e-ISSN 2150-5551

Nano-Micr© Letters CN 31-2103/TB

REVIEW https:/doi.org/10.1007/s40820-025-02009-3

() Design, Fabrication, and Application of Stretchable

Check for .

Upiatos Electronic Conductors
Cite as
Nano-Micro Lett.

(2026) 18:166 Bin Cheng!, Jingting Zhuo', Yao Zhou', Jiaxiang Chen', Lingyun Cao', Jiangfeng He',

Zhihong Chen!, Xiaoxiao Ma', Juan Wang!, Honglong Li', Guowei Yang', Fang Yi' =
Received: 5 August 2025 g g glong g g
Accepted: 5 November 2025
© The Author(s) 2026

HIGHLIGHTS

e A comprehensive review of recent advances in stretchable electronic conductors including the material categories, structure designs,
fabrication techniques, and applications.

e A novel emphasis on the characteristics, performance enhancement strategies, and application requirements of stretchable electronic
conductors.

® An exhaustive analysis of the existing challenges and future prospects for stretchable electronic conductors.

ABSTRACT Stretchable electronics have been recognized as intriguing next-generation ~
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electronics that possess huge market value, and stretchable electronic conductors (SECs) are

essential for stretchable electronics, which not only can serve as critical functional components

but also are the indispensable electronic connections bridging various electronic components /°
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within stretchable electronic systems. Herein, we offer a comprehensive review of recent

progress in SECs including the material categories, structure designs, fabrication techniques,
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and applications. The characteristics, performance enhancement strategies, and application
requirements are emphasized. Based on the recent advances, the existing challenges and future

prospects are outlined and discussed.
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SECs Stretchable electronic conductors H Hydrogen

Cu Copper LM Liquid metal

Au Gold InOG Indium/oxide film/gallium
Ag Silver LMPs Liquid metal particles
PDMS Polydimethylsiloxane In,0, Indium oxide

NWs Nanowires 1D One-dimensional

EGaln Eutectic gallium indium 2D Two-dimensional
SHL-LIG Super-hydrophilic laser-induced graphene 3D Three-dimensional
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Carbon nanotubes

Bottle brush elastomer
Single-walled carbon nanotubes
Carbon nanofiber

Polyacrylamide

Acrylamide

Polyaniline

Polyvinyl alcohol
Polymer-laminated-MXene

Poly (3,4-vinyldioxythiophene): poly
(styrene sulfonic acid)

Polyethylene oxide

Dimethyl sulfoxide

Polyether sulfonate

General effective medium
Waterborne polyurethane
Thermoplastic polyurethane

Indium

Gallium

Stretchable transparent nanofiber network
electrode

Reduced graphene oxide

Silver nanoparticles

Poly(styrene ethylene butylene styrene)
Bacterial cellulose

Nickel

Chemical vapor deposition

Liquid metal-coated elastic kirigami
electrode

Mechanical metamaterial
Multiwalled carbon nanotubes
Diethylene glycol

Chloroform

Electroless deposition
Polyvinylpyrrolidone

Multi-layer graphene/graphene vortex
Polymethyl methacrylate
Piezoelectric nanogenerator
Triboelectric nanogenerator
Percolation network
Poly(styrene-isobutylene-styrene)
Polycarbonate
(4-Aminotetrahydropyran),PbBr,Cl,
Poly(vinylidene fluoride-trifluoroethylene)
Stretchable organic solar cells
Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-
3-fluoro)thiophen-2-yl)-benzo[1,2-
b:4,5-b’[dithiophene))-alt-5,5’-(5,8-
bis(4-(2-butyloctyl)thiophen-2-yl)
dithieno[3’,2’:3,4;2”,3”:5,6]benzo [1,2-c]
[1,2,5]thiadiazole)]

PEHDT Poly[bis(2-hexyldecyl) 5-(4,8-bis(5-
(2-ethylhexyl)-4-fluorothiophen-
2-yl)-6-methylbenzo[1,2-b:4,5-b']
dithiophen-2-yl)-5"-methyl-[2,2":5",2"-
terthiophene]-3,3"-dicarboxylate]
v-AuNWs Vertically aligned gold nanowires

