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HIGHLIGHTS

•	 A comprehensive review of recent advances in stretchable electronic conductors including the material categories, structure designs, 
fabrication techniques, and applications.

•	 A novel emphasis on the characteristics, performance enhancement strategies, and application requirements of stretchable electronic 
conductors.

•	 An exhaustive analysis of the existing challenges and future prospects for stretchable electronic conductors.

ABSTRACT  Stretchable electronics have been recognized as intriguing next-generation 
electronics that possess huge market value, and stretchable electronic conductors (SECs) are 
essential for stretchable electronics, which not only can serve as critical functional components 
but also are the indispensable electronic connections bridging various electronic components 
within stretchable electronic systems. Herein, we offer a comprehensive review of recent 
progress in SECs including the material categories, structure designs, fabrication techniques, 
and applications. The characteristics, performance enhancement strategies, and application 
requirements are emphasized. Based on the recent advances, the existing challenges and future 
prospects are outlined and discussed. 
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SECs	� Stretchable electronic conductors
Cu	� Copper
Au	� Gold
Ag	� Silver
PDMS	� Polydimethylsiloxane
NWs	� Nanowires
EGaIn	� Eutectic gallium indium
SHL-LIG	� Super-hydrophilic laser-induced graphene

PI	� Polyimide
H	� Hydrogen
LM	� Liquid metal
InOG	� Indium/oxide film/gallium
LMPs	� Liquid metal particles
In2O3	� Indium oxide
1D	� One-dimensional
2D	� Two-dimensional
3D	� Three-dimensional
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CNTs	� Carbon nanotubes
BBE	� Bottle brush elastomer
SWCNTs	� Single-walled carbon nanotubes
CNF	� Carbon nanofiber
PAAm	� Polyacrylamide
AAm	� Acrylamide
PANI	� Polyaniline
PVA	� Polyvinyl alcohol
PL-MXene	� Polymer-laminated-MXene
PEDOT:PSS	� Poly (3,4-vinyldioxythiophene): poly 

(styrene sulfonic acid)
PEO	� Polyethylene oxide
DMSO	� Dimethyl sulfoxide
PES	� Polyether sulfonate
GEM	� General effective medium
WPU	� Waterborne polyurethane
TPU	� Thermoplastic polyurethane
In	� Indium
Ga	� Gallium
STNNE	� Stretchable transparent nanofiber network 

electrode
rGO	� Reduced graphene oxide
AgNPs	� Silver nanoparticles
SEBS	� Poly(styrene ethylene butylene styrene)
BC	� Bacterial cellulose
Ni	� Nickel
CVD	� Chemical vapor deposition
LM-Eke	� Liquid metal-coated elastic kirigami 

electrode
MM	� Mechanical metamaterial
MWCNTs	� Multiwalled carbon nanotubes
DEG 	� Diethylene glycol
CHCl3	� Chloroform
ELD	� Electroless deposition
PVP	� Polyvinylpyrrolidone
MGG	� Multi-layer graphene/graphene vortex
PMMA	� Polymethyl methacrylate
PENG	� Piezoelectric nanogenerator 
TENG	� Triboelectric nanogenerator 
PN 	� Percolation network
SIBS	� Poly(styrene-isobutylene-styrene)
PC	� Polycarbonate
APBC	� (4-Aminotetrahydropyran)2PbBr2Cl2
P(VDF-TrFE)	� Poly(vinylidene fluoride-trifluoroethylene)
SOSCs	� Stretchable organic solar cells
D18	� Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-

3-fluoro)thiophen-2-yl)-benzo[1,2-
b:4,5-b’]dithiophene))-alt-5,5’-(5,8-
bis(4-(2-butyloctyl)thiophen-2-yl)
dithieno[3’,2’:3,4;2”,3”:5,6]benzo [1,2-c]
[1,2,5]thiadiazole)]

PEHDT	� Poly[bis(2-hexyldecyl) 5-(4,8-bis(5-
(2-ethylhexyl)-4-fluorothiophen-
2-yl)-6-methylbenzo[1,2-b:4,5-b′]
dithiophen-2-yl)-5″-methyl-[2,2′:5′,2″-
terthiophene]-3,3″-dicarboxylate]

v-AuNWs	� Vertically aligned gold nanowires
CY	� Carbon yarn
sAPU	� Ant-nest amphiphilic polyurethane
ISSC	� Integrated stretchable supercapacitor
ACNTs	� Acid-treated carbon nanotubes
FCNTs	� Fluorinated carbon nanotubes
PVC	� Polyvinyl chloride
PAN	� Polyacrylonitrile

1  Introduction

Traditional rigid electronics are uncapable of conform-
ing to curved or deformable surfaces which are commonly 
seen in daily life, and stretchable electronics emerge to 
address such challenges, whose stretchability and shape 
adaption are mainly realized through stretchable struc-
tural designs and intrinsically stretchable materials. 
Stretchable electronics have been given substantial atten-
tion and shown tremendous potential to revolutionize 
myriad areas such as medical care, robotics, and sports 
[1–8]. As conductive materials that can maintain reliable 
electrical properties despite substantial mechanical defor-
mation, stretchable conductors are critical base materi-
als for stretchable electronics, which allow for seamless 
integration with various irregular surfaces and excellent 
adaptability to operational environments [9–12]. The 
conductive mechanisms in stretchable conductors can be 
divided into two categories: ionic conduction [13–15] 
and electronic conduction, with electronic conduction 
being more prevalent. Electronic conductivity is not only 
fundamental for the functionality of electronics but also 
directly influences their working performance, stability, 
and potential applications. Therefore, the research and 
development of stretchable electronic conductors (SECs) 
is of paramount importance [16–20]. SECs guarantee the 
realization of both basic functions and the integration 
of multiple functionalities within stretchable electronic 
systems. Beyond serving as the electrodes and conduc-
tive interconnecting components, they can offer sensitive 
sensing properties, adjustable thermal management, and 
effective electromagnetic interference shielding [21–27]. 
Particularly, the intrinsic electrical stability of SECs is 
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crucial for ensuring normal operation and extending the 
service life of stretchable electronic devices. Transpar-
ent SECs offer visibility, which are in critical demand in 
applications such as displays and wearables [28–34]. The 
significance of SECs as one core material of stretchable 
electronics is underscored by the substantial technologi-
cal innovation and increasing market value observed in 
recent years, and the breakthroughs in various fields, such 
as biomedicine, human–computer interaction, and energy 
management, not only deepen our basic understanding of 
SECs but also inject new momentum into the industri-
alization of stretchable electronic technology. SECs have 
been undergoing burgeoning development and inevitably 
facing challenges in practical applications. Hence, a com-
prehensive review of the research on SECs is both timely 
and critical [35–42].

In this review, we will summarize the latest advances in 
the field of SECs, with an emphasis on their characteris-
tics, performance enhancement strategies, and application 
requirements. As shown in the overview in Fig. 1, we will 
begin by providing an exhaustive review of commonly uti-
lized types of materials for SECs, summarize the charac-
teristics and advantages/disadvantages of different types of 
materials, and discuss plausible strategies for performance 
enhancement. Subsequently, we will overview and discuss 
the effect of structural design on the properties of SECs 
and analyze the reasons why specific structures lead to high 
performance. Following this, we will review the fabrication 
techniques employed for different types of SECs and sum-
marize their pros and cons. Then, we will give a detailed 
review of the functions and requirements of SECs applied 
in diverse fields. Finally, we will outline each category of 
SECs, discuss the existing challenges, and offer a perspec-
tive on the future development prospects and application 
potentials of SECs.

2 � Classification of SECs

There have been a couple of classifications for SECs, such 
as those based on different structures and matrix materials. 
In this review, we categorize SECs based on their primary 
conductive components: metal-based, inorganic nonmetallic 
materials-based, conductive polymer-based, and composite 
materials-based SECs.

2.1 � Metal‑Based SECs

Metal-based SECs can be divided into two types: solid 
metal-based and liquid metal (LM) -based SECs.

2.1.1 � Solid Metal‑Based SECs

Solid metal materials commonly refer to those metal materi-
als that maintain a solid crystalline structure at room tem-
perature and have high density and mechanical strength. To 
be applied in SECs, these materials are generally first pro-
cessed into various nanostructures, such as ultra-thin metal 
films, metal nanofibers, metal nanogrooves, metal nanowires 
(NWs), metal nanoflakes, and metal nets, and then manufac-
tured into designed shapes and combined with stretchable 
substrates [43–47]. The most commonly applied solid metal 
materials are noble metal nanomaterials like gold (Au) and 
silver (Ag) due to their inherent stability. Other metal nano-
materials, such as copper (Cu) and ferrum (Fe), demonstrate 
higher chemical activity, rendering them more susceptible 
to oxidation and instability. High aspect ratios are critical 
for metal NWs to achieve both high electrical conductiv-
ity and mechanical compliance [48–50]. It is worth noting 
that while noble metal nanomaterials generally exhibit good 
stability, they can still undergo oxidation or other chemical 
reactions under specific environments or conditions, includ-
ing exposure to strong oxidants, high temperatures, and high 
humidity [51–53].

The conductivity of solid metal-based SECs under ten-
sile deformation can be improved through various structural 
designs of solid metal nanomaterials.

(1)	 Deposition of a micro-crack network pattern on a 
thin metal layer [54–57]. For example, inspired by 
the puffer fish, Sun et al. [57] proposed an interlayer 
adjustment strategy by introducing an intermediate 
layer (FeOx) between the polymer substrate and metal 
film to achieve stretchability (Fig. 2a–d). The Ag/FeOx 
film was deposited on a polydimethylsiloxane (PDMS) 
substrate via a two-step deposition process. The surface 
roughness of FeOx can be controlled by adjusting the 
deposition pressure. The strong interfacial adhesion 
between Ag and FeOx layers facilitated the effective 
transfer of the crack mode of FeOx to the metal film, 
enabling crack modulation. This approach resulted in 
a nearly 20-fold increase in the stretchability of the Ag 
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Fig. 1   Overview of the categories, structure designs, fabrication techniques, and applications of SECs. Metal-based SECs. AgNWs: Reproduced with permission 
[177]. Copyright 2023, Wiley‐VCH GmbH. Magnetron sputtering: Reproduced with permission [26]. Copyright 2020, Wiley‐VCH GmbH. Inorganic nonmetallic 
materials-based SECs. CNT and graphene: Reproduced with permission [19]. Copyright 2021, MDPI, Basel, Switzerland. MXene: Reproduced with permission 
[20]. Copyright 2023, Wiley‐VCH GmbH. Vacuum filtration: Reproduced with permission [237]. Copyright 2024, Elsevier Ltd. Conductive polymer-based SECs. 
PEDOT:PSS: Reproduced with permission [252]. Copyright 2019, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 3D Printing: Reproduced with permis-
sion [288]. Copyright 2020, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 1D stretchable structure designs. Spiral: Reproduced with permission [42]. 
Copyright 2020, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Wave: Reproduced with permission [194]. Copyright 2014, Royal Society of Chemistry. 
Kirigami: Reproduced with permission [199]. Copyright 2023, Wiley‐VCH GmbH. 2D stretchable structure designs. 2D buckling: Reproduced with permission 
[205]. Copyright 2022, Elsevier Ltd. 2D snakeskin: Reproduced with permission [209]. Copyright 2020, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 3D 
stretchable structure designs. 3D porous sponge: Reproduced with permission [40]. Copyright 2024, Elsevier B.V. 3D structure: Reproduced with permission [218]. 
Copyright 2023, Springer Nature Limited. 3D percolating network: Reproduced with permission [41]. Copyright 2023, Springer Nature Limited. Applications in 
energy conversion devices. Nanogenerators (tribo-/piezo-/pyro-/thermo- electric): Reproduced with permission [310] [329]. Copyright 2022, Wiley‐VCH GmbH. 
Reproduced with permission [316]. Copyright 2024, Wiley‐VCH GmbH. Solar cell: Reproduced with permission [27]. Copyright 2024, Springer Nature Limited. 
Fuel cell: Reproduced with permission [356]. Copyright 2019, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Applications in energy storage devices. Bat-
tery: Reproduced with permission [367]. Copyright 2024, American Chemical Society. Fiber battery: Reproduced with permission [378]. Copyright 2023, Don-
ghua University, Shanghai, China. Supercapacitor: Reproduced with permission [388]. Copyright 2022, Elsevier B.V. Applications in sensors. Motion detection: 
Reproduced with permission [407]. Copyright 2025, Elsevier Ltd. Tactile sensing: Reproduced with permission [419]. Copyright 2021, Springer Nature Limited. 
Chemical detection: Reproduced with permission [422]. Copyright 2022, Elsevier B.V. Implantable monitor: Reproduced with permission [425]. Copyright 2023, 
Korean Society of Medical and Biological Engineering. Other applications. NFC antenna: Reproduced with permission [440]. Copyright 2023, Elsevier Ltd. Wear-
able heater: Reproduced with permission [439]. Copyright 2023, Elsevier B.V. Electromagnetic interference shielding: Reproduced with permission [29]. Copyright 
2017, American Chemical Society
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film (maximum strain: 295%), while maintaining con-
ductivity over 900 cycles at 40% strain.

(2)	 Construction of hybrid structures combining metal 
nanomaterials with thin metal layers [58–61]. For 
example, Cho et  al. [60] developed a type of SEC 
using metal/Ag NWs/metal hybrid structures on a 
PDMS substrate. Hybrid structures of Ag/AgNWs/Ag 
(ANA) and Cu/AgNWs/Cu electrodes achieved low 
sheet resistances of around 100 mΩ sq−1. The AgNWs 
between the top and bottom metal electrodes improved 
the tensile properties under both single and multi-
cycling strain conditions. The randomly interconnected 
AgNWs generated a new conductive path across cracks 
and wavy structures in the metal electrodes, thereby 
enhancing the conductivity of these SECs under strain. 
Ali et al. [61] prepared an SEC by screen printing Ag/
AgNWs composites on thermoplastic polyurethane 
(TPU) substrates. The SEC features two structural 
designs: straight-line and wavy-line configurations 
(Fig. 2e, f). Under an elongation of 3 mm, the straight-
line and wavy-line structures exhibited resistance 
changes of 238.9% over 100 cycles and 243.6% over 
200 cycles, respectively. The wavy-line configuration, 
with a smaller width-to-radius (w/r) ratio, demonstrated 
superior stretchability and sensitivity (33% resistance 
change per 1% strain), higher than the straight-line con-
figuration (21% resistance change per 1% strain).

(3)	 Creation of a metal network structure. Unlike the ran-
dom arrangement of metal nanowires on flexible sub-
strates, metal networks are generally well arranged, 
which is conducive to large-scale process production 
and results in low initial square resistances (as low as 
0.12 Ω sq−1) [62–66]. For example, Chen et al. [65] 
developed a transparent Cu mesh SEC with good con-
ductivity and multidirectional stretchability (Fig. 2g–i). 
The Cu mesh was initially prepared by template elec-
troplating, followed by encapsulation with PDMS. 
The resulting SEC demonstrated a low sheet resist-
ance of < 0.12 Ω sq−1 and could withstand a maximum 
strain of 160%. The resistance change remained below 
5% under 60% strain. After 1000 cycles of stretching 
and releasing under 10% strain, the Cu mesh remained 
intact with negligible resistance change.

2.1.2 � LM‑Based SECs

LMs, such as eutectic gallium indium (EGaIn) and Galin-
stan, represent a kind of metal materials that exist in a liquid 
phase at or near room temperature, exhibiting characteris-
tics of both fluids and metals [67, 68]. LMs possess high 

electrical conductivity, thermal conductivity, and chemical 
stability [69–72]. Given their inherent fluidity, LMs generally 
require integration with a supporting polymer matrix to form 
a reliable SEC for practical applications, and there have been 
mainly three integration strategies.

(1)	 Injection of LMs into elastomer microchannels

The LM can be sealed in a soft elastomer by injection 
[73–77]. For example, Chen et al. [77] fabricated an SEC 
by injecting EGaIn into a wavy microchannel elastomer 
matrix (Fig. 3a–c). As a first step, the elastomer (Ecoflex) 
was poured into a microfluidic channel mold to solidify. 
A layer of elastomer was then spin coated on its surface. 
Finally, EGaIn was injected into the microchannel using 
a syringe. The fabricated SEC exhibited an increase in 
resistance with applied strain, with a relative resistance 
change (ΔR/R0) of approximately 2 at 100% tensile strain 
(R and R0 are the measured resistances under a certain 
strain and zero strain, respectively). The SEC was applied 
as a microfluidic flexible strain sensor that can withstand 
a strain of up to 320%, with ΔR/R0 versus strain curves 
exhibiting a monotonic increase with minor discrepancy. 
The SEC-based strain sensor shows stable performance (a 
tiny drift of 3.96%) under dynamic loading of 500 cycles 
of stretching/releasing at a peak strain of 100%.

