of these electrical modalities is heavily dependent on the
electrode—skin interface. Three primary electrode types are
utilized: wet, dry, and non-contact. Wet electrodes (Ag/AgCl
with hydrogel) [34] provide excellent initial signal quality
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and low impedance but suffer from long-term drying, irri-
tancy, and performance degradation [35]. Dry electrodes,
fabricated from conductive polymers or metal coatings, offer
improved durability and comfort for sustained use, though
they can be more prone to motion artifact without hydrogel
[36]. Besides, non-contact electrodes, employing capacitive
coupling through an insulating layer or elastic electrolytes,
represent a significant advancement by eliminating direct
skin contact, thereby maximizing user comfort and minimiz-
ing irritation and motion artifacts, making them suitable for
wearable health monitoring applications [37].
Auscultatory methods based on Korotkoff sounds
(K-sounds) represent a classical approach reinvented for
modern wearables. These acoustic signals are produced by
turbulent blood flow when an artery is partially constricted.
Figure 2d reproduces the “core” theory of the mechanism
and compares the changes in K-sounds produced by normal
and abnormal cardiac function. These sounds are catego-
rized into five phases, with the first (K1) marking the onset
of SBP and the fifth (K5) denoting DBP as flow stabilizes
[22]. While traditionally detected via stethoscope, modern
approaches leverage acoustic sensors and signal process-
ing techniques to capture and analyze these sounds. Recent
advances incorporate deep learning to model the complex
temporal and spectral patterns of K-sounds [22], demonstrat-
ing promise for automated, auscultatory-based BP assess-
ment. Another application of acoustic sensing is the emerg-
ing flexible ultrasound technology (Fig. 2f). Leveraging the
deep penetration and high spatiotemporal resolution of ultra-
sound waves, flexible ultrasound sensors have emerged as a
powerful tool for non-invasively monitoring central blood
pressure, which carries greater clinical significance than
peripheral pressure [38, 39]. Acoustic sensors provide more
direct physiological measures of pressure and flow, though
often at increased cost and system complexity.
Mechano-electric sensors, which transduce mechani-
cal pressure or vibration into quantifiable electrical sig-
nals through physical contact, encompass a diverse fam-
ily including piezoresistive, capacitive, piezoelectric, and
triboelectric types (Fig. 2e). Piezoresistive sensors operate
on the principle of pressure-induced resistance change.
Their performance is enhanced through material innovation
(e.g., graphene porous networks [43], carbon nanotube/
PDMS composites [44]) and microstructure design (e.g.,
micropillars, honeycombs), achieving high sensitivity (> 1
kPa™!), wide dynamic range, and excellent cyclic stability

@ Springer
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Fig. 1 The sensor-model-deployment—assessment framework for Al-based cuffless BP estimation in real-world resource constraints

(> 8000 cycles) [45]. Capacitive sensors measure pressure
via capacitance changes [42]. Performance optimization
focuses on microstructured dielectrics (e.g., micro-pyra-
mids [46] and others [47]) to concentrate stress and reduce
modulus and optimized electrode materials (e.g., CNTs,
ITO, metal coatings [48]) for flexibility and conductivity.
This yields devices with exceptional sensitivity (down to
0.1 Pa), rapid response (~ 10 ms), and low hysteresis, help-
ful for high-fidelity pulse waveform acquisition [46, 49].
Piezoelectric sensors convert mechanical deformation into
electrical charge through intrinsic material polarization
[50]. Strategies to boost sensitivity include nanoparticle
doping (e.g., BaTiO; in PVDF [51, 52]) and microstruc-
turing (pyramids, waves [53]), achieving outputs exceed-
ing 685 mV N~!. Ultra-flexible, skin-conformable patches
fabricated via techniques like laser lift-off enable stable
long-term monitoring [54, 55]. Dynamic analyses have fur-
ther shown that piezoelectric sensors can faithfully capture
arterial pulse waveforms, providing a mechanophysiological
link to blood pressure [56]. Triboelectric sensors use contact
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electrification for self-powered sensing [7]. Nanostructured
surfaces (e.g., nanogratings [57, 58]) and textile integration
[59] have led to sensitive, comfortable, and robust devices
[60, 61]. Moreover, system-level integration with wireless
modules and low-power circuits has been achieved, allowing
continuous, real-time hemodynamic monitoring in wearable
form factors [62, 63], but these sensors still face challenges
in static pressure detection and long-term stability.
Radar-based systems, particularly millimeter-wave
radar (30-300 GHz), operate by emitting electromagnetic
waves and analyzing the phase or frequency shift of signals
reflected from the body surface, which vibrates minutely
with each cardiac cycle (Fig. 2g). Systems like mmBP [64]
employ advanced signal processing and neural networks to
extract pulse signals and achieve accurate estimation, report-
ing deviations of 9.00% for SBP and 3.69% for DBP. Other
systems integrate continuous-wave radar with BioZ and
ECG to derive pulse arrival time (PAT) or pulse transit time
(PTT) for BP estimation, showing strong statistical correla-
tions with reference methods [23, 64]. Radar methods enable

https://doi.org/10.1007/s40820-025-02003-9
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unique non-contact operation but are still evolving in terms
of accuracy and robustness.

Nevertheless, accurate BP estimation using wearable
sensor modalities, such as PPG, ECG, bioimpedance, and
tonometry, is challenged by multiple physiological and envi-
ronmental factors in practice [32, 65], including vasomo-
tor activity (e.g., vasodilation or vasoconstriction), motion
artifacts, skin tone variations, temperature and respiratory
influences, arterial stiffness, sensor placement inconsisten-
cies, contact-pressure drift, and physiological variability
(e.g., heart rate, autonomic activity, blood viscosity) [31].
These factors distort sensor signals, complicating reliable
BP measurement, particularly as vasomotor activity can
counteract BP-related changes in PPG signals. Independent
evaluations have underscored these challenges for commer-
cial cuffless systems in real-world settings [66—68]. Further
comprehensive evaluation of continuous BP monitoring sen-
sors and their model will be even more necessary and critical
which will be discussed later in this review.