(2)	 Adhesion and patterning of LMs onto elastomer sur-
faces

Various techniques, including 3D printing, molding, 
embossing transfer, and screen printing, have been applied 
to pattern LMs onto diverse elastomer substrates for the 
fabrication of SECs [78–81]. The introduction of metal 
NWs into LM followed by selective laser processing and 
etching can obtain self-supporting LM films, which can 
be applied directly to curved surfaces [82]. However, the 
high surface tension of LMs and their weak interfacial 
bonding with most elastomers still pose key challenges. 
To address these limitations, Wang et al. [81] proposed 
a method of combining LMs with soft elastomers using a 
super-hydrophilic laser-induced graphene (SHL-LIG) pro-
cess (Fig. 3d–f). This involved coating a polyimide (PI) 
film with Cu to navigate LMs into specific patterns. The 
resulting LMs/SHL-LIG was then transferred to an Ecoflex 
substrate to obtain an SEC. This SEC exhibited a low sheet 
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Fig. 2   Solid metal-based SECs. a Photograph of a pufferfish and schematic diagram of the skin structure on its abdomen. b The pufferfish-
inspired stretchable, stretchability-tunable metal films. The upper subfigures show the structure and picture of the fabricated metal films. The 
lower subfigures show the evolution of their crack pattern with an electromechanical performance transition from high sensitivity to high stretch-
ability by the interlayer regulation strategy. c Three kinds of SECs based on metal films characterized by ΔR/R0 vs. strain (the high-sensitiv-
ity sensor, wide-range sensor, and stretchable electrode). d The repeated cycling test of the Ag/FeOx film at a strain of 40% (loading speed: 
0.5 mm s−1). Reproduced with permission [57]. Copyright 2023, Royal Society of Chemistry. e Schematic diagram of a straight-line and wavy-
line configuration for the Ag/AgNWs SEC. f Electromechanical response of the SEC with a straight-line configuration during a cyclic stretching/
releasing test (elongation: 3 mm; frequency: 3 Hz; 100 cycles). Reproduced with permission [61]. Copyright 2018, Elsevier B.V. g The principle 
and parameters of horseshoe-like and sinusoid-like metal mesh transparent SECs. h Variation in resistance vs. applied strain of the SECs based 
on different metal mesh structures. i SECs based on metal mesh structures with different deviation angles (0°, 15°, 30°, and 45°): electrical 
response under stretching/releasing cycles at 30% strain. Reproduced with permission [65]. Copyright 2023, Wiley‐VCH GmbH
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resistance of 3.54 mΩ sq−1 and could extend up to 480%. 
In addition, the resistance of this SEC changed by only 8% 
at 300% tensile strain and demonstrated strong insensitiv-
ity to temperature and pressure changes.

By inkjet printing, the LM acts as the printing ink in the 
preparation of SECs. Since the conductivity is limited by 
the formation of an insulating oxide layer outside the liq-
uid metal particles (LMPs), the LM needs to be doped or 
modified [83–86]. For example, Veerapandian et al. [86] 
introduced hydrogen (H) doping on the surface of the LM 
oxide layer using ultrasonic treatment to enhance both con-
ductivity and deformability. This H-doped LM solution was 
then employed as the ink for nozzle printing to manufacture 
circuit lines on a PDMS substrate. The metallic conductiv-
ity of the prepared printed circuit reached 25,000 S cm−1. 
Under 500% uniaxial stretching, the resistance of the circuit 
increased from 2.4 to 2.9 Ω.

(3)	 Self-assembly of modified LMs into films

The LM-based SECs can also be prepared by forming an 
LM film and then adhering it to an elastomer. To achieve 
spontaneous film formation, the LM needs to be modified 
to overcome the problem of high surface tension through 
techniques including the laser-induced method, thermal 
evaporation method, and solvent treatment method [87, 88].

The laser-induced method induces plasma resonance 
on the local surface of LM by laser irradiation, promotes 
the rupture of the oxide shell on the surface of LMPs, and 
enhances the interface adhesion between the LM and sub-
strate, thus facilitating the spontaneous formation of LM 
films [89, 90]. Cho et al. [90] developed an SEC combining 
LM and AgNWs and regulated the degree of entanglement 
of these two-phase materials through a laser-induced photo-
thermal reaction, enabling high-precision patternization and 
spatial programming of electromechanical properties in a 
single step (Fig. 3g–i). The obtained SEC achieved an elec-
trical conductivity of 8.65 × 105 S m−1, a relative resistance 
change of about 1.27 at 100% tensile strain, and maintained 
stable conductivity over 12,000 cycles at 100% strain.

The thermal evaporation method enhances the interfa-
cial adhesion between the LM and the substrate by ther-
mally vaporizing nanoclusters, such as indium (In)/gal-
lium (Ga) nanoclusters, onto the substrate. Subsequent 

selective formation of an oxide layer in the air allows for 
the creation of a multi-layer LM network [91–93]. For 
example, Han et al. [93] proposed an SEC composed of an 
In/oxide film/Ga (InOG) structure. The InOG was obtained 
by depositing In nanoclusters onto an O2 plasma-treated 
TPU substrate using high-vacuum thermal evaporation. 
The sample was then exposed to air for a few seconds 
to form a thin layer of In oxide (In2O3)/In hydroxide on 
its surface, followed by the deposition of Ga nanoclus-
ters onto the oxide layer via thermal evaporation. In the 
InOG structure, In and Ga were separated by an oxide 
film, which enhances the wettability of Ga, resulting in 
a multi-layer nanocluster network. The resistance of the 
InOG structure was reduced during the stretching process, 
which could be mainly attributed to two factors: 1) the 
increase in the size of the In and Ga nanoclusters leads to 
a decrease in sheet resistance, and 2) the fracturing of the 
interlayer oxide film during stretching initiates the forma-
tion of EGaIn and creates a new electrical pathway with 
the surrounding nanoclusters. After 50,000 fatigue tests 
at 50% tensile strain, the InOG’s resistance increased by 
no more than 50%.

The solvent treatment method represents an advanced 
technique for interface modification based on the selective 
interaction between a solvent and LM’s surface oxide. This 
method effectively removes the Ga oxide passivation layer 
on the surface of the LM droplet through the permeation of 
the solvent and reduces the thickness of the interfacial oxide 
layer to a nanometer level. In subsequent processing, the 
interdroplet oxide can be broken by mechanical stretching 
so that the LM can form a film on the substrate [94–96]. For 
example, Vallem et al. [96] reported an SEC based on LMPs 
where the LM surface was chemically modulated by ultra-
sonic crushing of EGaIn combined with solvent treatment. 
Specifically, hydrochloric acid and 1,6-hexane dithiol were 
added to an isopropyl alcohol solution containing LMPs for 
ultrasonic treatment. Subsequently, the interdroplet oxide 
was broken by stretching the substrate, enabling the forma-
tion of a film on the substrate. The prepared SEC exhibited 
high electrical conductivity (1.64 × 105 S m−1), a large sur-
face area (1,257% greater than LM film with the same loca-
tion), and an almost strain-insensitive resistance (normalized 
resistance (R/R0) = 1.23 at 600% strain).
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2.2 � Inorganic Nonmetallic Materials‑Based SECs

Inorganic nonmetallic materials, including carbon nanoma-
terials, MXenes, and certain metal oxide semiconducting 

nanomaterials such as In2O3, have found applications in the 
preparation of SECs. Among them, carbon nanomaterials 
and MXenes, which offer high conductivity, good flexibility 

Fig. 3   Liquid metal-based SECs. a Photograph of the LM-based SEC fabricated by injecting EGIn into a wavy microchannel Ecoflex. b Rela-
tive resistance changes of the SEC as a strain sensor when stretched from ε = 0 to 320%. c ΔR/R0 response of the SEC strain sensor over 500 
stretching/releasing cycles with a strain of 100%. Reproduced with permission [77]. Copyright 2020, American Chemical Society. d Preparation 
of the SEC by transferring LMs/SHL-LIG patterns onto an Ecoflex substrate. e Resistance vs. strain measurements of the SEC under various 
mass loadings. f Resistance measurements of the SEC in the pressure range of 100–1,000 kPa and temperature range of 25–85 °C. Reproduced 
with permission [81]. Copyright 2023, American Chemical Society. g Schematic diagram, optical image, and pseudo-color SEM image of the 
AgNWs-EGaInPs SEC. h Relative resistance change as a function of uniaxial tensile strain of the LM/AgNWs SEC after etching with various 
laser power irradiations. i Relative resistance changes of the laser-irradiated biphasic metallic LM/AgNWs SEC subjected to cyclic uniaxial ten-
sile loading to 100% for up to 12,000 cycles. The schematic illustration shows the structure of the LM/AgNWs SEC, and the inset describes the 
operating profile of the applied strain. Reproduced with permission [90]. Copyright 2022, Wiley‐VCH GmbH
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and contribute to the mechanical robustness of the SECs 
[97–100], will be the primary focus of this section.

2.2.1 � Carbon Nanomaterials‑Based SECs

Carbon nanomaterials can be divided into zero-, one-, 
two-, and three-dimensional (0D, 1D, 2D, and 3D) nano-
structures. Among them, 1D and 2D carbon nanomateri-
als are more commonly applied in SECs due to their high 
electrical conductivity and flexibility [101, 102].

(1)	 1D carbon nanomaterials-based SECs

Carbon nanotubes (CNTs) and carbon nanofibers 
(CNFs) are typical 1D carbon nanomaterials. CNTs offer 
advantages such as high conductivity, large surface area, 
good flexibility, and high chemical stability [103–105]. 
However, the widespread adoption of CNTs in SECs is 
hampered by: (1) sheet resistance exceeding 100 Ω sq−1 
due to impurities introduced during mass manufactur-
ing and (2) limited stretchability of CNT fibers or films, 
leading to a rapid increase in resistance upon stretch-
ing. To improve the strain tolerance and conductivity 
of CNTs-based SECs, strategies such as network struc-
ture designs, binding CNTs with soft elastomers, and 
prestretch-release processes of CNT/elastomer compos-
ites are usually employed [106–110]. Cao et al. [109] 
developed a layered CNT SEC by transferring a crumpled 
vertically aligned CNT-forest onto an elastic substrate 
(VHB 4910) using a thermal annealing process in an 
atmospheric environment (Fig. 4a–c). The flexibility and 
intertwined networks within the crumpled CNT-forest 
allowed the film to maintain good conductivity through-
out cyclic crumpling/unfolding, enabling the creation 
of stretchable and robust SECs that were applied as the 
electrodes for supercapacitors. Zhang et al. [110] pro-
posed an SEC based on whisker-CNTs (Fig. 4d, e). The 
SEC was obtained using a simplified Langmuir–Blodg-
ett method, where loose whisker-CNTs were densified 
through porous sponge capillary compression to form a 
conductive network, which was then laminated between 
PDMS elastic substrates. Its conductivity could reach 
8,156 S m−1 and remained stable after 1,000 cycles at 
40% strain.

(2)	 2D carbon nanomaterials-based SECs

Graphene is a 2D form of carbon atoms packed in a hex-
agonal lattice, with unique properties such as a theoretically 
large specific surface area of 2,630  m2  g−1, high carrier 
mobility up to 200,000 cm2 V−1 s−1, high chemical/thermal 
stability, and high flexibility [111–113]. While graphene 
itself is not inherently stretchable, graphene-based SECs 
are typically prepared by compounding graphene with other 
materials. For example, graphene can form a multi-layer 
structure with nanomaterials possessing a high aspect ratio 
to manufacture SECs [114–117]. Huang et al. [117] inserted 
AgNWs between two graphene layers to form a G/AgNWs/G 
sandwich structure as an SEC (Fig. 4f–h). The AgNWs not 
only suppress the formation of cracks and pores in the gra-
phene layers, which could result in conductivity loss under 
tensile strain, but also bridge existing cracks to compensate 
for the conductive path loss. Compared with one layer and 
two layers of graphene, the G/AgNWs/G sandwich structure 
exhibited the slowest rate of resistance change under strain. 
The conductivity of the sandwich structure remained stable 
after 100 stretching/releasing cycles under 20% strain.

Graphene-based SECs can also be prepared by coating or 
transferring graphene onto a pre-stretched elastomer layer 
[118–121]. For example, Lin et al. [121] reported an SEC 
based on pleated graphene. This involved initially transfer-
ring multiple layers of graphene from Cu foil to a PDMS 
supporting layer and subsequently onto a pre-stretched 
acrylic elastomer film. Upon release of the pre-stretch, the 
graphene formed a pleated structure due to compression. 
The transfer of the pleated graphene to PDMS was facilitated 
by the differential swell ratio between the solvent (acetone) 
swollen elastomer and the target substrate. In the 0–75% 
strain range, the resistance demonstrated a linear change 
with strain, with a sensitivity coefficient of 0.557. The sta-
bility was maintained after 2,000 cycles at 40% strain, and 
the elongation at break reached 150%.

2.2.2 � MXenes‑Based SECs

MXenes are a class of 2D metal carbides, nitrides, and car-
bon nitrides. The chemical formula of MXenes is Mn + 1XnTx 
(n = 1 ~ 4), where M represents early transition metals of 
group Ⅲ–Ⅵ, such as Ti, Zr, V, and Mo, X denotes carbon 



	 Nano-Micro Lett.          (2026) 18:166   166   Page 10 of 59

https://doi.org/10.1007/s40820-025-02009-3© The authors

atoms or nitrogen atoms, n indicates the number of layers 
of carbon or nitrogen, and Tx means the surface groups on 
the outermost M layer, typically –OH, –O, –F, and –Cl. 
MXenes exhibit unique properties including high electrical 
conductivity, large specific surface area, good mechanical 

properties, and good hydrophilicity, making them promising 
candidates for SECs [122–125].

Among the MXene family, Ti3C2Tx is the most exten-
sively studied for SEC applications, and the preparation 
methods for MXene-based SECs are similar to those used 

Fig. 4   Carbon nanomaterials-based SECs. a SEM image of the crumpled pattern formed by the CNT-forest on a fully relaxed elastomer sub-
strate (VHB 4910) with a pre-strain up to 300% × 300%. Scale bar, 100 µm. b Resistance variation of a uniaxial crumpled CNT SEC with a 
pre-strain up to 300%. c Resistance variation of a biaxially crumpled CNT SEC with a pre-strain up to 200% × 200%. Reproduced with per-
mission [109]. Copyright 2019, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. d Schematic illustration of the fabrication of whisker-
CNT (WCNT) nanocomposite films and the structure of the SEC. e The relative resistance changes of WCNT-based SECs and conventional 
CNTs-based SECs during stretching. Reproduced with permission [110]. Copyright 2021, Elsevier Ltd. f Schematic diagram of the G/AgNW/G 
sandwich structure. g Variation in electrical resistances with tensile strain for single-layer graphene (SLG), double-layer graphene (DLG) and 
the sandwich structure. h Stretching stability under 20% strain for the SLG, DLG and sandwich structure. Reproduced with permission [117]. 
Copyright 2021, MDPI
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for graphene-based SECs [126–134]. For example, Zhou 
et al. [129] prepared a freeze-resistant and mechanically 
strong polyvinyl alcohol (PVA) organic hydrogel SEC by 
integrating 1D CNF with 2D MXene (Fig. 5a–c). Provid-
ing high conductivity through molecular interactions and 
geometric synergy, glycerol and KOH were also incorpo-
rated to improve the stretching and freezing resistance of 
the hydrogel. The prepared SEC maintained a conductivity 
of 6.2 S m−1 at − 20 °C and exhibited an elongation at break 
of up to 866%. Li et al. [134] coated a thin layer of poly(4-
vinylphenol) on an MXene layer using a two-step spinning 
coating method and obtained a polymer-laminated-MXene 
(PL-MXene) SEC (Fig. 5d–f). An electroluminescent dis-
play prepared using the PL-MXene SEC functioned nor-
mally under high temperature (70 °C) and humidity (50%) 
conditions and exhibited excellent antioxidant properties. 
In addition, the SEC maintained good transparency, with 
a transmittance of approximately 76% at a wavelength of 
550 nm.

2.3 � Conductive Polymer‑Based SECs

Conductive polymers have shown great potential for the 
preparation of SECs owing to their inherent elasticity 
and flexibility, along with the tunability of polymer chain 
interactions and chemistry [135–140]. These polymers, 
typically π-conjugated systems, exhibit inherent electrical 
conductivity arising from the delocalized π electrons that 
can move freely throughout the polymer chain. While con-
ductive polymers generally possess some degree of stretch-
ability, their tensile properties can be further improved 
through strategies such as the addition of small molecule 
plasticizers and solution treatment. Common conductive 
polymers include polypyrrole (PPy), polyaniline (PANI), 
poly (3,4-vinyldioxythiophene):poly (styrene sulfonic acid) 
(PEDOT:PSS). Among them, PEDOT:PSS is the most 
studied for SECs [141, 142]. PEDOT:PSS can form self-
supporting films and is non-toxic and chemically adjustable 
(allowing covalent bonding with biomolecules), although 
its tensile properties are somewhat limited. The following 
methods have been applied to improve its tensile properties 
and/or electrical conductivity.

(1)	 Incorporation of small molecule plasticizers [143–
146]. The insertion of a small molecule plasticizer 
into the PEDOT:PSS chain can weaken the strong H 

bond and electrostatic interaction in the PSS phase, 
thereby reducing the rigid binding between molecular 
chains. At the same time, the plasticizer, as a lubricat-
ing medium, promotes the slippage and rearrangement 
of molecular chains, disperses the stress concentration, 
and thus improves the tensile properties of the mate-
rial. For example, He et al. [146] prepared a D-sorbitol-
PEDOT:PSS (s-PEDOT:PSS) SEC by spin coating a 
mixed solution of PEDOT:PSS and D-sorbitol on a 
glass substrate (Fig. 6a–c). The conductivity and tensile 
properties of PEDOT:PSS were improved by adding the 
biocompatible D-sorbitol. The prepared PEDOT:PSS 
SEC exhibited a conductivity of up to 1,000 S cm−1 
at a tensile strain of 60%, with negligible change in 
conductivity after 10 stretching/releasing cycles. The 
enhanced performance was due to the disruption of H 
bonds between the PSSH chains by D-sorbitol, making 
the PSSH chains more prone to conformational changes 
under stress.

(2)	 Surfactant treatment [147–150]. Surfactants are embed-
ded into the PSS phase via their fluorinated hydropho-
bic chains in their amphiphilic structures, partially 
shielding the strong H bonds and electrostatic interac-
tions between PSS chains. This reduces the rigid bind-
ing of molecular chains and promotes phase separation 
between PEDOT and PSS, leading to the formation of a 
more continuous flexible network. Dauzon et al. [150] 
treated PEDOT:PSS with a mixed solution containing 
polyethylene oxide (PEO) as a precursor, Zonyl sur-
factant, and 5% dimethyl sulfoxide (DMSO) as a sol-
vent, resulting in a transparent PEDOT:PSS-based SEC 
(Fig. 6d–f). The obtained SEC exhibited a conductivity 
of up to 1,230 S cm−1. The R/R0 of the conductor with 
5 wt% PEO + 1 wt% Zonyl increased by 1.7 times after 
250 cycles at 60% strain.

(3)	 Doping. The conductivity of PEDOT:PSS can be 
improved by doping polar solvents, strong acids, 
ionic liquids, and other substances. Polar solvents can 
induce a solvation effect, bringing the PEDOT chains 
closer together, which is conducive to the transmission 
of electrons. Strong acids can impose a protonation 
effect, promote the rearrangement and accumulation 
of PEDOT chains, and form more orderly conductive 
channels. The introduction of ionic liquids can provide 
additional ion transport channels and increase the over-
all conductivity [151–155]. For example, Song et al. 
[155] spin-coated a PEDOT:PSS aqueous solution on 
a polyether sulfonate (PES) substrate and then treated it 
with 80 wt% H2SO4. Following with a post-processing, 
an SEC with a maximum conductivity of 2,673 S cm−1, 
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high transparency (> 85%), and a sheet resistance of 
89 Ω sq−1 was obtained (Fig. 6g, h).

2.4 � Composite Materials‑Based SECs

The composite materials-based SECs reviewed in this sec-
tion mainly focus on those manufactured by blending stretch-
able polymers with conductive fillers. The stretchable poly-
mers serve as the supporting matrix, while the conductive 
fillers are dispersed within this matrix to form conductive 
pathways. The increase in the volume fraction of the conduc-
tive network will generally increase the conductivity of the 
composite materials-based SECs. When the volume fraction 
exceeds a certain value, the conductivity of the composite 
materials-based SECs will reach what is called the perco-
lation threshold. At present, the general effective medium 

(GEM) model is commonly employed to study the electrical 
performance trend of the composite materials-based SECs 
[156–159]. The model formula is as follows [156]:

where σm is the conductivity of the stretchable composite 
materials-based SECs, σi is the conductivity of the i-th com-
ponent, φi is the volume fraction of the i-th component, φc 
is the percolation threshold, t is the critical index, and A is 
a parameter that changes with the percolation threshold. In 

(1)
N
∑

1

�
i

(

1

t

i
− �

1

t

m

)

�

1

t

i
+ A�

1

t

m

= 0

(2)A =

1 − �
c

�
c

Fig. 5   MXenes-based SECs. a Schematic diagram showing the internal structure of the cellulose and MXene enhanced PVA organic hydrogel. 
b Voltage, current, and output power of the TENG based on the MXene-based SEC at different external load resistances. c The tensile stress–
strain curves of MXene-based SEC with different CNF contents. Reproduced with permission [129]. Copyright 2023, Elsevier B.V. d Schematic 
illustration of the PL-MXene-based SEC composed of MXene flakes with a protective poly(4-vinylphenol) layer. ΔR/R0 of the MXene and PL-
MXene SEC on PET substrates with respect to the e bending radius and f number of bending cycles (bending radius: 3 mm). Reproduced with 
permission [134]. Copyright 2021, American Chemical Society
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this model, the critical exponent t can be determined through 
calculation or curve fitting techniques.

Composite materials-based SECs have been prepared 
by mixing polymers with metal nanostructures [160–163], 

inorganic nonmetallic materials [164–166], conductive 
polymers [167–169], and a combination of different con-
ductive fillers [170, 171]. Li et al. [163] reported an SEC 
with a low resistance and stable performance based on 
a PDMS-Ag nanosheet composite (Fig. 7a–c). With the 

Fig. 6   Conductive polymer-based SECs. a Variation in the conductivity of s-PEDOT:PSS SECs before and after water rinsing with different 
concentrations of d-sorbitol in the mixture solution. b Variation in the normalized resistance of a 6 wt% s-PEDOT:PSS SEC with post-water 
rinsing at the 10th stretching/releasing cycle. R0 is the resistance of the polymer film in the relaxed state after the 9th cycle. c Variations in the 
normalized resistance of a 6 wt% s-PEDOT:PSS SEC with post-water rinsing during stretching/releasing cycles under maximum strains of 20, 
40, and 60%. Reproduced with permission [146] Copyright 2019, American Chemical Society. d Chemical structure of the surfactant Zonyl and 
the compounds used to form the PEO polymer network. e Relative resistances of the PEDOT:PSS SEC with various wt% of PEO and 1 wt% 
Zony under strain. f PEDOT:PSS SEC containing 5 wt% PEO and 1 wt% Zonyl under different strains. The inset shows the resistance behavior 
over 5,000 cycles at 60% strain. Reproduced with permission [150]. Copyright 2020, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. g 
Schematic diagrams for the preparation of the S-PH1000 (an SEC based on PEDOT:PSS immersed in an 80 wt% H2SO4 solution) and flexible 
supercapacitor based on the SEC. h Conductivity and square resistance of the PH1000, EG-PH1000 (5 wt% ethylene glycol-doped PH1000) and 
S-PH1000 films. Reproduced with permission [155]. Copyright 2020, DMPI
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synergistic action of the high tensile properties of PDMS 
and the excellent electrical conductivity of Ag nanosheets, 
the minimum resistivity of the SEC reached 4.28 Ω m, 
and the resistance increased by about 4  Ω under 20% 
strain. Although the internal conductive pathways were 
damaged at 200% strain, the SEC still worked normally 
after the stress was released. Dong et al. [166] prepared 
an SEC using PU as the matrix and CNT as the conduc-
tive filler. The dynamic boron ester bonds and H bonds in 
PU endowed the electronic conductor with a self-healing 
efficiency of 78%, a tensile strength of 15.4 MPa, and an 
elongation at break of 420%, while the CNT contributed 
to a high conductivity of 0.57 mS cm−1. Kim et al. [169] 
blended PEDOT:PSS with a highly stretchable non-ionic 
waterborne PU (WPU) and coated the mixture onto a TPU 
film. WPU interacts with PEDOT:PSS through H bonding 
and coulomb attraction. By varying the WPU content, the 
electrical and tensile properties of the SEC could be tuned. 
At a WPU concentration of 2.0 wt%, the sheet resistance 
was about 400 Ω sq−1 and remained almost unchanged at 
100% strain. Even at 400% strain, the surface of the SEC 
showed no signs of damage.

In order to further improve the conductivity and mechan-
ical stability of composite materials-based SECs, a com-
bination of various conductive fillers can be incorporated 
by leveraging the attractive forces between different fillers 
[172–175]. For example, Chio et al. [175] designed a stretch-
able transparent nanofiber network SEC (STNNE) based on 
an electrospun stretchable nanofiber network structure com-
posed of a mixture of PU/reduced graphene oxide (rGO)/
Ag nanoparticles (AgNPs) (Fig. 7d–f). The resistance of the 
STNNE film reached 210 Ω sq−1, with a mechanical stretch-
ability of up to 40% and relatively high electrical stability.

Furthermore, the combination of surface-modified nano-
materials of different sizes can allow the composite mate-
rials-based SEC to maintain a percolation network under 
different strain levels, thereby improving both the tensile 
properties and electrical conductivity of the SEC [176]. For 
example, Jung et al. [176] employed an optimum combi-
nation of 0D, 1D, and 2D Ag nanomaterials treated with 
1-decanethiol to form an SEC that demonstrated insensitiv-
ity to uniaxial or biaxial strain (Fig. 7g–i). The surface modi-
fication of Ag nanomaterials by 1-decanethiol promoted 
the strain-induced rearrangement of Ag nanomaterials in a 

viscoelastic matrix (poly(styrene ethylene butylene styrene), 
SEBS), which helped preserve a connected percolation net-
work under strain. This SEC, composed of diverse dimen-
sional Ag nanomaterials and block copolymer elastomers, 
exhibited highly stable electrical properties with less than 
1% resistance change under less than 50% strain, and its 
initial conductivity reached 31,000 S cm−1.

In addition, through the dual-ligand surface-modified 
nanomaterials combined with high-humidity-environment 
control, the local bonding structure of the nano-network 
can be constructed to cooperatively enhance both the 
electrical conductivity and tensile strength of the compos-
ite materials-based SECs [177]. Jung et al. [177] modi-
fied the surface of AgNWs with a dual ligand of 1-pro-
pyl mercaptan and 1-decyl mercaptan. These modified 
AgNWs were then mixed with SEBS under highly humid 
conditions. The high humidity promoted local binding 
among the modified AgNWs. This localized binding 
improved the conductivity of the AgNWs network and 
strengthened the interconnections between AgNWs. The 
obtained SECs demonstrated excellent electrical conduc-
tivity (122,120 S cm−1) and stretchability (elongation at 
break reaching 200%). At 100% tensile strain, ΔR/R0 was 
approximately 5.

3 � Summary of This Chapter

SECs can be divided into metal-based, inorganic nonme-
tallic materials-based, conductive polymer-based, and 
composite materials-based SECs, based on their primary 
conductive components. Among metal-based SECs, solid 
metals (e.g., Ag) are generally processed into nanostruc-
tures, which exhibit excellent electrical conductivity but 
lack sufficient flexibility. Coordination between conduc-
tivity and tensile properties for solid metal-based SECs 
can be achieved through methods such as micro-crack net-
work regulations, hybrid structures incorporating metal 
nanowire interlayers, and designs like template electro-
plated metal mesh. LMs (e.g., EGaIn) exploit their fluidic 
properties combined with elastomer packaging strategies 
to construct highly stable conductive networks through 
means such as microchannel injection, adhesion and pat-
terning of LMs on elastomer surfaces, and self-assembly 
of modified LMs into films. The high surface tension and 
weak interfacial bonding with most elastomers of LMs 
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are the main challenges for LM-based SECs. Inorganic 
nonmetallic materials-based SECs mainly include carbon 
nanomaterials (e.g., CNT and graphene)- and MXenes 
(e.g., Ti3C2Tx)-based SECs. Their mechanical adaptabil-
ity can be enhanced through techniques such as coating on 

pre-stretched elastomers and combination with other nano-
materials to form multi-layer structures. Conductive poly-
mer-based SECs are predominantly based on PEDOT:PSS, 
whose stretchability can be enhanced by incorporating of 
small molecule plasticizers and surfactant treatment, and 

Fig. 7   Composite materials-based SECs. a Schematic illustration of the SEC based on PDMS-Ag nanosheets composite. b Resistance of the 
SEC under 1,000 stretching/releasing cycles at a strain of 20%. c The tunneling effect theory is employed to fit the resistance variations in SECs 
(mass ratios of silver adhesive to PDMS are 1:0.4 and 1:0.6) during the stretching process within a strain range of 0–50%. Reproduced with per-
mission [163].  Copyright 2022, DMPI. d Schematic diagram of a patterned transparent reticular nanofiber SEC based on the PU/rGO/AgNPs 
composite. e ΔR/R0 vs. elongation of the PU/rGO and PU/rGO/AgNPs SECs on PDMS substrates. f Stress–strain curves of the PU/rGO and PU/
rGO/AgNPs SECs. Reproduced with permission [175]. Copyright 2019, Royal Society of Chemistry. g Schematic illustration of the percolation 
networks comprising Ag NWs and Ag NPs. h Relative resistance changes of the SECs based on 0D, 1D, 2D Ag nanomaterials, and SEBS com-
posite under a strain range of 0–50%. i Relative resistance changes of the SEC based on 40 wt.% Ag NWs, 40 wt.% Ag NPs and 20 wt.% SEBS 
during 1,000 stretching/releasing cycles with 50% uniaxial strain. The insets show magnified views of the relative resistance changes at the 
beginning and end of the cycles. Reproduced with permission [176]. Copyright 2022, Wiley‐VCH GmbH
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conductivity can be improved by doping with substances 
such as polar solvents, strong acids, and ionic liquids. The 
addition of small molecule plasticizers and surfactants 
enhances the stretchability of PEDOT:PSS by weakening 
the strong H bond and electrostatic interaction in the PSS 
phase, while the doping of polar solvents, strong acids, and 
ionic liquids brings the PEDOT chains closer, facilitating 
electron transfer and thus improving conductivity. Com-
posite materials-based SECs are typically manufactured 
from a mixture of stretchable polymers and conductive 
fillers. The conduction–stretchability synergies can be 
enhanced through methods like multi-packing coordina-
tion, nano-size regulation, and dual-ligand surface modi-
fication. The GEM model can be applied to optimize the 
percolation threshold to analyze the optimal performance 
of the conductive network. Table 1 summarizes the typical 
characteristics of SECs categorized on the basis of differ-
ent conductive materials.

4 � Structure Designs of SECs

The stretchability of SECs can be achieved through ingen-
ious structural designs. Specific designs can circumvent the 
typical decline in conductivity observed under tensile strain, 
allowing the SECs to maintain their original conductivity 
within a certain strain range. The structure design of SECs 
can be categorized into three types based on the number 
of dimensions of stretchable directions: 1D, 2D, and 3D 
stretchable configurations.

4.1 � 1D Stretchable Structure Designs

1D stretchable structure designs can maintain the conductiv-
ity of the SECs during the stretching process in a single lin-
ear direction. This is primarily realized via buckling, spiral, 
wave, and kirigami structures [178–181].