3 Al-Based BP Estimation Model

Advancements in wearable sensing technologies have ena-
bled the acquisition of high-quality and varied physiological
signals, which has spurred the development of Al-driven
models for accurate, non-invasive BP estimation. This sec-
tion, we will introduce these Al-driven models and their
limitations, which are essential for their effective implemen-
tation in continuous physiological monitoring.

Current research on Al-based BP estimation models
encompasses diverse methodological paradigms, each con-
tributing to distinct aspects of accuracy, interpretability,
and adaptability. Broadly, these methods can be catego-
rized into two primary technical routes: physics- or physi-
ology-informed models and machine learning models. Both
approaches leverage observable hemodynamic signals and
derived parameters such as PPG, ECG, pulse wave veloc-
ity (PWYV), and pulse transit time (PTT) to estimate BP.
However, these surrogate parameters do not directly reflect
absolute BP values, necessitating calibration to establish a
reliable mapping between the measured parameters and BP
[69]. Mathematically, the cuffless BP estimation problem
can be formulated as:

BP = f,(x,®) (H

© The authors

where x denotes the input vector derived from physiological
measurements, © represents subject-specific physiological
parameters, fj is the mapping function parameterized by 6,
the BP includes both beat-to-beat BP values (e.g., SBP and
DBP) and the continuous BP waveform, reflecting dynamic
hemodynamic changes over time. In the following, we will
introduce the state-of-the-art BP methods, and the details of
corresponding calibration strategies are referred to Note S1.

3.1 Physics or Physiology Informed Network

Physics- or physiology-informed network (PPIN) incorpo-
rates cardiovascular and hemodynamic principles to model
the relationship between physiological signals and BP. These
models define the BP estimation mechanism through math-
ematical and biophysical equations rooted in domain knowl-
edge. In this context, f, is a predefined function derived from
hemodynamic principles or physics laws; 0 represents uni-
versal constants (e.g., blood density, geometric ratios, or
fluid constants [70]) that are assumed to be invariant across
individuals. In contrast, @ represents subject-specific cali-
bration parameters (e.g., baseline SBP, and DBP,), refer-
ence PTT,, and vascular elasticity coefficients [71, 72]).
Unlike purely black-box AI methods, PPINSs offer interpret-
able, knowledge-driven insights. The foundation of PPINs
in blood pressure estimation is related to existing analytical
techniques [7, 73], including the arterial BP physiological
regulation, the arterial wall mechanics, and the arterial pulse
wave propagation model.

The physiological regulation of arterial BP is influ-
enced by arterial compliance, cardiac output (CO), sys-
temic vascular resistance (SVR), and blood volume,
Fig. 3a-i&ii. According to the Windkessel model, mean
BP (MBP)=CO X SVR [74]. While CO is measurable,
SVR is not, complicating BP modeling. Multi-wavelength
pulse transit time (MWPTT [75]) and cardiovascular cou-
pling models with heart rate and systolic time interval
[76] improve BP estimation accuracy by correlating these
parameters to SVR. Typically, these related parameters are
determined by physiological signals like ECG and PPG
[77], Fig. 3a-iii. In addition, factors such as vascular resist-
ance, the renin—angiotensin—aldosterone system [78], arte-
rial diameter, skin temperature [79], and blood viscosity
[80] influence SVR, requiring further quantitative research.
Besides, a more complicated cardiovascular hybrid mod-
eling was developed by Shi et al. [81] to directly reconstruct

https://doi.org/10.1007/s40820-025-02003-9
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arterial BP waveforms from PPG signals. In practice, the
Winkessel model estimates systemic arterial compliance and
total peripheral resistance from pulse pressure data, com-
monly used in cardiovascular research [74]. It uses calibrated
arterial pressure waveforms, suitable for real-time monitor-
ing. However, it assumes a lumped parameter system, limit-
ing accuracy for localized pressure dynamics and complex
vascular geometries, and requires precise calibration.
Arterial BP can also be estimated from arterial wall
mechanics, i.e., arterial elasticity or distensibility, using
local PWV or diameter variation [82]. The Hughes equation
[83] provides an empirical arterial elasticity-BP link, while
the distension-based BP model proposes an exponential rela-
tionship, unproven in microcirculation. Flexible ultrasound
[34] enables direct vessel diameter measurement (Fig. 3b-i)

that posits an exponential relationship between BP and arte-
. . 20 .
rial cross-sectional area: P(t) = Pdea( Ad ), where o is the

vessel rigidity coefficient. However, « may vary with daily
activities or physiological changes, posing challenges for
long-term tracking accuracy without frequent recalibration.
Alternatively, resonance sonomanometry [84] (Fig. 3b-ii)
offers a calibration-free approach, capturing audio-induced
arterial resonance. However, its application requires accurate
arterial geometry measurement and has limited validation.
These models leverage arterial wall biomechanics (e.g., elas-
ticity, stiffness) to estimate BP via vessel deformation and
stress—strain analysis. They are suited for detailed arterial
property analysis, such as age-related vascular stiffening or
hypertension-induced remodeling studies, relying on imag-
ing modalities (e.g., ultrasound, MRI). While demanding
high computational resources and expertise, they are lim-
ited by the need for high-resolution imaging and patient-
specific data and are sensitive to assumptions about arterial
properties.

Arterial pulse wave propagation models are well-known
and fundamental to cuffless BP estimation, particularly those
using PTT, PAT, or PWV (Fig. 3c). Classical models like
Moens—Korteweg and Bramwell-Hill equations [70, 71],
which link PWV with BP, are limited by idealized thin shell
assumptions [85]. Ma et al. [83] introduced an analytical
alternative based on the Fung hyperelastic model (Fig. 3c-
i), expressing BP as P = aPWV? + B, avoiding reliance on
empirical assumptions, though requiring further validation.
Recent studies have improved PTT measurement using sig-
nals such as ballistocardiography (BCG) [86], impedance

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

cardiography (ICG) [87], seismocardiography (SCG), pho-
nocardiography (PCG) [88], and multi-wavelength photo-
plethysmography (MWPPG, Fig. 3c-ii) [75, 89]. Modern
extensions incorporate multimodal signal features to increase
robustness [72, 90, 91]. Xiang et al. [79, 92] proposed multi-
modal physiological models integrating temperature, PPG,
ECG, and IPG. These methods are suited to non-invasive
BP estimation in clinical and wearable settings, especially
for PTT or PWYV techniques. It uses sensors to capture pulse
wave signals (e.g., photoplethysmography, ECG) at multi-
ple arterial locations. While adaptable for continuous moni-
toring, it needs robust signal processing to mitigate noise.
Accuracy relies on precise transit time and distance meas-
urements, which can be compromised by motion artifacts or
anatomical differences. Furthermore, it may face challenges
with complex wave reflections in impaired arteries.

In contrast to previous pulse analysis techniques, the vol-
ume clamp method, also known as the Penaz method [93,
94] (see Fig. 3c-iii), employs advanced vascular control
strategies for fingertip pulse monitoring. This approach uses
a high-precision controller to apply targeted pressure, main-
taining constant vessel volume at the monitoring site to cap-
ture an optimal PPG signal. However, the method requires
expensive, high-precision controllers and small cuffs to
ensure precise pressure regulation and intimate contact with
the finger. Additionally, it relies on initial calibration using
an oscillometric method to ensure accuracy.

Recently, physics-informed neural networks (PINNSs)
embed physical laws such as continuity equations and non-
linear partial differential equations (PDEs) into the neu-
ral network’s training process were developed [95-100],
enabling models to learn from data while simultaneously
respecting known physiological principles. Originally
demonstrated in domains such as fluid mechanics [95] and
power systems [96], PINNSs are increasingly being applied
to cardiovascular modeling. Sel et al. [97] employed
a PINN architecture combining a two-layer CNN with
bioimpedance signals, incorporating impedance-derived
hemodynamic features (e.g., pulse wave velocity, arte-
rial volume) into the model, reducing the requirement for
ground-truth training data by a factor of ~ 15. Building
upon this, a physics-informed temporal networks (PITN)
with temporal blocks and adversarial contrastive learn-
ing [98], a DeepONet constrained by the Navier—Stokes
equation with time-periodic conditions and Windkessel-
type boundary conditions [99], and meta-learning with
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physics-driven modeling [100], were developed, respec-
tively, to mitigate the interpretation and accuracy of the
Al-based BP estimation. These examples illustrate the
diversity of physical priors that can be embedded within
PINNs. Some models enforce relatively simple hemody-
namic relations (e.g., continuity of blood flow or Windkes-
sel-type pressure—flow coupling), while others incorporate
more complex formulations such as Navier—Stokes fluid

© The authors

dynamics or pulse wave propagation. Given the complex-
ity of blood pressure regulation, it is imperative to add
physiologically informed constraints. Since no single
PINN formulation can comprehensively encapsulate the
full regulatory spectrum, existing approaches prioritize
core equations that are both mechanistically grounded and
generalizable across individuals. Thanks to PDEs detailed
physiological process, these methods are best suited for

https://doi.org/10.1007/s40820-025-02003-9
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advanced research or precision medicine, where complex,
patient-specific blood pressure dynamics are modeled
using sparse or noisy data while enhancing interpretabil-
ity [97]. The deployment of PINN requires significant
computational resources, large datasets for training, and
expertise in machine learning and hemodynamics. It is
typically implemented in research-grade systems rather
than real-time clinical settings. Most importantly, PINNs
also depend on the quality of input data and may overfit if
physical constraints are not well-defined [101].

A comparative analysis of their advantages and trade-
offs would enhance its utility for guiding model selection
and implementations, summarized in Table S1.

3.2 Machine Learning Model

Machine learning (ML)-based models have contributed
significantly to the early development of cuffless BP esti-
mation by capturing complex, nonlinear relationships
between physiological signals and BP values without rely-
ing on explicit physiological equations. Figure 4 illustrates
the flowchart of the process. In this context, fy is a train-
able function that maps inputs to BP estimations, 8 denotes
model hyperparameters (e.g., layer numbers, neurons
count, and activation functions), ® represents individual-
specific or context-related variables (e.g., demographic
attributes [103—105]). Through joint optimization of f, and
@, ML models enhance both adaptability and accuracy
across heterogeneous populations.

Traditional ML methods typically utilize handcrafted fea-
tures extracted from signals such as bioimpedance, PPG, or
ECG, followed by regression-based models to estimate BP.
Representative models include linear regression (LR), multi-
instance regression, support vector machines (SVM), ridge
regression, random forests (RF), AdaBoost, and artificial
neural networks (ANN) [106—-108]. While computationally
efficient and interpretable, their performance is often limited
by feature quality and poor generalizability across subjects
and conditions, though they remain useful in data scarcerios.

Deep learning (DL) methods eliminate the need for
manual feature engineering by automatically learning
spatiotemporal representations from raw physiological
signals. CNNs and their variants [109] such as AlexNet
[110], MobileNet, EfficientNet, and ResNet capture spatial
dependencies and hierarchical features from physiological
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signals, while Recurrent Neural Networks (RNNs) [111] and
their advanced forms including Long Short-Term Memory
(LSTM) [112] and Gated Recurrent Units (GRU) [113], are
effective in modeling the temporal dependencies of BP-
related signals. Hybrid architectures, such as CNN-LSTM
[114], CNN-GRU, CNN/RNN-attention [115-117], and
Transformer-based models [13, 118], combine the strengths
of spatial feature extraction and sequential learning, enhanc-
ing model robustness. Temporal Convolutional Networks
(TCNs) [119] further improve long-range temporal learn-
ing without the need for recurrent connections, making them
well-suited for real-time BP monitoring on edge devices.