(1)	 Buckling structure

1D buckling structures are mainly manifested as bend-
ing or torsion deformation along their longitudinal axis. 
These structures can be constructed by forming control-
lable folds on an elastic substrate, such as PDMS, through 
a prestretch-release process. In addition, the matrix can 
be precisely induced to form buckling morphologies of 

different characteristic scales by coordinating the gradi-
ent combination of pre-stretching amplitude and chemical 
reduction frequency [182–185]. Yoon et al. [185] applied 
a dense distribution of AgNP networks in PU to fabricate 
a strain-insensitive fiber conductor consisting of a highly 
conductive buckling shell through a simple chemical pro-
cess (Fig. 8a–c). Repeated absorption and reduction in 
the Ag precursor increased the AgNP content within the 
fiber. By changing the number of absorption and reduc-
tion cycles, three kinds of buckling structures, meaning 
periodic (squares), fold (circles), and ridge (triangles) 
fibers, were created. With increasing chemical reduction 
cycles and decreasing pre-strain, the surface morphology 
of the fiber tended to transition from a ridge shape to a 
periodic shape. Finally, the experimental results showed 
that the ridge-shaped fibers exhibited lower resistances and 
superior tensile insensitivity. The critical strain gradually 
increased from 30 to 180% as the pre-strain went up from 
50 to 250%.

(2)	 Spiral structure

When the spiral structure is stretched, the fibers inside 
will gradually straighten, similar to a spring. The inclined 
winding fibers progressively align with the direction of 
the applied tension, and the distance between adjacent 
coils increases, analogous to straightening a coiled tel-
ephone cord where the coil spacing widens and the over-
all length grows. The amplitude of the geometry adapts 
to accommodate the applied stress, allowing the SEC to 
be stretched without stress concentration in the material 
itself [42, 186–190]. Woo et al. [42] developed an SEC 
based on a highly stretchable spiral-structured PU-based 
fiber containing AgNPs with invariantly high conductiv-
ity (Fig. 8d–f). To impart electrical conductivity to the 
fibers, the Ag precursor solution was reabsorbed and 
reduced on the PU-based fibers. When the spiral diameter 
of the SEC was 3 mm, the resistance showed a negligi-
ble increase even at 1,000% strain. After 10,000 tensile 
cycles, the electrical properties remained stable. Liang 
et al. [189] constructed a stretchable PEDOT@bacterial 
cellulose (BC)/CNT hybrid spiral fiber with a “reinforced 
cement–sand” structure using a wet spinning and winding 
process. Dissolved BC acted as the bonding matrix, undis-
solved bacterial nanofibers and CNTs served as the sup-
porting body, and PEDOT functioned as the reinforcing 
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Table 1   Typical characteristics of SECs categorized on the basis of different conductive materials

a Polyrotaxane
b Cellulose nanofibril paper

Type of SECs Conductive 
materials

Materials Conductivity or 
sheet resistance

Substrate or 
supporting 
matrix

Stretchability ΔR/R0 under 
strain

Preparation 
Process

Reference

Metal-based 
SECs

Solid metal AgNPs – PDMS 200% 4.1 under 
100% strain

Laser depo-
sition

[54]

AgNPs 8 ~ 9 Ω sq−1 Parylene 50% – Vacuum 
vapor 
deposition 
template 
method

[55]

AgNPs – PDMS 100% 1.4 under 30% 
strain

Screen print-
ing and 
sacrificial

[56]

Liquid metal  EGaIn 22.532 S cm−1 TPU 2260% 1.59 under 
1650% strain

3D printing [76]

EGaIn – PVA hydrogel 400% 0.8 under 
100% strain

Noncontact 
laser cut-
ting and 
magnetic 
coating

[78]

EGaIn 8.65 × 105 S m−1 PDMS, PET, 
PI

100% 1.27 under 
100% strain

Laser sinter-
ing

[90]

Inorganic 
nonmetallic 
materials-
based SECs

Carbon nano-
materials

Whisker 
CNTs

8156 S m−1 PDMS 420% – Langmuir–
Blodgett 
method

[110]

Graphene 7 S cm−1 PDMS 80% 0.244 under 
80% strain

Chemical 
vapor 
deposition

[116]

Laser-
induced 
graphene

114 Ω sq−1 SEBS 300% 0.32 under 5% 
strain and 
3.75 under 
30% strain

Laser sinter-
ing

[118]

MXenes . Ti3C2Tx 2.3 S cm−1 PTFE 180% – Dot-matrix 
drop-
casting 
method

[127]

Ti3C2Tx 8.7 S m−1 PVA 820% – Chemical 
vapor 
deposition

[129]

Conductive 
polymer-
based SECs

Conducting 
polymers

PEDOE:PSS 
/PRa

1603 S cm⁻1 SEBS/silicon – 3.4 under 
100% strain

Drop casting [143]

PEDOT:PSS/
CNPb

1230 S cm−1 PDMS 120% – Drop casting [147]

Composite 
materials-
based SECs

Composite 
conductive 
materials 

PU/rGO/
AgNPs

48 S cm−1 PDMS – 0.83 under 
40% strain

Electrostatic 
spinning

[175]

Ag NWs/
SEBS

31.000 S cm−1 – 800% 0.01 under 
50% strain

Solution 
mixing

[176]
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Fig. 8   1D stretchable structure designs. a Schematic illustrations of the formed buckle shapes. b Wavelengths and shapes of buckled structures of the fib-
ers based on the number of reduction cycles and pre-strain. c Resistance and quality changes of the buckled AgNPs/PU fibers (one reduction cycle) due 
to the applied tensile strain. Reproduced with permission [185]. Copyright 2023, American Chemical Society. d Schematic diagram of the helical fiber 
interconnect. e Normalized relative resistance changes of helical fibers with different helical diameters as a function of tensile strain. f Resistances of the 
PDMS-coated helical fiber with a helical diameter of 3 mm under 10,000 stretching/releasing cycles from 0 to 100% applied strain with a frequency of 
0.5 Hz. The inset shows the range of stretching cycle numbers between 0 and 2,500. Reproduced with permission [42]. Copyright 2020, WILEY‐VCH 
Verlag GmbH & Co. KGaA, Weinheim. g Schematic diagram of a supercapacitor composed of wavy SECs. h Electrical resistance variation of the wavy 
shaped porous graphene as a function of the stretching status. i The capacitance retention of the supercapacitor over 100 cycles of stretching/releasing tests 
at 20% strain. The inset schematically illustrates the SECs-based supercapacitor in a stretched state. Reproduced with permission [194]. Copyright 2014, 
Royal Society of Chemistry. j Photograph of the LM-based elastic kirigami SEC. k Stress–strain curves of five different patterned SECs. l Cyclic loading 
test of the SEC for 1,000 cycles at 0–100% strain. Reproduced with permission [199]. Copyright 2023, Wiley‐VCH GmbH
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material. This structure avoids the reliance on an elastic 
matrix or auxiliary materials to provide elasticity. The 
spiral fiber exhibited elongation at a break of 1,175% and 
demonstrated good cyclic stability. Ma et al. [190] created 
shape-programmable LM fibers via the phase transition of 
Ga. The solid Ga wire could be easily molded into a spiral 
structure, and after coating the wire with PU, the structure 
was retained even after the Ga metal was liquefied. Spiral 
LM fibers fractured at approximately 1,273% strain, sig-
nificantly higher than the fracture strain of 1D linear LM 
fibers at 358%.

(3)	 Wave structure

When the material of the wavy structure is stretched, 
the angle between adjacent elements gradually expands, 
and the distance between them widens synchronously. 
This dynamic adjustment mechanism effectively disperses 
and offsets the tensile stress, endowing the structure with 
sufficient stretchability [191–195]. Xie et al. [194] intro-
duced a wavy PANI/graphene-based SEC. Initially, nickel 
(Ni) foam was manually manufactured into a wavy shape, 
followed by the growth of porous graphene on the wavy 
Ni foam using the atmospheric pressure chemical vapor 
deposition (CVD) method (Fig. 8g–i). The Ni skeleton 
was then removed by wet etching with a 3 M HCl solu-
tion. Finally, PANI was uniformly and densely deposited 
on the surface of graphene via pulse electrodeposition 
to obtain the PANI/graphene-based SEC. A supercapaci-
tor composed of this SEC maintained high mechanical 
strength and capacitance at even 30% tensile strain. Yu 
et al. [195] prepared a wavy SEC, which was fabricated 
via bulk silicon micromachining and subsequently depos-
ited perylene C on the wafer through thermal evaporation, 
followed by sputtering platinum onto it. The perylene C 
served as a flexible substrate to support the platinum. A 
capacitive sensor fabricated by embedding the wavy SEC 
into a PDMS layer exhibited low hysteresis (0.64%) and 
high sensitivity (a gauge factor of 0.27 at 25% strain).

(4)	 Kirigami structure

The kirigami structure is prepared by cutting materials 
into specially designed patterns, which effectively releases 
the internal stress of the material through out-of-plane 
deformation and enables the material to maintain stable 

electrical properties under large deformations. Similar to 
other structure designs, while the kirigami structure was 
able to increase the tensile limit of the electronic conductor 
to varying degrees, the inherent rigidity of the material still 
limits its ultimate elongation at break [196–199]. Choi et al. 
[199] developed an LM-based elastic kirigami SEC through 
a fusion of kirigami structural mechanics, an elastic silicone 
substrate, and an LM conductive material (Fig. 8j–l). The 
SEC was based on a silicone elastic film (Dragon Skin 10, 
thickness 500 μm) cut into a kirigami pattern using a laser, 
with its conductive layer constructed by magnetron sputter-
ing deposition of a 10-nm-thick Au film and then coating 
with EGaIn. As an intermediate layer, the Au film not only 
enhanced the interface bonding force between the LM and 
the substrate but also effectively maintained the conduc-
tive stability of the electrode under extreme deformation by 
forming a solid–liquid biphase metal layer with EGaIn. The 
resistance of this SEC increased by 0.33 times under 820% 
tensile strain, showing good electromechanical stability.

4.2 � 2D Stretchable Structure Designs

2D stretchable structures can retain a certain conductiv-
ity when stretched along both the horizontal and vertical 
axes. The primary 2D stretchable structure designs for SECs 
include the buckling structure, snakeskin structure, and mesh 
structure [200–203].

Compared with its 1D counterpart, the 2D buckling struc-
ture shows more complex buckling behaviors, including in-
plane wrinkles and irregular wave shapes. Generally, the 
conductor is designed with geometric features such as wrin-
kles, ripples, or a fishing net-like configuration to realize the 
buckling structure. When the conductor is stretched or bent, 
these wrinkled, corrugated, or reticular geometric configura-
tions allow for deformation to a certain extent without frac-
turing or losing conductivity as readily as traditional rigid 
conductors. Such designs impart adequate two-directional 
stretchability to intrinsically rigid or non-stretchable conduc-
tors, enabling them to adapt to a variety of complex defor-
mations and stresses [204–207]. Zhao et al. [207] prepared 
an SEC with multidirectional stretchability through a pre-
stretching process (Fig. 9a–c). Initially, the PDMS base was 
stretched by 90% bidirectional along the X/Y axis and placed 
in an ultraviolet/ozone environment to oxidize the surface 
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and enhance its viscosity. Subsequently, single-sided, sticky 
polyethylene terephthalate tape was attached to the treated 
PDMS surface, and CuNWs dispersion was sprayed on the 
back of the tape. After acid etching, a disordered conduc-
tive network was formed. This Cu nano-network was then 
encapsulated with a chitosan layer. Upon release of the 
substrate pre-strain, the CuNWs/chitosan composite layer 
spontaneously formed a wavy fold structure. Under 50% 
tensile strain, the sheet resistance of the fabricated multidi-
rectional SEC remained constant. When the strain increased 
to 70%, the sheet resistance grew by only 5%, attributed to 
the buffering effect of the fold structure on the deformation 
and the anchoring effect of chitosan on the CuNWs. After 
1,000 cycles of 70% tensile strain in a 2D direction, the sheet 
resistance of the multidirectional SEC remained unchanged.

The snakeskin structure is normally composed of a 
series of parallel wavy or curved lines, which can be made 
of metal, conductive polymer, or other conductive mate-
rials. These lines are arranged at certain intervals in the 
plane of the conductor, forming a grid-like structure simi-
lar to snakeskin scales. When the conductor is stretched or 
bent, the wavy or curved lines in the snakeskin structure 
can stretch or bend with the deformation without breaking 
or losing electrical conductivity [208–212]. For example, 
Jiang et al. [211] proposed an SEC that not only exhibits 
mechanical flexibility and electronic functionalities simi-
lar to electronic skin but also offers self-protection and 
protection for underlying software from external physi-
cal damage (Fig. 9d, e). The geometry of the mechanical 
metamaterial (MM) ensures auxetic stretchability and 
large areal coverage for sufficient protection. Analogous 
to the composition of snakeskin, the SEC was composed 
of rigid tiles connected by soft materials at selected nodes 
within the MM pattern. The MM pattern’s soft hinges 
were made of a soft polymer composite (silicone rubber 
K-704 doped with 70 wt% Ag), which endows the SEC 
with a high conductivity (2.84 × 103 S m−1). Material fail-
ure, indicated by a sudden increase in resistivity, occurred 
when stretched to 78% strain.

The mesh structure refers to a grid-like design constructed 
from small lines or fibers. This structure allows the con-
ductor to move its internal lines or fibers without breaking 
or losing electrical conductivity when subjected to defor-
mations such as stretching and bending [213–216]. For 

example, Xu et al. [216] developed a transparent mesh SEC 
composed of the LM (Galinstan) and PDMS. The SEC was 
based on a PDMS elastomer, and a PDMS/LM composite 
ink was filled into the mesh mold using the blade scraping 
method. After curing, the conductive network was activated 
by mechanical sintering. The LM was uniformly distrib-
uted in the PDMS matrix in the form of microdroplets, and 
the applied mechanical pressure disrupted the oxide layer 
and formed a continuous conductive pathway. The design 
of the network structure provided the SEC with high light 
transmission (up to 62%) and stretchability (elongation at 
break > 150%). Zhou et al. [217] prepared a transparent SEC 
with in-plane stretchability. They employed a breath-figure 
method to prepare a porous honeycomb pattern as a template 
for the deposition of an Ag mesh film, and a PVA stamp was 
then adopted to transfer the Ag mesh film to a PDMS layer. 
The Ag mesh/PDMS SEC exhibited almost identical ΔR/R0 
values in plane of three tensile directions under the same 
strain within the range of 0–25% and could withstand 800 
stretching/releasing cycles under a strain of 20%.

4.3 � 3D Stretchable Structure Designs

1D and 2D stretchable structure designs are limited by their 
uniaxial or biaxial deformation mechanisms, making them 
challenging to adapt to omnidirectional deformation require-
ments in complex 3D scenarios. In contrast, 3D stretchable 
structure designs address these dimensional limitations 
through unique spatial topological designs, enabling coor-
dinated deformation in 3D space [218]. Lee et al. [218] fab-
ricated 3D-structured SECs through an omnidirectional 3D 
printing technique based on an emulsion-based composite 
ink (Fig. 9f–h). They developed a printable ink by dispers-
ing Ag particles and multiwalled carbon nanotubes (MWC-
NTs) in PDMS, followed by the addition of diethylene glycol 
(DEG) and chloroform (CHCl3). This ink addressed the limi-
tation that traditional inks can only be deposited in a layer-
wise manner, enabling the direct printing of 3D structures. 
The prepared 3D-structured Ag/MWCNT/PDMS SECs 
exhibited stretchability of up to 160%, and the R/R0 values 
remained stable within 3.0 and 5.5 under strain of 30 and 
50% strain over 3,000 cycles, respectively.
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Fig. 9   2D and 3D stretchable structure designs. a Schematic diagram of a sensor composed of SECs with 2D buckling structures. The rela-
tive resistance changes of the multidirectional SEC under cyclic stretching/releasing at different strains in directions of b x-axis and c y-axis. 
Reproduced with permission [207].  Copyright 2023, American Chemical Society. d The evolution process of design from a scale-integument 
structure inspired by the snakeskin to a Kiri-MM E-armor. e Normalized relative resistance change vs. strain for SECs with Ag contents of 65, 
70, and 75 wt.%. Reproduced with permission [211]. Copyright 2022, Wiley‐VCH GmbH. f Schematic illustration showing the omnidirectional 
printing of Ag/MWCNT/PDMS SECs and the emulsion-based ink. g Photographs showing the elastic recovery of an SEC after being bent by an 
external force. h Resistance changes of the SECs under strains of 30 and 50% for 3,000 cycles. Reproduced with permission [218]. Copyright 
2023, Springer Nature Limited
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5 � Summary of This Chapter

The stretchability of SECs can be realized through structural 
designs, which can be divided into 1D, 2D, and 3D stretchable 
structures based on the number of stretchable dimensions. 1D 
stretchable structure designs achieve conductive stability under 
uniaxial deformation primarily by employing four topologi-
cal forms: buckling, spiral, wave, and kirigami. The buckling 
structure adopts a multistage interfacial bending deformation 
mechanism induced by pretension. The spiral structure uti-
lizes a strain-progressive dissipation strategy via its spring-like 
geometry. The wavy structure dynamically adjusts the steric 
hindrance of adjacent elements to diffuse the stress. The kiri-
gami structure releases internal stress by altering its surface 
shape. 2D stretchable structure designs realize the reconstruc-
tion of the conductive network through routes mainly including 
bidirectional pre-stretching, encompassing buckling configura-
tions, snakeskin bionic metamaterial interconnection designs, 
and mesh topological deformation compensation mechanisms. 
The snakeskin bionic structure can realize 2D stretchability 
through the composite construction of rigid elements and 
flexible nodes, while the mesh system can maintain 2D elec-
tromechanical stability through the topological tunability of 
the continuous conductive network. 3D stretchable structure 
designs overcome dimensional limitations and enable coor-
dinated deformation in the 3D space. These structural design 
paradigms break through the stretchability limitations of tradi-
tional materials and provide customizable mechanical adapta-
tion solutions for SECs under complex deformation scenarios. 
Table 2 summarizes the typical characteristics of SECs with 
1D, 2D, and 3D structure designs.