The emergence of foundation models has introduced a
paradigm shift in Al, with growing potential in physiologi-
cal signal analysis and cuffless BP estimation [12, 120,
121]. These large-scale models leverage massive pretrain-
ing data and self-supervised learning to capture generaliz-
able representations across tasks and individuals. PaPaGei
[121], the first open-source foundation model for PPG signal
analysis, was pre-trained on 57,000 h of data from three
public dataset. Its variants, PaPaGei-P and PaPaGei-S, tar-
get intra-subject and morphology-based consistency, with
PaPaGei-S showing strong performance on cardiovascular
tasks including blood pressure, hypertension, and heart
rate estimation. SiamQuality [120] uses CNN-based self-
supervised architecture to learn quality-invariant represen-
tations from over 36 million ICU signal pairs. By pairing
high- and low-quality signals, it demonstrates robustness to
noise and outperforms conventional baselines on BP estima-
tion and atrial fibrillation detection. Liu et al. [12] explored
instruction-tuned Large Language Models (LLMs) for cuf-
fless BP estimation, using ECG and PPG-derived features
with domain-specific prompts. Fine-tuned LLMs outper-
formed task-specific baselines with an estimation error of
0.00+9.25 mmHg for SBP and 1.29 +6.37 mmHg for DBP.
While foundation models offer notable generalization and
adaptability, they still lag behind task-specific models in BP
estimation accuracy and impose substantial computational
demands.

Table 1 provides a comparative summary of representa-
tive studies on BP estimation using PPIN-, ML-, and DL-
based methods, detailing input signal types, algorithmic
approaches, number of clinically recruited subjects, BP esti-
mation errors, and calibration strategies employed, compen-
sating recent works in standardized benchmarks [122, 123].
These efforts report statistically grounded, cross-dataset
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results and enable fairer, repeatable comparisons. Neverthe-
less, the coverage remains incomplete, particularly lacking
representativeness among older adults, hypertensive popula-
tions, diverse skin tones, and different types of devices. And
physics-informed models additionally require standardized
evaluations of constraint validity and failure modes. Addi-
tional model-level limitations are discussed in Sect. 4.3.

4 Challenges and Solutions of BP Deployment
in Resource-Limited Settings

The deployment of Al-enhanced BP monitoring in resource-
limited settings introduces multifaceted challenges that
extend beyond algorithmic accuracy. Limitations in com-
putational hardware, power supply, data availability, and
healthcare infrastructure demand a holistic rethinking of

i W

system architectures and deployment paradigms. To achieve
clinically viable, scalable, and accessible implementation, it
is essential to integrate model efficiency with hardware fea-
sibility and real-world usability. This section systematically
reviews representative computing architectures, resource-
aware optimization strategies and analyzes persistent barri-
ers and emerging solutions shaping the field.

4.1 Resource-Aware Computing Architectures

Deployment of AI models under resource constraints
requires computing architectures that align model complex-
ity with hardware capabilities [124, 125]. Table 2 summa-
rizes representative academic efforts in deploying Al-based
BP estimation, detailing input modalities, optimization
techniques, hardware platforms, and performance metrics

|-==| |

— — — —

Feature Extraction & Learning

Ve e e = . . \ 7 - - - =
| VPG | | | Handerafted \ Machine Learning | \
| | features | Regression SVM Random Forests ANN |

I A | —+—— 119 -9.9:
| ABP | i, g . MBP |
| AR - ¥ ' ) a " oep |

[ A, [ ol |
| ‘/\/\ | R ' I

(SEEAN ' ] | ) |
| apG L Sy R A e e e e e e e e e - '

| 24h dynamic BP
| I - - - - - - = - - - = = - - - — = = = - = = = = = s |
| |/ Deep Learning \ | /\/‘\/\ |
-
| - | | CNN Conv ﬂ ransformier e naanas \ /RNN Input \ l : |
| In[‘)lll ,.? : ) \“ |
| :I B e e o o o ® :
I i E e @ - @ ;
- o | | . 1 |
| PPG | v | BP waveform |
| I
| ! D —13 | |
£ = it |
I | | y | |
TAG o @ ® @ |
| | | Pool | |
[ (b e v L |
| | N o e e e e e e e e e o et e 7/ \‘ /7
| BioZ | pom =
Eﬁw: Heart
| (] ‘ . | | (_\ fiealth |
Demographic ‘ . B — | %‘
! information N ¢ P F“;‘z‘:i‘:f“ Semp s I '\) I
| | I g Instruction Tuning I | Pregnancy DIE rders
-Texnoken z
\ I\ I

Intput data ] [

] [ Eetimation ]

Fig. 4 A schematic overview of machine learning-based blood pressure estimation method. Traditional ML methods rely on handcrafted fea-
tures, whereas DL methods enable end-to-end estimation of beat-to-beat BP values, continuous BP waveforms, and 24-h dynamic BP values

from multimodal physiological signals
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(e.g., latency, memory, energy, and clinical accuracy). All
methods in Table 2 were validated in laboratory scenarios
[68], including lab-static (controlled resting), lab—stress
(acute perturbations such as cold pressor, posture/handgrip,
pharmacologic stimuli). In parallel, Table 3 catalogs com-
mercial cuffless BP systems (e.g., Aktiia, Omron Heart-
Guide, Valencell) from peer-reviewed publications, FDA
filings, and manufacturer whitepapers. This consolidated
comparison facilitates cross-method evaluation and informs
practical design decisions under real-world constraints.