6 � Fabrication Techniques for SECs

Each type of SECs benefits from specific preparation meth-
ods, and the selection of fabrication techniques depends on 
a consideration of customary needs such as desired electrical 
or mechanical performance, preparation cost, and process 
feasibility [219–221].

6.1 � Fabrication Techniques for Metal‑Based SECs

The essence of the fabrication of metal-based SECs involves 
forming a metal film on the surface of a stretchable substrate, 
which can be manufactured through methods such as rotary 

evaporation, magnetron sputtering, and electroless deposi-
tion (ELD). Note that since the fabrication techniques for 
LM-based SECs are mentioned in Sect. 2.1, we will mainly 
review the fabrication techniques for solid metal-based SECs 
in this section. The thickness of the solid metal film is gener-
ally controlled to be less than tens of nanometers to ensure 
that the obtained SECs possess both good conductivity and 
certain stretchability. While these preparation processes are 
relatively simple and low cost, they still encounter chal-
lenges such as nonuniformity, undesirable stability, and 
limited tensile performance [222–225].

The preparation of metal films on stretchable substrates 
can be broadly categorized into physical and chemical 
methods. (1) Physical methods primarily encompass 
evaporation and sputtering. The evaporation method 
involves heating the metal material to its evaporation 
temperature so that it vaporizes and then condenses as 
a thin film on the surface of a substrate. The sputtering 
method is to bombard a metal target with an ion beam in 
a vacuum chamber, and the metal atoms on its surface 
are detached and deposited onto the substrate. Sputtering 
offers advantages such as low-temperature deposition of 
high-quality films, large-area deposition on non-single-
crystal substrates, strong target selectivity, and good film 
adhesion [226–230]. Chen et al. [230] took filament pro-
tein as the base of an SEC and worked with CaCl2 and 
environmental water to plasticize the protein (Fig. 10a, 
b). An Au film was deposited onto the protein surface 
using vacuum sputtering, and a fold structure was formed 
through ambient hydration. The initially high Young’s 
modulus (5–12 GPa) and low stretchability (< 20%) of 
the original filament protein were modified to 0.1–2 MPa 
and > 400%, respectively, achieving an SEC with high 
stretchability (> 100%). The initial sheet resistance of the 
40 nm Au film on the stretchable filament was 7 Ω sq−1, 
and the R/R0 at 40% strain was 2.45. (2) Chemical meth-
ods mainly contain ELD and electroplating. ELD is an 
autocatalytic redox reaction that enables the deposition 
of thin metal films on almost all flexible and rigid sub-
strates. The electroplating method leverages metal ions 
in an electrolyte solution to deposit a metal film onto the 
surface of a conductive substrate via an electrochemi-
cal reaction [231–233]. Zhang et al. [233] developed a 
surface modification technique to successfully construct 
a metal (Cu, Ni, Ag) conductive layer with high adhe-
sion by implementing the ELD technology on a PDMS 
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substrate. The adhesion to the substrate was enhanced 
by polydopamine surface modification. Subsequently, 
an ethanol-glycol composite ink containing Ag nitrate 
was spin coated on the modified surface and treated with 
1000 mbar atmospheric pressure plasma for 30 min to 
promote the reduction and fixation of Ag ions. Finally, 
the Ag-PDMS was immersed into the Cu plating bath, and 
the Cu-PDMS SEC was achieved through the ELD pro-
cess. The obtained Cu-PDMS SEC exhibited a conduc-
tivity of up to 1.2 × 107 S m−1, approaching that of bulk 
Cu (5.96 × 107 S m−1). It maintained stable conductivity 
under 700% tensile strain, with a resistance change rate 
of less than 5% after 5,000 cycles of stretching/releasing.

6.2 � Fabrication Techniques for Inorganic Nonmetallic 
Materials‑Based SECs

The preparation of inorganic nonmetallic materials-based 
SECs involves forming an inorganic nonmetallic film on the 

surface of a stretchable substrate, which can be manufac-
tured through techniques including solution spin coating, 
vacuum filtration, and layer-by-layer self-assembly. Typical 
examples are discussed below.

(1)	  Inorganic nonmetallic nanomaterials-based SECs can 
be fabricated by spin coating a solution/suspension 
onto an elastomer surface, or filtering the nanomateri-
als-contained suspension by vacuum to form films and 
then transferred to elastic substrates [234–237]. For 
example, Liu et al. [237] developed an SEC based on a 
folded structure of MXene/single walled CNTs (SWC-
NTs) double-layer composite film. The process began 
by mixing the 2D MXene and 1D SWCNTs in an aque-
ous dispersion. A hybrid conductive network was then 
formed through vacuum filtration. Finally, the conduc-
tive network was transferred to a pre-stretched elastic 
substrate (3 M VHB tape) and released. An SEC with 
a folded structure was thus obtained. Its conductivity 
could reach 3.01 × 103 S m−1, and ΔR/R0 was about 
0.38 at 500% tensile strain, indicating high conductive 
stability.

Table 2   Typical characteristics of SECs with 1D, 2D, and 3D structure designs

Structure design Material Conductivity or 
sheet resistance

Stretchability (%) ΔR/R0 under strain Preparation 
Process

Reference

1D Buckling structure AgNWs/ZnS:Cu/
PDMS

26.8 Ω sq−1 180 – Spray coating [183]

AgNPs/PU 26,128 S m−1 200 0.005 under 10% 
strain

Electrochemical 
deposition

[185]

Spiral structure PEDOT@ BC/CNT – 1175 0 under 100% strain Wet spinning and 
coiling process

[189]

Gallium/PU – 1273 0.09 under 100% 
strain

Direct curing 
method

[190]

Wave structure Tetramethylammonium 
hydroxide/PDMS

– 25 0.02 under 25% 
strain

Microfabrication 
process

[195]

PDMS/MWCNTs – 40 0 under 40% strain 3D printing 
process

[193]

Kirigami structure Ag/Pd/Cu/PU – 50 1.5 under 50% strain Magnetron sput-
tering

[197]

EGaIn/Au/silicone 
rubber

– 820 0.33 under 820% 
strain

Laser cutting and 
sputtering

[199]

2D Buckling structure Cu NWs/PDMS – 70 0.05 under 70% 
strain

Spray coating [207]

Snakeskin structure Ag/silicone rubber 2840 S m−1 240 0 under 60% strain Mechanical cutting [211]
Kirigami structure AgNW/PI – 50 0.0015 under 50% 

strain
Laser cutting and 

sputtering
[212]

Mesh structure  Galinstan/PDMS 1.2 × 104 S m−1 > 150  < 0.09 under 60% 
strain

Casting molding 
and mechanical 
sintering

[196]

3D 3D complex struc-
tures

Ag/MWCNTs/PDMS 6682 S cm−1 160 – 3D printing 
process

[218]
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(2)	 Inorganic nonmetallic nanomaterials-based SECs can 
be fabricated via processing into multi-layer stacked 
structures using layer-by-layer self-assembly or decal 
transfer methods. Layer-by-layer self-assembly is 
generally achieved by alternately immersing the sub-
strate in a nanosheet dispersion solution with opposite 
charges (e.g., negatively charged MXene and positively 

charged rGO), using electrostatic adsorption to achieve 
a step-by-step stacking of layered nanomaterials. The 
decal transfer method involves synthesizing a layer of 
inorganic nonmetallic nanomaterials on a rigid sub-
strate (e.g., graphene grown on a Cu foil via CVD), 
followed by the spin coating of a polymeric sacrificial 
layer (e.g., polymethyl methacrylate (PMMA)). Sub-

Fig. 10   Fabrication techniques for SECs. a A scheme of the on-skin SEC based on Au film deposited on the surface of plasticized silk protein 
by vacuum sputtering. b Photograph of an EMG measurement setup using the SECs laminated on a human forearm. Reproduced with permis-
sion [230].  Copyright 2018, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. c Schematic illustration of the fabrication rocess for MGGs 
as an SEC. Reproduced with permission [241]. Copyright 2017, American Association for the Advancement of Science. d Schematic illustration 
for the fabrication process of the PEDOT:PSS@PDMS-PSF SEC. e Photograph of the PEDOT:PSS film loading on pistils of a flower. Repro-
duced with permission [251]. Copyright 2024, Wiley‐VCH GmbH. f Schematic illustration of the 3D printing processes of SECs with designs of 
serpentine wavy structures. Reproduced with permission [297]. Copyright 2017, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
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sequently, the rigid substrate is etched away through 
chemical processing, and the acquired film is trans-
ferred as a whole to the target stretchable substrate 
[238–241]. For example, Liu et al. [241] developed 
a transparent, conductive graphene structure called a 
multilayer graphene/graphene vortex (MGG), achieved 
by inserting graphene scrolls between graphene layers 
(Fig. 10c). Initially, graphene was grown on a Cu foil 
through a CVD method, with the foil suspended in the 
center of a CVD quartz tube to allow graphene growth 
on both sides. The obtained G/Cu/G structure was then 
spun onto a thin layer of PMMA to protect one side of 
the graphene. Afterward, (NH4)2S2O8 was utilized to 
etch away the Cu foil in the entire film. The bottom 
graphene, without PMMA coating, formed a graphene 
scroll due to surface tension. The MGG structure was 
obtained by repeating this transfer process multiple 
times on the same substrate. The MGG structure could 
retain 65% of the original conductivity at 100% strain 
perpendicular to the current flow direction and 60% of 
its original current output at 120% strain parallel to the 
charge transfer direction.

6.3 � Fabrication Techniques for Conductive 
Polymer‑based SECs

The preparation of conductive polymer-based SECs 
involves a multi-scale collaborative regulatory strategy to 
balance the inherent conflict between the material’s elec-
trical conductivity and mechanical stretchability. Three 
primary fabrication techniques are commonly employed: 
solution treatment, in  situ polymerization, and laser-
induced technique [242–249].

(1)	  The solution treatment technique is mainly to deposit 
a conductive polymer solution on an elastic substrate 
by means like spraying, spin coating, and immersion, 
or to fabricate accurate conductive patterns exploiting 
a conductive polymer solution/ink by means like inkjet 
printing and 3D printing [250–254]. For example, 
Nie et al. [252] proposed a PEDOT:PSS/PDMS SEC 
(Fig. 10d, e). As a first step, the PDMS was treated by 
a foaming process to form a porous elastic foam (PSF). 
The PSF was then treated with O2 plasma to activate 
its surface. Finally, the activated PSF was immersed in 
a PEDOT:PSS aqueous solution, with ultrasonic assis-
tance to facilitate infiltration of PEDOT:PSS into the 
PSF, followed by drying. The resulting PEDOT:PSS/

PDMS SEC exhibited a ΔR/R0 value of about 97.4% at 
60% compression strain.

(2)	 The in situ polymerization technique involves trigger-
ing the chemical or electrochemical polymerization of 
conductive polymers directly on the elastic substrate 
surface (e.g., PEDOT grown on PDMS via oxidative 
CVD) to enhance interfacial bonding [255–257]. For 
example, Li et al. [257] proposed an SEC with a pleated 
PPy coating on PU (PU@PPy). The PU fibers were 
pre-treated by soaking in an ethanol solution contain-
ing pyrrole for pre-treatment and then immersed in 
FeCl3·6H2O and sodium sulfonyl salicylate (NaSSA) 
composite solution for in  situ polymerization at a 
low temperature of 2 °C. This process resulted in a 
uniform conductive coating of PPy. The doping with 
NaSSA could improve both the electrical conductiv-
ity (to 634 S m−1) and the stretchability (to a fracture 
strain of > 100%) of PPy. The obtained SEC exhibited 
an initial conductivity of 634 S m−1, ΔR/R0 of 3.5% 
under 50% tensile strain, and an elongation at break of 
approximately 850%.

(3)	 The laser-induced technique is capable of directly 
bonding PEDOT:PSS to various polymer substrates 
through photothermal reaction in the interface induced 
by a laser, which enables the patterning of PEDOT:PSS 
on polymer substrates with micrometer-scale resolution 
[249, 258]. Won et al. [258] developed a PEDOT:PSS 
hydrogel-based SEC by a laser-induced process, which 
stably adheres patterned pure PEDOT:PSS hydrogel to 
polymer substrates through a continuous-wave 532 nm 
laser-induced phase separation and interface structures. 
After the laser scanning process, the PEDOT:PSS was 
dipped in ethylene glycol to strengthen the intercon-
nections between the PEDOT-rich domains. The 
PEDOT:PSS hydrogel-based SEC possessed a wet elec-
trical conductivity of up to 101.4 S cm−1, peel strength 
of 64.4 N m−1, and lap shear strength of 62.1 kPa.

6.4 � Fabrication Techniques for Composite 
Materials‑based SECs

Composite materials-based SECs comprise conductive fill-
ers dispersed in a single or composite polymer matrix. The 
primary manufacturing objective is to construct a stable and 
efficient conductive network within a stretchable polymer 
matrix. Techniques such as solution mixing and molding, 
electrospinning, screen printing, and 3D printing have been 
commonly utilized in the preparation of composite materi-
als-based SECs [259, 260].
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(1)	  The most common preparation technique for com-
posite materials-based SECs is solution mixing and 
molding, where conductive fillers (e.g., CNTs, MXene, 
PEDOT:PSS) [261–264] are dispersed in a liquid elas-
tomer precursor, followed by casting and curing [18, 
265–270]. The key to solution mixing and molding is 
to ensure a uniform dispersion of conductive packing 
in the polymer matrix, and methods such as continuous 
stirring, sufficient grinding, and dispersant addition are 
widely applied to achieve the uniform dispersion.

	   Continuous stirring is the most commonly adopted 
method to achieve even dispersion of conductive fill-
ers [271–274]. Sharma et al. [271] fabricated an SEC 
using PEDOT:PSS, polyvinylpyrrolidone (PVP), and 
CNF as raw materials. In the first stage, PEDOT:PSS 
and PVP were mixed and continuously stirred until 
they were completely dispersed. Subsequently, CNF 
was immersed in the solution to obtain PEDOT:PSS-
PVP/CNF composites, which were then infiltrated into 
PDMS for encapsulation. The obtained SEC could 
withstand repeated bending, folding, and twisting 
and could recover its original state after the removal 
of external forces. Its conductivity reached up to 
1.08 S cm−1. Luo et al. [274] added p-tert-octylphenol 
(Triton X-100) to PEDOT:PSS to create a mixed solu-
tion, which was then mixed with PDMS and stirred vig-
orously. The uniformly dispersed mixture was placed 
onto a mold and dried to obtain an SEC that exhibited a 
minimum sheet resistance of 20 Ω sq−1 and elongation 
at a break of about 82%.

	   Sufficient grinding can effectively disaggregate the 
conductive packing and promote its uniform dispersion 
in solution [275–278]. Ahn et al. [275] fabricated a 
snake-like CNT-nanocomposite-based SEC. Initially, 
CNTs were ground with carboxymethyl cellulose 
(CMC) in distilled water for 30 min, and the slurry was 
then squeezed into a PDMS mold for drying to obtain 
an SEC. The measured minimum resistance of the SEC 
was 138 Ω, and the elongation at break was around 
357%. Xu et al. [278] reported an SEC by mixing a 
PDMS-based bottle brush elastomer (BBE) with SWC-
NTs and then solidifying the mixture to form a SWCNT 
percolation network in the elastomer matrix. The high 
aspect ratio of SWCNTs (length/width is about 2,500) 
resulted in good electrical conductivity (> 2 S m−1) of 
the SEC, and a relatively low loading concentration 
yielded good tensile properties (stretchability > 100%).

	   The addition of a dispersant can also promote the 
uniform dispersion of the conductive filler in the solu-
tion [279–281]. Chen et al. [281] constructed an SEC 
of polyacrylamide (PAAM)-graphene-PANI ternary 

composite with a multistage conductive pathway 
through component design and decentralized regula-
tion. The rGO and PANI nanofibers were dispersed 
in an acrylamide (AAM) monomer solution. On this 
basis, PVP and lignin were introduced as dispersants 
to achieve even filler distribution through the steric hin-
drance effect. Finally, a 3D interpenetrating network 
structure was formed after polymerization and curing 
by ultraviolet light. Graphene provides an effective con-
ductive network in the SEC and enhances the electrical 
stability under tensile strain. At 200% strain, the resist-
ance increased by 5.6 times with graphene, whereas it 
increased by 16.9 times without graphene. In addition, 
the tensile strength of the SEC reached 44.31 kPa, and 
the elongation at break reached 306.7%, higher than 
that of the SEC without graphene.

(2)	 Electrospinning exploits a high-voltage electric field to 
stretch a conductive polymer solution into a network 
of microfibers, forming an SEC with both high flex-
ibility and good conductivity [282–284]. For example, 
Yin et al. [284] prepared a composite materials-based 
SEC by uniformly blending rGO and PEDOT:PSS into 
a PVA solution and then employing the electrospinning 
technique combined with a high-speed turntable receiv-
ing screen to directly regulate fiber arrangement. The 
acquired SEC exhibited an electrical conductivity of 
1.7 S m−1 and elongation at a break of 61.13%.

(3)	 Screen printing for the fabrication of SECs involves 
achieving microscale patterns by combining a conduc-
tive paste of high viscosity (e.g., AgNWs/PDMS com-
posite ink) with an elastic substrate (e.g., PDMS, TPU) 
and a structural design (e.g., island bridge structure), 
which enables the preparation of SECs over a large 
area [285–287]. Shang et al. [287] prepared an SEC via 
screen printing and water jet sintering. Firstly, EGaIn 
was dispersed in propylene glycol and PVP as the ink, 
and then, the ink was screen printed on a TPU substrate 
and water jet sintered. Finally, the SEC was obtained by 
TPU encapsulation. Its electrical conductivity was as 
high as 7.3 × 105 S m−1. Its resistance increased by only 
10% after 500 cycles of 50% strain, and it maintained 
conductive stability even when stretched to 800%.

(4)	 3D printing has been employed to build SECs with 
complex 3D structures. While electrospinning and 
screen printing can also utilize inks to prepare com-
posite materials-based SECs, 3D printing offers unique 
advantages [288, 289]. First of all, it enables custom-
ized structure designs to meet the needs of SECs for 
different application scenarios. Secondly, 3D printing 
technique can manufacture SECs with complex shapes 
and internal structures with high stability. Thirdly, 3D 
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printing boasts high production efficiency and material 
utilization [290–293]. The preparation process of SECs 
by 3D printing technology typically starts with the mix-
ing of the selected polymer matrix and conductive fill-
ers, followed by the addition of solvents and surfactants 
to formulate 3D printing inks. The prepared ink is gen-
erally required to exhibit rapid curing, good interface 
bonding, and stretchability. It is then printed layer by 
layer into an SEC with a 3D printer [35, 294–297]. For 
example, Hong et al. [297] applied 3D printing to man-
ufacture a free-standing SEC (Fig. 10f). Initially, CNTs 
were dispersed in ethyl acetate, followed by ultrasonic 
homogenization. PDMS base was then added into the 
uniform CNTs suspension and homogenized again. 
Subsequently, the ethyl acetate was evaporated at 80 °C 
to obtain the PDMS-CNT composite ink. An SEC with 
a snake-shaped cross section was then fabricated by a 
3D printer. The SEC achieved high tensile properties 
and high electrical stability, with an elongation of 315% 
at the break at a 45° connection angle and a relative 
resistivity change of 5% at 100% strain.

7 � Summary of This Chapter

Different kinds of SECs necessitate distinct preparation 
approaches. The fabrication techniques for solid metal-
based SECs can be mainly divided into physical methods, 
mainly evaporation and sputtering, and chemical methods, 
primarily ELD and electroplating. While sputtering allows 
for low-temperature film formation, it can suffer from the 
issue of nonuniformity. ELD enables the deposition of thin 
metal films on almost all flexible and rigid substrates. The 
preparation of inorganic nonmetallic materials-based SECs 
can be mainly achieved by techniques including solution 
spin coating onto an elastomer, vacuum filtration followed 
by a transfer to elastic substrates, and processing into multi-
layer stacked structures with supporting elastic substrates via 
layer-by-layer self-assembly or decal transfer. Conductive 
polymer-based SECs are mainly fabricated by the solution 
treatment, in situ polymerization, and laser-induced tech-
niques. The solution treatment technique employs meth-
ods like spraying, spin coating, and immersion to deposit 
a conductive polymer solution on an elastic substrate; or 
constructs accurate conductive patterns utilizing a conduc-
tive polymer solution/ink by means like inkjet printing and 
3D printing. The in situ polymerization technique chemi-
cally synthesizes a conductive layer directly on an elastic 

substrate’s surface. The laser-induced technique can adhere 
PEDOT:PSS onto a variety of polymer substrates through 
interface photothermal reaction by using a laser. The most 
common preparation technique for composite materials-
based SECs is solution mixing and molding, which can 
employ methods like continuous stirring, sufficient grind-
ing, and dispersant addition to ensure uniform dispersion of 
conductive fillers. In addition, techniques such as electro-
spinning, screen printing, and 3D printing can be adopted to 
achieve various patterns/structures of SECs. Specifically, 3D 
printing overcomes the limitations of traditional manufactur-
ing dimensions through customized ink formulations and 
layered stacking strategies, enabling the efficient molding 
of customizable complex 3D structures. Table 3 summarizes 
the typical fabrication techniques employed for SECs.

8 � Applications of SECs

SECs have been adopted as fundamental and crucial com-
ponents in stretchable electronics, including serving as the 
electrodes of stretchable devices, functioning as the sens-
ing material components of stretchable sensors, or acting as 
interconnecting components bridging devices of electronic 
systems, which are subject to different requirements accord-
ing to different application scenarios.

8.1 � Stretchable Energy Conversion Devices

Stretchable energy conversion devices can maintain their 
energy conversion functionalities even when subjected to 
mechanical deformations, such as stretching, bending, and 
twisting. SECs with high conductivity can help reduce 
energy loss and improve overall energy conversion effi-
ciency, and SECs with high mechanical stability and dura-
bility can help save maintenance costs [298, 299]. Up to 
now, SECs have been applied in various kinds of energy 
conversion devices, including nanogenerators, solar cells, 
and fuel cells.

8.1.1 � Stretchable Nanogenerators

In stretchable nanogenerators, such as stretchable piezoelec-
tric nanogenerators (PENGs), triboelectric nanogenerators 
(TENGs), pyroelectric nanogenerators, and thermoelectric 
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nanogenerators, SECs have been employed as the electrodes 
and functional material components [300–310]. The specific 
characteristics required for the SECs of these nanogenera-
tors vary depending on the distinct working mechanisms and 
device structures.

As for stretchable TENGs and PENGs, which exhibit 
high internal impedances, especially TENGs, the resist-
ances of their stretchable electrodes can fluctuate within 
a wide range without affecting their electrical outputs 
[311–314]. (1) PENGs: Due to the piezoelectric effect, 
PENGs must undergo mechanical deformation during 
energy harvesting, which requires the applied SECs which 
serve as their electrodes or piezoelectric materials to with-
stand prolonged cyclic strain [315, 316]. Xu et al. [316] 
prepared a droplet-like porous barium zirconate titanate 
ceramic using a freeze-casting method and sputtered Au 
on its surface. Subsequently, the LM (EGaIn) was printed 
on the polymer substrate according to a specific pattern via 
3D printing, yielding a stretchable PENG. The LM elec-
trode helped the device maintain high working stability. 
After 5,000 stretching/releasing cycles at 60% strain and 
5,000 twisting cycles at 180°, the open-circuit voltage of 
the stretchable PENG remained stable. (2) TENGs: When 
an SEC functions not only as an electrode of a TENG but 
also as one of the two triboelectric layers, it is advanta-
geous to have a significant difference in its tendency to 
gain or lose electrons from the other triboelectric layer 
[317–320]. This disparity facilitates the generation of 
more triboelectric charges upon contact between the two 
triboelectric layers, contributing to higher electrical out-
puts. Specifically, in a sliding-mode TENG, where tribo-
electric layers are more prone to wear, the SEC as one 
triboelectric layer also needs to possess strong abrasion 
resistance. Zhang et al. [321] developed an SEC with high 
performance through constructing an interfacial percola-
tion network (PN), which integrates a 2D AgNWs PN and 
a protruding 3D AgNWs PN (Fig. 11a, b). The protrud-
ing PN was formed by introducing polypropylene-graft-
maleic anhydride domains in the near-surface region of 
a poly(styrene-isobutylene-styrene) (SIBS) elastomer 
matrix, causing AgNWs to change from horizontal to 
quasi-vertical arrangement and protrude out. The SEC 
achieved a conductivity of 13,500 S cm−1 under static 
conditions and elongation at a break of 660% strain. This 
SEC was applied as the conductive electrode layer in a 
single-electrode-mode TENG. The TENG showed an Ta
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output voltage of about 60 V under 300% strain and could 
effectively monitor finger bending at 30°, 60°, and 90° by 
generating distinct voltage signals.

As for stretchable pyroelectric and thermoelectric 
nanogenerators, which operate in environments with tem-
perature fluctuations or temperature gradients [322, 323], 
the SECs applied as their electrodes need to possess high 

thermal stability [324–327]. It has been reported that 
SECs (e.g., LM-based SECs) replacing traditional rigid 
conductive materials as the interconnects and thermal 
interface materials can help improve the performance 
involving enhancing the interface thermal conductivities 
and mechanical stability [328]. Additionally, SECs owning 
thermoelectric effect can serve as thermoelectric materials 

Fig. 11   Applications in stretchable energy conversion devices. a Schematic diagram of the conduction mechanism of the SEC with interfacial 
PN under stretching. b Output voltage of the TENG with the SEC as the conductive electrode layer for monitoring finger bending at 30°, 60°, 
and 90°. Reproduced with permission [321]. Copyright 2024, Wiley‐VCH GmbH. c Schematic illustration of the fabrication processes for the 
SOSC with the PEDOT:PSS SEC as the bottom electrode. d The photovoltaic performance and durable stretchability of the SOSC with the 
PEDOT:PSS SEC and EGaIn SEC as the two electrodes. Reproduced with permission [340]. Copyright 2021, American Chemical Society. e 
The design of the dragon-tattoo like epidermal fuel cells with EP-AuNW SEC and EP-AuPdNW SEC as the electrodes. f Oxidation peak cur-
rent densities of the EP-AuPdNW SEC in a stretching/releasing loop within 0–100% strain. Reproduced with permission [355]. Copyright 2022, 
Elsevier B.V
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in thermoelectric nanogenerators, which are favored to 
possess a high Seebeck coefficient, high electrical con-
ductivity, and low thermal conductivity in order to have 
high thermoelectric conversion efficiency [329, 330]. He 
et al. [329] developed a stretchable CNT/PVP/PU con-
ductive textile via sequential electrospinning and air pres-
sure spraying processes to serve as a core component of 
wearable thermoelectric devices. The fabrication involved 
first electrospinning PU nanofibers to create a breathable 
substrate, followed by the spray coating of CNT disper-
sions stabilized with PVP. The PU acted as the supporting 
skeleton, the CNT served as the thermoelectric material 
and the PVP not only improved the dispersion of CNTs 
but also served as interfacial binders between the CNT 
and PU. This hierarchical architecture, combining elastic 
polymer skeleton with conductive CNT networks, yielded 
250% elongation and 425 mm s−1 air permeability. By seri-
ally connecting five layers of the optimized CNT/PVP/
PU conductive textile into a thermoelectric device, they 
achieved room-temperature voltage generation of 0.75 mV 
through harvesting body heat. Chai et al. [324] developed 
a (4-aminotetrahydropyran)2PbBr2Cl2 (APBC)-polycar-
bonate (PC)@poly(vinylidene fluoride-trifluoroethylene) 
[P(VDF-TrFE)] core sheath nanofiber SEC via coaxial 
electrospinning as the electrode in a pyroelectric device. 
The fabrication process of this SEC involved dissolving 
organic–inorganic perovskite APBC crystals into a PC 
core solution, while P(VDF-TrFE) served as the sheath 
material of the SEC. Through precise electrospinning con-
trol, flexible fibers having diameters of 300–700 nm were 
formed in the SEC, with APBC uniformly embedded in the 
PC core and P(VDF-TrFE) encapsulating the periphery of 
the SEC. This hierarchical structure exhibited a pyroelec-
tricity of 58.2 μC m−2 K−1 at 333 K, where the pyroelectric 
effect originated from spontaneous polarization changes 
under temperature fluctuations.

8.1.2 � Stretchable Solar Cells

Stretchable solar cells, which convert solar light into elec-
tricity [331–333], are typically composed of a photoac-
tive layer, transparent electrode, back electrode, protec-
tive layer, interconnecting component, and encapsulation 
layer [334–336]. SECs have been applied as the electrodes, 
interconnecting components, and photoactive layers in 

stretchable solar cells. When employed as the transparent 
electrode, the SEC is required to exhibit both high trans-
parency to maximize light transmission to the light absorp-
tion layer and high conductivity to ensure efficient electron 
transport. When employed as the back electrode, the SEC is 
required to have both high conductivity and high reflectivity 
to trap light inside the device [337–340]. Noh et al. [340] 
integrated a TPU substrate, PEDOT:PSS and EGaIn elec-
trodes to fabricate stretchable organic solar cells (SOSCs) 
(Fig. 11c, d). Among them, PEDOT:PSS modified with 
polyethylene glycol and citric acid was utilized as the trans-
parent electrode in SOSCs. A precise spray coating system 
was utilized for atomizing the EGaIn electrode. The SOSCs 
retained over 74% of their original performance even after 
1,000 cycles at 10% tensile strain.

When employed as an interconnecting component in solar 
cells, the SEC connects different functional layers and is 
preferred to possess sufficient stretchability and mechanical 
strength [341]. Liu et al. [341] embedded electrospun poly-
propylene fibers in Ecoflex as an elastic substrate and coated 
its surface with a semi-LM (EGaIn doped with Ag-coated 
Cu particles) to prepare SECs. These SECs acted as an 
interconnecting component for solar cell arrays, connecting 
rigid monocrystalline silicon solar cells to maintain a stable 
electrical connection when stretched, bent, and twisted. The 
SEC delivered a conductivity of as high as 6 × 106 S m−1 
and exhibited excellent mechanical properties, with a single 
structural unit achieving elongation at a break of 200% and 
remaining stable after 5,000 stretching/releasing cycles. The 
short-circuit current of the whole solar cell array decreased 
by only 0.22% under 100% tensile strain.

When the SEC serves as a photoactive layer in a solar cell, 
it is responsible for converting solar energy into electricity, 
so it requires not only high optical absorption and charge 
transport capabilities but also mechanical stability, chemical 
durability, and good compatibility with other functional lay-
ers [342, 343]. Lee et al. [343] obtained a block copolymer 
PDs (D180.8-s-PEHDT0.2) through the chemical bonding of 
rigid poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-
2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-5,5′-(5,8-bis(4-
(2-butyloctyl)thiophen-2-yl)dithieno[3′,2′:3,4;2″,3″:5,6]
benzo[1,2-c][1,2,5]thiadiazole)] (D18) and f lexible 
poly[bis(2-hexyldecyl) 5-(4,8-bis(5-(2-ethylhexyl)-4-fluoro-
thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b′]dithiophen-2-
yl)-5″-methyl-[2,2′:5′,2″-terthiophene]-3,3″-dicarboxylate] 
(PEHDT). This stretchable copolymer acted as the 
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photoactive layer in the fabricated solar cell. The D18 block 
maintained excellent light absorption and charge transport 
properties, while the PEHDT block maintained exceptional 
tensile properties. The SOSCs achieved a power conversion 
efficiency of 14.3% while retaining 80% of their initial effi-
ciency at 31% strain.