Based on Tables 2 and S2, the deployability can be
directly shaped by model-side factors: input configuration
(sampling rate, window length, channels), model architec-
ture (depth, width, parameters), target metrics (accuracy,
latency, robustness) and optimizations; hardware-side con-
straints: on-chip SRAM/Flash, compute throughput, and
accelerator availability and AFE design.

As illustrated in Fig. 5, such deployments are typically
structured into these tiers: on-device, edge, and cloud,
facilitating adaptive distribution of computational tasks
across hardware platforms with differing resource con-
straints [17, 126]. Accordingly, low-complexity models
(e.g., physiology-informed and traditional ML models)
align with an on-device tier where sensing, preprocess-
ing, and inference run locally on MCUs or ultra-low-power
SoCs (e.g., Nordic nRF52840, ESP32-S3, and STM32N6)
for maximal privacy and minimal latency/energy [124,
127]. Mid-complexity models (e.g., compact deep net-
works) align with a device—edge tier where sensing and
light preprocessing remain on the device, while the main
inference runs on nearby NPUs/DSPs (smartphones/gate-
ways), balancing responsiveness, and compute [125].
High complexity (e.g., transformers and foundation mod-
els) align with a device—edge—cloud tier that keeps local
preprocessing and lightweight inference while offloading
heavy inference or training to the cloud, trading connec-
tivity, and latency for scalability [128]. Detailed deploy-
ment factors and the model-hardware selection strategy
are provided in Note S2.

Together, these deployment strategies define a scal-
able design spectrum for BP monitoring from ultra-low-
power real-time inference to cloud-based precision ana-
lytics. Robust deployment in resource-limited settings
requires coordinated optimization across the system stack,
including AFE design, digital processing platforms, and
Al model architecture [127, 129-131]. Representative

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

processor platforms and associated trade-offs are summa-
rized in Table S2, with detailed implementation examples
provided in Note S3.

4.2 Optimization and Deployment Strategies for BP
Estimation

Building upon the computing architectures described above,
effective deployment of Al-driven BP estimation models in
resource-limited settings requires a structured optimization
pipeline that spans both algorithm-level design and graph-
level compilation (Fig. 6). This dual-layer pipeline enables
scalable execution across heterogeneous platforms from
ultra-low-power wearables to edge and cloud infrastructures.

4.2.1 Algorithm-Level Optimization

At the algorithm level, model architecture and parameter
design must account for memory, energy, and latency con-
straints while preserving estimation accuracy. Lightweight
manually designed models [141, 145, 149] (e.g., MobileNet,
SqueezeNet) and hardware-aware Neural Architecture
Search (NAS)[139, 163] methods can generate compact
models that fit on constrained devices. A typical NAS frame-
work comprises three core components [163]: a search space
defining possible architectures and hyperparameters (e.g.,
layer type, kernel size, depth, width); a search algorithm
(e.g., reinforcement learning, evolutionary methods); and a
performance estimator that evaluates candidates using full
training or proxy methods like weight sharing. The models
can be prepared through dynamic graph frameworks (e.g.,
PyTorch, TensorFlow, PaddlePaddle); they are commonly
pretrained on large-scale datasets such as MIMIC-II/III/
IV [140-142, 145, 146, 148, 151] and fine-tuned on edge-
deployable datasets [119, 136]. Signal-level optimization
such as adaptive windowing, downsampling, filtering, and
dimensionality reduction (e.g., PCA) further reduce com-
putational load. This stage defines the foundational neural
architecture and pretrained weights to improve convergence
and generalization. These efforts ensure reliable signal-to-
model mappings as a basis for further optimization.
Compression techniques further reduce model size
and computational cost. These strategies can be applied
synergistically [127, 136] and tailored to target hardware
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Table 3 Overview of the representative commercial cuffless BP systems

Device Input Method SBP errors*  DBP errors* Clearance Calibration References
Aktiia PPG signal PWA 1.3£7.11 —-0.2+546 FDA/CE Monthly cuff [152]
Omron HeartGuide Oscillometric Oscillometry -09+76 -—1.1x6.1 FDA No [153]
Valencell PPG, demographics ML 00+79 04+74 - No [154]
Healthstats Radial pressure Tonometry <5+8 <5+8 FDA Weekly cuff
Sotera Visi Mobile ECG, PPG PAT/PTT —-1.88+6.17 — 1.65+3.62 FDA Initial cuff BP, recali-
brate>24 h
Biobeat BB-613WP  PPG PWTT —-0.1+£36 0+35 FDA Periodic cuff [155]
LiveOne Pressure/tonometry ML 0.0+£6.9 12457 FDA Demographic [156]
NanoWear Sim- PPG, ECG, heart Ensemble ML —2.94+4.82 —0.77+3.75 FDA Initial cuff BP, peri-  [157, 158]
pleSense sound, thoracic odic update
impedance, activity,
demographics
PyrAmes/Boppli Capacitive sensor ML -07+77 14+47 FDA Demographic [159]
array
Biospectal/OptiBP camera PPG ML 1.5+6.7 —-02+4.1 CE Cuff [160]
Samsung Galaxy- PPG PWA —2.05+15.5 -5.58+225 CE Every 28 days cuff [161]
watch
CART-I PPG PWA 1.74+6.69 — 3.24+6.51 Korea MFDS Two-step cuff [162]

(+ periodic)

*Accuracy metric: ME +SD (mmHg)

constraints via automated frameworks such as AdaDeep
[131].

Pruning reduces model complexity by eliminating
redundant weights or structural components (e.g., neu-
rons, channels) [138]. Unstructured pruning (e.g., mag-
nitude-based) yields sparse weight matrices, while struc-
tured pruning targets high-level computational units (e.g.,
neurons, channels, kernels, or entire blocks), yielding a
regular architecture optimized for hardware acceleration
and parallelism [164]. Energy-aware pruning [165] selec-
tively removes components based on energy cost metrics,
enhancing overall power efficiency.