8.1.3 � Stretchable Fuel Cells

Stretchable fuel cells convert chemical energy into electri-
cal energy, in which SECs have been mainly applied as the 
electrodes, current collectors, and interconnecting compo-
nents [344–347]. The SEC as the stretchable electrode is 
typically composed of a conductive and electrochemically 
active material integrated with a stretchable polymer matrix. 
It acts as the primary site for electrochemical reactions and 
is responsible for receiving and transmitting electrons. Its 
stretchability can be achieved through specialized structural 
designs (wavy, serpentine, etc.) or intrinsic stretchability 
[348–350]. The SEC as the stretchable current collector is 
typically a highly conductive material, such as a metal mesh 
and conductive polymer, supported by a stretchable polymer 
substrate, which is mainly responsible for collecting the cur-
rent generated on the electrode and transmitting it to the 
external circuit [351–353]. Interconnecting components are 
usually made of stretchable conductive materials that con-
nect electrodes with current collectors to form a complete 
circuit for electron transmission, and ensure the smooth pro-
gress of internal chemical reactions in the fuel cell during 
the connection process, such as providing suitable transmis-
sion paths for reactive gases or liquids [17, 354].

The SEC is essential for the performance stability of 
stretchable fuel cells in practical applications [355]. Lu et al. 
[355] presented a tattoo-like epidermal fuel cell based on Pd 
conformally-coated and one-end-embedded percolation Au 
nanowire (EP-AuNW/EP-AuPdNW) networks (Fig. 11e, f). 
Among them, EP-AuNW and EP-AuPdNW, combined with 
PDMS, were applied as the electrodes in the stretchable fuel 
cell, with EP-AuNW acting as the anode, and EP-AuPdNW 
as the cathode. The ultra-long Au NWs, unable to stand verti-
cally, lay on the elastic surface to form a stacked permeable 
conductive network. Pd adhered to the surface of AuNW to 
form a uniform and stable film, which enhanced the complete-
ness of the conductive pathway, ensuring conductivity during 
stretching. The EP-AuPdNW electrode maintained its initial 

electrocatalytic performance under 60% strain. The fuel cell 
could operate under a variety of mechanical deformations, 
including tension, compression, bending, and torsion, retain-
ing 75% of its performance even at 80% strain.

Specially designed structures for the SEC in a stretchable 
fuel cell can help improve the device’s performance [356]. 
Zhai et al. [356] proposed a stretchable fuel cell with flam-
mulina velutipes-like vertically aligned Au NWs (v-AuNWs) 
embedded into a fully cured PDMS film as the stretchable 
electrodes. The current density of the fuel cell with the tail-
exposed (the growing end in contact with the base) v-AuNWs 
electrode was higher than that of the fuel cell with the head-
exposed (the upward end when growing) v-AuNWs electrode. 
The tail-exposed v-AuNWs electrode served as the anode, and 
the Pt-modified tail-exposed v-AuNW acted as the cathode. 
The fuel cell with these stretchable electrodes exhibited high 
overall performance, with a power density of 80 μW cm−2, 
a current density of 0.475 mA cm−2, and a stretchability of 
50% tensile strain. Even at 50% strain, the power density of 
the fuel cell was 47 μW cm−2, approximately 60% of its initial 
power density.

8.2 � Stretchable Energy Storage Devices

Stretchable energy storage devices, generally referring to 
stretchable batteries and supercapacitors, provide stable power 
for stretchable electronics, and SECs are an indispensable 
component to maintain their normal functions [357–362].

8.2.1 � Stretchable Batteries

The storage of energy in batteries normally involves the 
insertion and extraction of ions into electrodes [363–366], 
and SECs have been employed as both the current collectors 
and electrodes of stretchable batteries. SECs as the stretcha-
ble current collectors are primarily responsible for collecting 
the current generated at the electrode and transporting it to 
the external circuit, which need to meet the requirements of 
high conductivity, high electrochemical stability, firm com-
bination with electrochemically active electrodes, and good 
tensile properties. The preparation process and properties of 
stretchable current collectors directly affect the overall per-
formance of stretchable batteries [367–373]. Gu et al. [373] 
developed an SEC based on gradient-assembled AuNPs/PU 
to serve as the current collector in stretchable lithium-ion 
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batteries. The SEC was assembled by vacuum-assisted filtra-
tion to form a gradient multilayer structure (90/50/90 wt%). 
The outermost layer was a highly conductive film composed 
of 90 wt% AuNPs and WPU, while the middle layer was a 
lower-content compound of 50 wt% AuNPs. The interface 
avoided stratification through strong interaction. The stretch-
able battery with the SEC as the current collector provided 
a specific capacity of 100 mAh g−1 at a current density of 
0.5 A g−1 and a capacity retention rate of 96% after 1,000 
cycles of charging/discharging at a current density of 0.5 A 
g−1.

The SECs as the stretchable electrodes not only need to 
fulfill the functions of traditional battery electrodes but also 
are required to maintain stable electrochemical properties 
under mechanical deformations such as stretching, bending, 
and twisting. They serve three main functions in stretch-
able batteries: (1) electron conduction and charge transfer; 
(2) active material loading and interface reaction; and (3) 
mechanical support. Special electrode structures, such as a 
patterned electrode structure, can be designed to improve 
the electrochemical performance of the stretchable bat-
tery. These unique structures can ensure stable contact and 
ion transport between key components of electrodes and 
electrolytes when the battery is stretched or bent, thereby 
preserving the key performance of the battery [374–378]. 
For example, Lu et  al. [377] proposed SECs fabricated 
by laser ablation of active material films and employed 
them as the electrodes of stretchable lithium-ion batter-
ies (Fig. 12a–c). The Li4Ti5O12 or LiFePO4 active mate-
rial was mixed into a paste with carbon black and PVDF in 
N-methyl-2-pyrrolidone. The obtained viscous slurry was 
coated on an Ag–Cu/Ni carbon-based conductive silicone 
substrate. Subsequently, the SEC was formed with an inde-
pendent micrometer square array structure by laser abla-
tion. The Li4Ti5O12-based SEC acted as the anode and the 
LiFePO4-based SEC served as the cathode. The structure 
alleviated stress concentration through micro-discretization 
of the active material. The microarray design allowed the 
conductors to maintain conductive network continuity under 
stretching, while a high load capacity of 10 mg cm−2 ensured 
energy storage capacity. Combined with a gel electrolyte 
and PDMS packaging, the stretchable battery retained 90.2 
and 70.9% of its capacity under 50 and 100% strain, respec-
tively, with a surface capacity of 1.2 mAh cm−2. After 500 
cycles of stretching/releasing at 100% strain, the SECs as the 
electrodes exhibited a slight decrease in specific capacity, 

with approximately 5% degradation observed, showing good 
strain adaptability and stability. Cheng et al. [378] devel-
oped an SEC of NiCo2S4-x@carbon yarn (CY) composite 
as the battery electrode based on a sulfur vacancy regula-
tion strategy (Fig. 12d, e). The SEC was constructed as a 
hollow nanotube array on the surface of the conductive CY 
via a two-step hydrothermal process. Specifically, sulfur 
vacancies (local defects formed by ion exchange blocking) 
were induced by adjusting the concentration of sulfur pre-
cursors, and hollow nanotube structures were then formed 
by the Kirkendall effect. The electron delocalization effect 
induced by the sulfur position optimizes the charge trans-
fer path, reducing the charge transfer resistance to 1.314 Ω 
and achieving a high specific capacity of 271.7 mAh g−1. 
The zinc-ion battery with the SEC as the cathode showed 
good mechanical properties, with a capacity retention rate of 
71.9% under 300% tensile strain and 81.4% after 100 cycles 
at 200% strain.

8.2.2 � Stretchable Supercapacitors

Energy storage in supercapacitors involves the absorption/
desorption of ions or/and fast redox reactions at the elec-
trode surface [379–385]. Like in stretchable batteries, SECs 
have also been mainly employed as the current collectors 
and electrodes in stretchable supercapacitors. (1) When serv-
ing as the current collectors, SECs are preferred to exhibit 
high conductivity and strong adhesion to the active elec-
trodes [386–389]. Cui et al. [389] prepared an SEC by coat-
ing an LM onto a textile substrate and integrated it as the 
current collector, with CNTs as the active material and an 
ionic liquid polymer gel as the electrolyte to form a stretch-
able supercapacitor. The authors explored different textile 
substrates and found that EGain formed the most uniform 
and stable coating on polyester-based textiles. At 50% elon-
gation, the resistance of the polyester-based SEC changed 
by less than 10% after 100 stretching/releasing cycles. The 
supercapacitor retained 92% of its initial capacitance at 
200% strain, which can be equipped into clothing to pro-
vide a reliable and continuous power supply for LEDs dur-
ing human movement. (2) When serving as the electrodes, 
SECs are favored to possess a large specific surface area, 
abundant electrochemically active sites, high conductivity, 
and adequate stretchability [263]. Wang et al. [263] depos-
ited thiophene and 3-methyl thiophene on a stainless steel 
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wire via electrochemical polymerization to prepare an SEC. 
The SEC exhibited a maximum tensile rate of 250% and 
was applied as an electrode in a stretchable supercapacitor, 
with a PVA/H2SO4 hydrogel as the electrolyte and PDMS 
as an encapsulation layer. The constructed supercapacitor 

maintained 93% of its capacitance after 10,000 stretching 
cycles to 100% strain.

The structural designs of SECs in stretchable superca-
pacitors, such as wavy, spiral, and core–shell structures, can 
help improve the devices’ tensile properties [390–392]. Lin 
et al. [392] developed an ant-nest amphiphilic polyurethane 

Fig. 12   Applications in stretchable energy storage devices. a Schematic diagram of the microarray SEC fabricated by laser ablation. b Photo-
graph of a light-emitting diode bulb lighted by the stretchable battery with the SECs as the electrodes. c Discharging/charging voltage profiles of 
the stretchable battery with the SECs as the electrodes in the unstretched, 50% stretched, and 100% stretched states. Reproduced with permission 
[377]. Copyright 2022, Elsevier Inc. d Schematic diagram showing the fabrication process of the NiCo2S4 − x@CY SEC. e The capacity reten-
tion of the yarn-based zinc-ion battery with the SEC as the electrode under strain from 0 to 300%. Reproduced with permission [378]. Copy-
right 2023, Donghua University, Shanghai, China. f Schematic diagram of the preparation process and fabrication mechanism for sAPU. g The 
Ragone plots of the as-assembled sAPUGE-ISSC and APUGE-ISSC with carbon-based SECs as the electrodes. The inset is the cycling perfor-
mance at a current density of 5 mA cm−2. Reproduced with permission [392]. Copyright 2022, Wiley‐VCH GmbH
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(sAPU) hydro-/organo-gel electrolyte, which interacted with 
carbon-based SECs as the electrodes for integrated stretch-
able supercapacitors (ISSCs) (Fig. 12f, g). A stretchable 
carbon-based electrode coated with sAPU fiber was prepared 
by electrospinning, and a porous interfacial layer was formed 
through layer folding and chemical crosslinking. This 
hybrid electrolyte–electrode structure was then immersed 
in a NaClO4/H2O/trimethyl phosphate electrolyte to create 
a flame-retardant integrated device. The 3D porous interface 
of this ant-like nest structure enhanced the toughness of the 
supercapacitor through mechanical meshing of the fiber and 
chemical crosslinking of the surface. The fabricated ISSC 
achieved a wide electrochemical window of 2.2 V, provided 
a high energy density of 13.7 mWh cm−3, and maintained 
98.3% of its capacitance after 500 stretching/releasing cycles 
at 100% strain.

8.3 � Stretchable Sensors

In the realm of stretchable sensors and sensing systems, 
SECs have been commonly utilized as the sensing compo-
nents or the electrodes, which play a vital role in realiz-
ing the basic functions and multi-functional integration of 
sensors for applications such as motion monitoring [248, 
393–396], tactile sensing [397–399], and physiological sig-
nal monitoring [400–405].

SECs whose resistances change linearly with strain within 
a certain range have been applied as strain sensors in myriad 
areas [406] For example, Zhang et al. [406] utilized a self-
healing maleic acid-grafted natural rubber/PANI/phytic acid 
(MNR/PANI/PA) SEC as a stretchable strain sensor. The 
device was prepared using a solution-processable method. 
Initially, maleic acid was grafted onto natural latex to form 
MNR. Aniline was then oxidized and polymerized in situ 
on the MNR template, with PA serving as both a crosslink-
ing agent and a dopant. Finally, a uniform conductive film 
was formed by solution casting. The obtained SEC strain 
sensor exhibited high linearity (GF = 13.8@0–250% strain, 
GF = 32.0@250–1,000% strain), 1,000% stretchability, 2.5 
MPa strength, and room-temperature self-healing capability.

For motion detection, stretchable sensors monitor and 
record various motion states in real time, which often 
involves mechanical deformation or abrasion. Applied in 
motion detection sensors, SECs are expected to exhibit sta-
bility under cyclic mechanical deformation and high wear 

resistance [407–411]. Tian et al. [410] developed an SEC 
based on a multistage composite structure as the core sens-
ing element of a motion sensor. A three-step integrated 
process was employed to construct the gradient conductive 
network. (1) Flexible substrate construction: a TPU fabric 
with a bionic fiber interlace structure was prepared by elec-
trospinning. (2) Conductive network optimization: AgNPs 
were loaded on the fiber surface via a dopamine-mediated 
in situ growth method, and acid-treated CNTs (ACNTs) were 
sprayed on the surface after plasma treatment to form an 
“AgNPs-ACNTs” bridging conductive pathway. (3) Interface 
function enhancement: fluorine CNTs/silica hybrid particles 
(FCNT-SIO2) were sprayed to construct a super-bisophobic 
surface with a concave corner structure. This multi-layer 
design enabled the SEC to achieve a tensile strength of 
21.7 MPa and elongation at a break of 939% while main-
taining a conductivity of 20.8 S cm−1. The motion sensor 
based on this SEC showed a wide detection range of 155% 
and a fast response time of 62 ms, maintaining stable sig-
nal output in extreme temperatures from − 60 to 60 °C and 
corrosive liquid environments, and successfully realizing 
real-time graded monitoring of a rider’s movement speed 
(slow, medium, and fast). Bhuyan et al. [411] fabricated an 
SEC composed of an uncrosslinked polysiloxane elastomer 
(ExSil 100) and a rheologically modified LM. The oxidized 
LM was coated on the surface of the elastomer layer using 
a template wetting method to obtain the SEC (Fig. 13a–c). 
The SEC served as the electrode of a capacitive motion sen-
sor, and its excellent stretchability contributed to the sen-
sor’s ability to detect the human body’s respiratory activity 
through the device’s volume change.

For tactile sensing, stretchable sensors respond to exter-
nal stimuli and provide information such as pressure, tem-
perature, humidity, and tangential strain, which can be 
employed in applications such as electronic skin and vir-
tual reality [412–417]. They are often required to be capa-
ble of detecting weak stimuli signals. In this regard, SECs 
as the electrodes of tactile sensors are favored to have 
strain- or temperature-insensitive electrical properties, 
with their change in conductivity remaining within a cer-
tain range that does not affect the sensors’ sensing capabil-
ity and adapting to a variety of external stimuli [418–420]. 
Kim et al. [420] introduced an SEC based on plasticized 
polyvinyl chloride (PVC) and graphene. The SEC was 
obtained by coating graphene on a glass substrate, spin-
coating PVC gel on it, molding, and evaporating. The SEC 
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Fig. 13   Applications in stretchable sensors and other applications. a A stretchable capacitive motion sensor with the LM/ExSil 100 SEC as the 
electrode expands under various volumes of inlet air. b Relative capacitance changes of the motion sensor with the SEC as the electrode during 
the injection and release of various air volumes. c The motion sensor with the SEC as the electrode detects respiration under various breathing 
modes. Reproduced with permission [411]. Copyright 2022, Elsevier B.V. d Schematic illustration of the snake-like P-Gr SEC-based electro-
chemical Na sensor. e Photograph of a person wearing a P-Gr SEC-based sensor during on-body and cutting/healing tests. f The electromotive 
force responses and a calibration curve of the P-Gr SEC-based sensor. Reproduced with permission [422]. Copyright 2022, Elsevier B.V. g 
Schematic illustration of the implantable stretchable sensor with PAN/Au SEC as the electrode. h PAN/Au SEC array conforms to the surface of 
the rat brain. Scale bar, 600 μm. i Real-time recording of the local field potential waveforms of the PAN/Au SEC. Reproduced with permission 
[425]. Copyright 2023, Korean Society of Medical and Biological Engineering. j Photograph of the serpentine SEC placed on a leaf. k Sche-
matic illustration of the serpentine SEC composed of MWCNT percolation network on the WPU matrix as a stretchable heater. l IR image of the 
serpentine SEC heater at straightening. Reproduced with permission [439]. Copyright 2023, Elsevier B.V
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could work normally under 50% tension. A TENG with 
this SEC as the electrode exhibited good biocompatibility 
and could act as a tactile sensor for the detection of the 
contact shape of objects.