Quantization reduces numerical precision (e.g., FP32 to
INT8) for compatibility with integer-only compute engines
such as MCUs or NPUs [147, 151]. The widely supported
frameworks include TFLite, CMSIS-NN, TensorRT, and
QNNPACK.

Knowledge Distillation (KD) transfers knowledge
from large “teacher” models to smaller “student” models
through various strategies [166]: response-based, where
the student mimics the teacher’s soft outputs; feature-
based, which transfers intermediate representations (e.g.,
hidden states); relation-based, capturing inter-sample or
inter-layer dependencies.

SHANGHAI JIAO TONG UNIVERSITY PRESS

Low-Rank Factorization approximates large weight
matrices with rank-decomposed components, enabling
faster inference and model simplification with minimal
retraining [167]. It is particularly effective when layers
exhibit strong linear dependencies. Common techniques
include canonical polyadic decomposition and tucker
decomposition [168], where convolutional layers were
successfully factorized and fine-tuned to maintain model
performance.

Model Personalization enhances real-world robustness by
adapting models to individual variability [76, 138]. Person-
alized adaptation strategies such as transfer learning, feature
sharing, and parameter-efficient fine-tuning (e.g., Low-Rank
Adaptation (LoRA), QLoRA) were widely used [116, 119,
169]. Continual and incremental learning [ 149, 170] further
support long-term adaptation by updating model parame-
ters in real time, mitigating performance drift without full
retraining. In multi-user scenarios, federated learning ena-
bles decentralized model updates without raw data exchange,
preserving privacy [171]. While not yet widely adopted for
BP estimation, split learning offers promising potential for
ultra-constrained settings by enabling partial computation
offloading to edge servers [172], balancing local adapta-
tion and efficiency. These strategies allow the same model
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Fig. 5 Scalable resource-aware computing architectures for wearable BP monitoring. Three computing paradigms aligned with model complex-

ity and system capabilities: on-device, edge, and cloud
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Fig. 6 End-to-end optimization pipeline for deploying Al-driven BP
estimation on resource-limited devices. The process spans algorithm-
level design, compression and personalization, followed by graph-
level compilation, system integration, and runtime scheduling

backbone to generalize across users while adapting to tem-
poral or population-specific physiological differences.

4.2.2 Graph-Level Compilation Optimization

Once model architecture and parameters are finalized, the
trained models are compiled into static computation graphs

© The authors

(e.g., ONNX, TFLite, PaddlePaddle IR), which are then
lowered into hardware-executable code through compila-
tion toolchains (e.g., TVM, CMSIS-NN, or TensorRT)
[173] with graph- and tensor-level optimizations [130].
Core graph-level optimizations include graph simplification
(e.g., constant folding, operator fusion, layout transforma-
tion), tensor scheduling (e.g., tiling, unrolling, vectorization)
[174], memory planning for buffer reuse and alignment, and
auto-tuning for device-specific kernel scheduling. These
optimizations maximize efficiency across diverse hardware
in BP estimation field, including MCUs, NPUs, and Al
ASICs [140, 144, 150].

Compiled binaries are integrated into firmware stacks
alongside drivers and real-time operating systems (RTOS)
kernels, enabling efficient on-device inference. At runtime,
lightweight execution engines (e.g., TFLite Micro, CMSIS-
NN) manage memory and task scheduling under RTOSs or
bare-metal conditions [175]. Dynamic scheduling techniques
[176] have been introduced to enable dynamic adaptation to
context, improving responsiveness and energy efficiency in
daily use. For instance, dynamic routing selectively activates
sub-networks based on input complexity [126], while early
exit [125] architectures terminate inference once confidence
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thresholds are met. Intermittent scheduling enables peri-
odic or event-driven inference aligned with physiological
rhythms[146, 150]. In addition to purely on-device execu-
tion, hybrid and offload scheduling schemes [17, 125] can
alleviate local computational burdens by distributing infer-
ence across edge servers or the cloud. In such designs, some
researches [128, 137, 177] conduct lightweight signal pre-
processing on-device, while offloaded heavier computation
tasks.

4.3 Infrastructure, Model, and Deployment Barriers

Al-driven wearable BP monitoring in resource-limited set-
tings faces complex and interdependent barriers spanning
infrastructure, model design, practical deployment, and
ethical considerations, which limit clinical translation and
real-world reliability.

Infrastructure barriers are foundational. Low-cost,
energy-constrained wearable devices, and basic smart-
phones severely limit computational capacity, memory, and
data storage [16, 178]. These limitations hinder real-time
inference, long-term logging, and scalable data integration.
Unreliable power supply and intermittent network connec-
tivity further complicate deployment, making edge-only, or
edge-first Al processing essential [179]. Moreover, the lack
of standardized data ecosystems and interoperability across
heterogeneous devices further hinders scalable and coordi-
nated BP monitoring efforts [14].

Model-level barriers present a critical bottleneck. First,
physiological non-specificity remains a foundational barrier:
Hemodynamic features extracted from non-invasive signals
(e.g., PPG, mechano-electric) are modulated by vasomotor
tone, autonomic state, contact pressure, motion, temperature,
and device/subject identifiers, leading to feature shifts that
are weakly or non-uniquely associated with BP [11]. Sec-
ond, the burden of calibration and drift is substantial: Many
systems require frequent recalibration, and calibration-heavy
designs often perform similarly to strong non-physiological
baselines (e.g., calibration BP and time). Third, evaluation
and implementation flaws, over-optimistic results due to data
leakage, hyperparameter tuning on test sets, calibration leak-
age, and selective metrics. Fourth, subgroup fairness and
robustness, small, cohort-biased datasets, and weak gener-
alization protocols limit robustness across real-world condi-
tions such as ambulatory, exercise, and thermal variability
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[6]. Performance disparities across subgroups (e.g., elderly,
hypertensive, different skin tones, or arterial stiffness levels)
remain under-explored, posing fairness concerns. Lastly, the
absence of prospective, real-time clinical trials prevents reg-
ulatory adoption and obscures the actual benefit of cuffless
BP systems in long-term management. Early solutions using
hardware-aware neural architecture search, model quanti-
zation, federated learning, and lightweight personalization
show promise [178].

Deployment barriers include energy constraints, mainte-
nance challenges, user trust, and the absence of validation
in daily life. In LMICs deployment scenarios, power and
hardware constraints must be explicitly aligned with report-
ing requirements. Clinical applications range from beat-to-
beat estimation in critical care, to intermittent 30-60-min
monitoring in ambulatory management, to daily or weekly
tracking for lifestyle support. These scenarios entail dis-
tinct trade-offs in sensing complexity, model latency, and
energy consumption. Table S3 contextualizes these trade-
offs, linking use cases to deployment constraints and guid-
ing resource-aware system design. Continuous health moni-
toring imposes substantial energy demands, while reliable
charging remains impractical in many resource-limited set-
tings due to unstable electricity infrastructure [14]. Devices
must be sturdy, intuitive, and require minimal maintenance,
as high device loss and limited local support can critically
limit adoption [11]. Acceptance studies have highlighted
user concerns around data accuracy, trust, and loss of human
interaction, emphasizing the need for transparency and
human—AI collaboration [180].

Beyond technical constraints, ethical and regulatory bar-
riers remain. Insufficient transparency, algorithmic bias,
data privacy issues, and lack of governance infrastructure
continue to limit trust and equitable access in many regions
[6, 180]. Integrative deployment strategies combining edge
inference with human-in-the-loop oversight and community
health can alleviate trust barriers and enhance usability [10].

Despite these challenges, encouraging precedents from
adjacent domains demonstrate that meaningful clinical
impact is possible through thoughtful system-level design.
Wearable systems have shown real-world utility in fetal and
maternal monitoring, arrhythmia detection, and hearing
screening when paired with frugal hardware and edge-opti-
mized Al [15, 16, 179]. For instance, Ryu et al. developed a
wireless network of soft, flexible sensors capable of compre-
hensive maternal and fetal monitoring including HR, uterine
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activity, and fetal movements across both high- and low-
resource settings [15]. Their system was validated in clinical
environments ranging from tertiary hospitals to rural clinics,
demonstrating the feasibility of low-cost, wearable-based
monitoring even in infrastructure-limited environments.
Similarly, Chan et al. presented an off-the-shelf otoacoustic
emission probe using low-cost hardware and Al-based sig-
nal interpretation to enable newborn hearing screening in
LMICs [16]. This study illustrates how combining frugal
hardware design with intelligent signal processing can make
clinical-quality screening accessible at scale. Recent work
demonstrated that AI models optimized for consumer smart-
watches can achieve clinical-grade performance in detect-
ing critical physiological events such as loss of pulse, with
fully edge-based, energy-efficient inference [179]. These
successes may offer valuable design patterns translatable to
cuffless BP monitoring. At the infrastructure level, low-cost
sensing and edge Al reduce reliance on cloud connectivity
and power-hungry processing.

5 Evaluation and Validation
5.1 Model Evaluation Metrics

Accurate evaluation is critical to ensure that Al-based cuf-
fless BP estimation systems are clinically valid and prac-
tically deployable [40]. Researchers usually use a variety
of metrics to evaluate model performance against reference
methods (e.g., intra-arterial or auscultatory cuff-based meas-
urements), including mean error (ME), standard deviation of
error (SDE), mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE)
[181] for waveform-based methods. Tracking metrics such
as time-series RMSE or mean tracking error are employed
to assess a model’s responsiveness to BP fluctuations in
dynamic monitoring scenarios. Correlation coefficient (e.g.,
Pearson’s r) and Bland—Altman plots evaluate trend align-
ment and agreement with reference values.

In addition, recent studies have advocated more rigorous
and reproducible practices that directly probe physiologi-
cal discriminability, calibration dependence, and real-world
robustness: (1) Leakage-free evaluation, using subject-wise
splits to prevent information leakage from the same indi-
vidual. (2) Baseline comparisons against non-physiologi-
cal models (e.g., models rely solely on non-measurement
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features such as calibration BP, population-average BP,
demographics, or time of day) [12, 182] to assess physiolog-
ical signal utility. In the Microsoft Research Aurora Project
[67], all models based on waveform features produced errors
comparable to those of a baseline model using only calibra-
tion BP and time. In parallel, include cuff-anchored base-
lines (e.g., periodic upper-arm cuff recalibration) to assess
any added benefit beyond calibration. (3) Feature attribution
(e.g., explainable methods such as SHAP [65]) and abla-
tion studies are recommended to quantify the contribution
of input features to the final estimations. (4) BP changes
(ABP) tracking under induced BP changes (e.g., physical
exercise, vasomotor provocation tasks such as cold pres-
sor tests, mental stress tasks, or pharmacological interven-
tions) and over long time to assess dynamic adaptability. (5)
Individual-level evaluation, identifying error distributions
across subgroups (e.g., elderly, hypertensive, different skin
tones/arterial stiffness), addressing fairness and robustness.
(6) Lab-to-ambulatory with concurrent logging of motion,
skin temperature, contact pressure, posture, and other con-
textual variables, to assess degradation in non-ideal settings.
(7) Reporting and metrics, explicitly document calibration
burden and schedules, and release protocols/device settings/
code where possible to enable reproducibility.