For chemical detection, stretchable chemical sensors 
often detect chemicals in human fluids like sweat, and SECs 
applied in these sensors should possess high chemical sta-
bility and resistance to swelling in the presence of fluid or 
humidity [421, 422]. Son et al. [422] fabricated an SEC 
based on self-healing elastomers and graphene (Fig. 13d–f). 
In the first stage, a highly self-healing, conductive, and print-
able poly (1,4-cyclohexanedimethanol succinate-co-citrate)/
graphene (P-Gr) ink was prepared through fluid-induced 
shearing and mixing. A snake-like SEC was then obtained 
by screen printing. It exhibited an electrical conductivity of 
1,243 S m−1, self-healing properties (negligible resistance 
change in 10 cutting-healing cycles), and a stretchability of 
213% tensile strain. The SEC was applied as the electrode 
of an ion sensor to detect Na+ in sweat, demonstrating good 
stability and high sensitivity (− 62.30 mV/log [Na+]).

For implantable stretchable sensors, they are implanted 
in vivo for detections such as the neural signal and epicardial 
signal [423, 424], and the employed SECs should exhibit 
excellent biocompatibility. Specifically, SECs for transient 
electronics should be capable of degrading in physiological 
environments in a controlled manner [425]. Yang et al. [425] 
manufactured an SEC by first preparing a polyacrylonitrile 
(PAN) nanofiber network through electrospinning and then 
depositing Au film via thermal evaporation (Fig. 13g–i). 
This SEC demonstrated high flexibility and low electro-
chemical impedance. This is because the PAN nanofiber 
network effectively prevents the Au film from cracking 
under strain and increases the surface roughness and effec-
tive active area of the Au film, which greatly reduces its 
impedance. The SEC was employed as the core recording 
electrode component of a microelectrode array, which was 
placed at the junction of a rat’s somatosensory cortex and 
motor cortex to record the increase in the amplitude and 
frequency of the neural signal.

8.4 � Other Applications

SECs have also found utility in other applications such as 
wearable heaters [426–431], antennas [432, 433], actuators 

for soft robotics or artificial muscles [434–436], and electro-
magnetic interference shielding [29, 66, 437, 438].

When applied as heating elements in wearable heaters, 
SECs efficiently convert electrical energy into thermal 
energy for local heating. This application necessitates good 
mechanical durability and thermal stability [439]. For exam-
ple, Yuan et al. [439] developed a snake-like SEC composed 
of MWCNTs/WPU nanocomposite yarns and applied it as 
a wearable heating device (Fig. 13j–l). The preparation pro-
cess of the SEC-based wearable heater involved two steps. 
(1) The nanocomposite conductive yarn (MWCNTs/WPU) 
was prepared via a wet spinning process, followed by a stress 
drying method to promote the densification of the conduc-
tive network. (2) The conductive yarn was encapsulated in 
a thick WPU elastic sheath through solution impregnation 
combined with thermal curing, and then, the serpentine 
structure was formed using 3D printing templates. This 
strain-insensitive SEC-based wearable heater exhibited 
high electrical stability (ΔR/R0 < 1.6% at 100% strain) while 
achieving rapid joule heating to 47 °C in 90 s at 15 V, with 
waterproof property and self-healing capability.

When applied as radiation elements in an antenna, SECs 
are capable of transmitting or receiving electromagnetic 
wave signals to support wireless communication [432, 433, 
440]. This application demands SECs with high conduc-
tivity and resistance to environmental interference. A key 
challenge is the declined wireless performance under strain, 
which can be alleviated through strategies like exploiting a 
“dielectro-elastic” composite substrate with tunable dielec-
tric properties to offset resonance frequency shifts [441]. He 
et al. [440] developed a biomimetic SEC based on a spider 
web architecture and LM microchannel as the core compo-
nent of a near-field communication antenna. The SEC was 
prepared via a 3D direct-write printing process. To begin 
with, EGaIn was uniformly dispersed in a silicone elasto-
meric matrix to form a printable composite ink. A spider-
shaped serpentine web was then constructed via 3D printing. 
Subsequently, an ultra-thin LM conductive channel encap-
sulated by a protective silicone barrier was prepared using 
a peeling-off activation strategy. The architecture achieved 
high electromechanical stability, maintaining reliable energy 
transmission and information communication with a mini-
mum resonant frequency shift of 2.75 MHz at 300% tensile 
strain, as well as strong performance through 5,000 stretch-
ing/releasing cycles at 100% strain and complex deforma-
tions including 170° folding, 270° twisting, and 360° rolling.
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When applied as actuators for soft robotics or artificial 
muscles, based on different actuating mechanisms, the SECs 
may serve as the electrodes or functional materials (e.g., as 
the heater for heat-driven actuators), high conductivity or 
high mechanical and thermal stability are required for such 
application scenarios. When applied for electromagnetic 
interference shielding, high conductivity is the main key 
for the SECs to achieve high shielding, and nanostructure 
designs to reduce the reflection is conducive to high effi-
ciency of electromagnetic interference shielding.

9 � Summary of This Chapter

The applications of SECs cover the three core areas of 
energy conversion, energy storage, and sensing. (1) In 
applications of energy conversion, SECs can be applied for 
nanogenerators, solar cells, and fuel cells. SECs for PENGs 
demand high cyclic strain tolerance and mechanical durabil-
ity; SECs as the triboelectric layer of TENGs require high 
wear resistance; and SECs for pyroelectric and thermo-
electric nanogenerators necessitate high thermal stability. 
In solar cells, SECs can serve as the transparent electrodes 
(require high transparency and high conductivity), back elec-
trodes (require high conductivity and prefer high reflection 
of light), interconnecting components (require high conduc-
tivity and mechanical strength under tension), or photoactive 
layers (require high light absorption efficiency, mechanical 
stability, and chemical compatibility). In fuel cells, SECs 
can serve as the electrodes, current collectors, and inter-
connecting components. As the electrodes, they need to be 
electrochemically active and sufficiently conductive. As 
the current collectors, high conductivity and mechanical 
adaptability are essential. As interconnecting components, 
strain-insensitive conductivity and fatigue resistance are 
favored. (2) In applications of energy storage, SECs can be 
applied as the electrodes and current collectors for batteries 
and supercapacitors. When employed as the current collec-
tors, high conductivity and good interface bonding force are 
preferred. When employed as the electrodes, large specific 
surface area, good conductivity, and high electrochemical 
activity are favored. (3) In applications of sensing, SECs 
can be applied for various kinds of sensors to detect motion, 
tactile, chemical, etc., serving as the sensing components or 
electrodes. In motion detection sensors, SECs are required 
to have high mechanical stability and wear resistance under 

cyclic mechanical deformation. In tactile sensors, SECs are 
required to have high electrical stability and stimulus adapt-
ability. In chemical detection sensors, SECs are required to 
possess high chemical stability and anti-swelling property. 
In implantable sensors, SECs must possess high biocom-
patibility. (4) In addition, SECs have other applications 
such as wearable heating devices antennas, actuators, and 
electromagnetic interference shielding. In wearable heating 
devices, SECs need to have good mechanical durability and 
thermal stability. In antennas, SECs need to possess high 
electrical conductivity and resistance to environmental inter-
ference. In actuators for soft robotics or artificial muscles, 
high conductivity or high mechanical and thermal stability 
are needed based on different actuating mechanisms. For 
electromagnetic interference shielding, high electrical con-
ductivity is required and nanostructure designs to reduce 
reflection are favorable. Table 4 summarizes the diverse 
applications of SECs.

10 � Conclusion and Future Prospects

As an indispensable base material of stretchable electronics, 
SECs have become a research hotspot in recent years. SECs 
can take into account both mechanical stretchability and 
electrical properties, enabling electronic devices to adapt 
to complex application scenarios involving various defor-
mations. This capability is poised to promote the practical 
implementation of stretchable electronics in myriad areas 
including medical care, robotics, sports, and entertainment.

SECs can be divided into metal-based, inorganic non-
metallic materials-based, conductive polymer-based, and 
composite materials-based SECs based on their primary 
conductive components. (1) Metal-based SECs. Solid metal 
materials are generally processed into various nanostruc-
tures, subsequently manufactured into designed shapes, and 
combined with stretchable substrates to create SECs. LM 
generally requires a combination with a supporting polymer 
matrix to form an SEC, with preparation methods includ-
ing microchannel injection, adhesion and patterning on the 
surface of an elastomer, and self-assembly of modified LMs 
into films. (2) Inorganic nonmetallic materials-based SECs. 
Inorganic nonmetallic nanomaterials can achieve stretch-
ability through integration with elastomers, or combination 
with high-aspect-ratio nanomaterials to form multilayer 
or network architectures, which can be prepared through 
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Table 4   Diverse applications of SECs

Application Device type Function of the SECs Requirement

Stretchable energy conversion 
devices

Triboelectric nanogenerator Electrode High mechanical strength, fair con-
ductivity and high stability

Triboelectric layer Strong abrasion resistance, high 
mechanical stability

Piezoelectric nanogenerator Electrode/piezoelectric material High mechanical strength, high 
cyclic durability under strain

Pyroelectric nanogenerator Electrode/pyroelectric material High thermal stability and durability
Thermoelectric nanogenerator Electrode High thermal stability, high conduc-

tivity and stability
Thermoelectric material High Seebeck coefficient, high 

electrical conductivity, and low 
thermal conductivity

Solar cell Transparent electrode High transparency and electrical 
conductivity

Back electrode High conductivity and high reflec-
tivity

Interconnecting component Sufficient stretchability, high 
mechanical strength

Photoactive layer High optical absorption and charge 
transport capabilities, high 
mechanical stability, and high 
chemical durability

Fuel cell Electrode High conductivity, corrosion resist-
ance

Current collector High conductivity, low contact 
resistance, high mechanical 
durability

Interconnecting component Gas impermeability, thermal stabil-
ity, low interfacial resistance

Stretchable energy storage devices Battery Electrode Good conductivity, high electro-
chemical stability, and good 
tensile properties

Current collector Ultra-low resistance, strong adhe-
sion to active electrodes, good 
stretchability

Supercapacitor Electrode High specific surface area and fast 
charge transfer process

Current collector High conductivity, strong adhesion 
to active electrodes, and good 
stretchability
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techniques such as solution spin coating, vacuum filtration, 
layer-by-layer self-assembly and decal transfer. (3) Conduc-
tive polymer-based SECs. PEDOT:PSS is the predominantly 
employed conductive polymer, whose tensile properties can 
be improved by incorporating small molecule plasticizers 
or surfactants, and conductivity can be enhanced by doping 
with substances like polar solvents, strong acids, and ionic 
liquids. Conductive polymer-based SECs can be mainly 
prepared by solution treatment, in-situ polymerization and 
laser-induced techniques. (4) Composite materials-based 
SECs. They can achieve enhanced conductivity and stretch-
ability by means of multi-packing coordination, nano-size 
regulation, and double-ligand surface modification, whose 
most common preparation technique is solution mixing 
and molding, with uniform dispersion of conductive fillers 
being a critical factor. In addition, electrostatic spinning, 
screen printing, and 3D printing can be employed to create 

SECs with diverse structures. The stretchability of SECs 
can also be achieved through structural design strategies, 
the core principle of which is to maintain the continuity of 
the conductive pathways by dispersing the external stress 
through geometric deformation. The applications of SECs 
span the three core areas of energy conversion, energy stor-
age, and sensing and extend to stretchable heaters, antennas 
and electromagnetic interference shielding. In energy con-
version devices, they primarily function as the electrodes 
or functional active layers. In energy storage devices, they 
can serve as the current collectors or active electrodes. In 
sensing applications, they can act as the sensing elements or 
electrical signal transmission media.

At present, SECs still face tough challenges, such as conduc-
tivity loss upon applied strain, susceptibility to external envi-
ronmental factors, undesirable performance stability, and high 
cost. (1) The electronic structures within the SEC are often 

Table 4   (continued)

Application Device type Function of the SECs Requirement

Stretchable Sensors Motion monitoring sensor Electrode/sensing component High stability and high wear resist-
ance

Tactile sensor Electrode/sensing component Strain- or temperature- insensitive 
electrical properties and high 
conductivity as the electrode; high 
sensitivity and stability as the 
sensing component

Chemical sensor Electrode/sensing component High conductivity and chemical 
stability

Implantable stretchable sensor Electrode/sensing component Excellent biocompatibility, high 
conductivity and good stretch-
ability

Strain sensor Sensing component High sensitivity and strain-resist-
ance linear response, high durabil-
ity under cyclic strain

Electrode High conductivity, strain-insensitive 
property

Other applications Wearable heater Heating element High mechanical durability and 
thermal stability

Communication antenna Radiation element High conductivity and anti-environ-
mental interference ability

Actuator Electrode Sufficient stretchability and high 
conductivity

Functional component Sufficient stretchability; high 
mechanical and thermal stability 
(heat driven)

Electromagnetic interference 
shielding

Functional materials High conductivity and sufficient 
stretchability
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altered or damaged during deformation, resulting in conductiv-
ity loss under strain. (2) Surrounding environmental stimuli 
such as temperature, pressure and humidity could also impact 
the conductivity of SECs, while prolonged exposure to ultra-
violet light or atmospheric environment could induce degrada-
tion or oxidation, impairing the SEC’s electrical and mechani-
cal stability. (3) The fatigue-induced performance decrements 
under repeated stretching/releasing cycles and the performance 
decline due to long-term gradual oxidation or degradation are 
also critical concerns. (4) Concerning the cost, the prices of 
raw materials like liquid metal, Ag NWs, CNTs, MXenes, and 
PEDOT:PSS for the preparation of SECs are relatively high, 
and the production costs would be elevated to a level out of 
ordinary consumers’ reach if superimposing expensive fab-
rication processes, which limit their large-scale production. 
To address these challenges, it is necessary to explore novel 
materials, preparation processes, and design routes. (1) As for 
overcoming the problem of conductivity under strain, the key 
is to maintain a connected conductive path within the SEC 
under strain, which could be achieved through structural design 
of conductive components to counteract stress with geometric 
deformation or material design to separate the continuous con-
ductive phase with the supporting stretchable polymer phase. 
(2) As for the surrounding environmental effects, a combi-
nation of conductive components with positive and negative 
temperature coefficients could circumvent the problem of the 
intrinsic conductivity variation of a single conductive compo-
nent to temperature change, and a polymer substrate or matrix 
prepared by binary or multiple polymer components with 
positive and negative thermal expansion coefficients could 
be a solution for the conductivity change caused by the vol-
ume change of the polymer substrate or matrix with changing 
temperature. Material protection of a polymer with a higher 
Young’s modulus for the SEC could avoid the impact of pres-
sure, and surface modification with a superhydrophobic effect 
or outside packaging layer for the SEC could circumvent the 
influence of humidity or atmosphere. (3) As for the undesirable 
performance stability, material design with adjustment of the 
micro-/nano-structure and composition could be explored to 
improve the fatigue performance and long-term stability. (4) 
As for the high cost, developing efficient fabrication techniques 
and refining process parameters could increase the produc-
tion efficiency, reduce the fabrication costs, and promote the 
large-scale production. With continued research progress and 

industrial development in these areas, both the performance 
and application potential of SECs will keep enhancing and 
expanding.

In summary, the rapid development of stretchable and 
wearable electronics pushes up the refinement and improve-
ment in SECs while the momentous advancement of SECs 
fuels the birth of new-generation electronics and technolo-
gies. The SECs hold bright prospects and a prosperous 
future, with great application potential and huge market 
value. The realization of such visions calls for the collabo-
rative efforts and support of researchers, enterprises, and 
governments.
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