5.2 On-Device Evaluation

In addition to model robustness and fairness evaluations,
on-device evaluation focuses on assessing the system-level
performance and robustness of BP estimation models when
deployed on resource-limited wearable platforms. Key sys-
tem-level metrics [17, 127, 136, 139, 145] include model
size, inference latency (ms), floating point of operations
(FLOPs), memory footprint (KB), energy consumption
(mlJ), and clinical accuracy which are assessed to ensure
that the system meets real-world requirements under diverse
operating conditions. Comparisons between edge and server
inference typically show tolerable accuracy degradation
(~8%—10%), confirming the feasibility of wearable BP esti-
mation. Beyond these core metrics, robust on-device evalua-
tion should further encompass assessments of system robust-
ness and long-term usability. This includes: (1) Robustness
to motion artifacts and environmental noise [7], by testing
model performance under controlled motion scenarios
(e.g., walking, wrist rotation) and across varying ambient

https://doi.org/10.1007/s40820-025-02003-9



Nano-Micro Lett. (2026) 18:164

Page 19 0of 29 164

Table 4 Summary of BP validation standards

Standard Sample size Reference method Acceptance criteria

AAMI/ESH/ISO >85 Sphygmomanometer/ invasive arterial line ME< +5 mmHg, SD <8 mmHg

BHS 85 Sphygmomanometer Grade A: CPs>60%, CP,,>85%, CP\5s>95%
Grade B: CP5>50%, CP,,>75%, CP;5s>90%
Grade C: CP5>40%, CP,,>65%, CP,5>85%
Grade D: Worth than Grade C

IEEE 1708-2014/2019 >85 Sphygmomanometer/ invasive arterial line Phase 1: MAD <7 mmHg
Phase 2: Grade A: MAD <5 mmHg
Grade B: 5 <MAD <6 mmHg
Grade C: 6 <MAD <7 mmHg
Grade D: MAD >7 mmHg

ESH 2023 85-175 Auscultatory/24-h oscillometric ME < +5 mmHg, SD <8 mmHg

I1SO 85 Invasive arterial line IMEI<6 mmHg, SD <10 mmHg

conditions (light, temperature, humidity), using both syn-
thetic and real-world datasets. (2) Battery impact analysis
[183], quantifying the additional power consumption intro-
duced by BP estimation tasks, and evaluating its effect on
overall device battery life under typical usage patterns. 3)
OTA update robustness, validating the integrity and consist-
ency of model performance following over-the-air updates,
ensuring clinical reliability is maintained post-update.

Finally, the lack of standardized benchmark datasets
and testing protocols for on-device BP estimation poses a
challenge to cross-study comparisons. Establishing such
benchmarks—including standardized motion protocols,
battery stress tests, and runtime performance evaluation
guidelines—would greatly enhance the comparability of
published results and accelerate progress toward clinically
robust wearable BP monitoring systems.

5.3 Standard Requirements

To enable clinical translation, cuffless BP estimation meth-
ods must align with internationally recognized standards,
many of which were initially developed for cuff-based sys-
tems but are now widely referenced for wearable and cuf-
fless technologies. These standards define acceptable error
thresholds, data distribution requirements, validation pro-
tocols, and reference measurement methods. The AAMI/
ESH/ISO standard [184] mandates static testing with normal
data distribution and fixed thresholds, along with a demo-
graphically diverse (e.g., age, gender, arm circumference)
subject pool. The British Hypertension Society (BHS) stand-
ard [185] provides a grading system (A-D) based on the
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cumulative percentage of errors within 5, 10, and 15 mmHg
(CP5, CP10, CP15), requiring independent accuracy for both
SBP and DBP. The IEEE 1708-2014/2019 standards were
the first tailored for ‘cuffless wearable BP devices’ [42, 46],
which introduce the use of mean absolute difference (MAD)
and mean absolute percentage difference (MAPD) as key
metrics and emphasized dynamic testing (e.g., postural and
motion). The ISO 81060-3:2022 standard, targeting continu-
ous automated sphygmomanometers, adopts a relaxed crite-
rion with simplified requirements [186]. More recently, the
European Society of Hypertension (ESH) [103] released an
application-driven protocol specifically for cuffless BP sys-
tems, incorporating six evaluation scenarios and advanced
statistical modeling (e.g., mixture of multivariate normal
distributions). These standards provide essential benchmarks
for assessing model performance, guiding validation efforts,
and determining clinical acceptability. The specific metrics
and performance thresholds summarized in Table 4 and the
grading framework [92] illustrated in Fig. 7 offer a com-
prehensive overview of the prevailing regulatory landscape.

6 Summary

The integration of non-invasive sensing, artificial intel-
ligence, and resource-efficient deployment offers trans-
formative potential for cardiovascular health monitoring,
particularly in blood pressure management in low- and
middle-income countries. Wearable Al-driven BP moni-
toring systems show promise for hypertension screening
and long-term care, though current cuffless wearables are
best suited as trend-tracking companions. Key challenges
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Fig. 7 Accuracy grading criteria for different standards. Adapted with permission from [92], Copyright IEEE, 2025. The x-axis represents the
standard deviation of error, and the y-axis denotes the mean error. The shaded regions indicate the accuracy grading criteria defined by the IEEE
1708-2014/2019 standard. The solid line corresponds to the clinical thresholds specified by the AAMI/ESH/ISO standard, while the dashed lines

represent the grading levels defined by the BHS protocol

include developing high-fidelity, low-cost, and energy-
efficient sensors, lightweight, low-power models that can
accurately distinguish BP changes from confounding fac-
tors, and addressing the issue of frequent calibration. Fur-
thermore, leveraging regional resources to enable scalable
deployment of BP models is crucial. Data scarcity, lack of
standardized datasets, and the need for robust evaluation
batteries also impede progress. Clinical deployment faces
challenges related to regulation, ethics, and trust, necessi-
tating standardized validation frameworks and independent
assessments. Future solutions should be designed for global
impact, prioritizing frugality, resilience, interpretability, and
clinical meaningfulness to democratize cardiovascular diag-
nostics and support accessible care.
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