CY Carbon yarn

sAPU Ant-nest amphiphilic polyurethane
ISSC Integrated stretchable supercapacitor
ACNTs Acid-treated carbon nanotubes
FCNTs Fluorinated carbon nanotubes

pPVC Polyvinyl chloride

PAN Polyacrylonitrile

1 Introduction

Traditional rigid electronics are uncapable of conform-
ing to curved or deformable surfaces which are commonly
seen in daily life, and stretchable electronics emerge to
address such challenges, whose stretchability and shape
adaption are mainly realized through stretchable struc-
tural designs and intrinsically stretchable materials.
Stretchable electronics have been given substantial atten-
tion and shown tremendous potential to revolutionize
myriad areas such as medical care, robotics, and sports
[1-8]. As conductive materials that can maintain reliable
electrical properties despite substantial mechanical defor-
mation, stretchable conductors are critical base materi-
als for stretchable electronics, which allow for seamless
integration with various irregular surfaces and excellent
adaptability to operational environments [9-12]. The
conductive mechanisms in stretchable conductors can be
divided into two categories: ionic conduction [13—15]
and electronic conduction, with electronic conduction
being more prevalent. Electronic conductivity is not only
fundamental for the functionality of electronics but also
directly influences their working performance, stability,
and potential applications. Therefore, the research and
development of stretchable electronic conductors (SECs)
is of paramount importance [16-20]. SECs guarantee the
realization of both basic functions and the integration
of multiple functionalities within stretchable electronic
systems. Beyond serving as the electrodes and conduc-
tive interconnecting components, they can offer sensitive
sensing properties, adjustable thermal management, and
effective electromagnetic interference shielding [21-27].
Particularly, the intrinsic electrical stability of SECs is
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crucial for ensuring normal operation and extending the
service life of stretchable electronic devices. Transpar-
ent SECs offer visibility, which are in critical demand in
applications such as displays and wearables [28—34]. The
significance of SECs as one core material of stretchable
electronics is underscored by the substantial technologi-
cal innovation and increasing market value observed in
recent years, and the breakthroughs in various fields, such
as biomedicine, human—computer interaction, and energy
management, not only deepen our basic understanding of
SECs but also inject new momentum into the industri-
alization of stretchable electronic technology. SECs have
been undergoing burgeoning development and inevitably
facing challenges in practical applications. Hence, a com-
prehensive review of the research on SECs is both timely
and critical [35-42].

In this review, we will summarize the latest advances in
the field of SECs, with an emphasis on their characteris-
tics, performance enhancement strategies, and application
requirements. As shown in the overview in Fig. 1, we will
begin by providing an exhaustive review of commonly uti-
lized types of materials for SECs, summarize the charac-
teristics and advantages/disadvantages of different types of
materials, and discuss plausible strategies for performance
enhancement. Subsequently, we will overview and discuss
the effect of structural design on the properties of SECs
and analyze the reasons why specific structures lead to high
performance. Following this, we will review the fabrication
techniques employed for different types of SECs and sum-
marize their pros and cons. Then, we will give a detailed
review of the functions and requirements of SECs applied
in diverse fields. Finally, we will outline each category of
SECs, discuss the existing challenges, and offer a perspec-
tive on the future development prospects and application
potentials of SECs.

2 Classification of SECs

There have been a couple of classifications for SECs, such
as those based on different structures and matrix materials.
In this review, we categorize SECs based on their primary
conductive components: metal-based, inorganic nonmetallic
materials-based, conductive polymer-based, and composite
materials-based SECs.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

2.1 Metal-Based SECs

Metal-based SECs can be divided into two types: solid
metal-based and liquid metal (LM) -based SECs.

2.1.1 Solid Metal-Based SECs

Solid metal materials commonly refer to those metal materi-
als that maintain a solid crystalline structure at room tem-
perature and have high density and mechanical strength. To
be applied in SECs, these materials are generally first pro-
cessed into various nanostructures, such as ultra-thin metal
films, metal nanofibers, metal nanogrooves, metal nanowires
(NWs), metal nanoflakes, and metal nets, and then manufac-
tured into designed shapes and combined with stretchable
substrates [43—47]. The most commonly applied solid metal
materials are noble metal nanomaterials like gold (Au) and
silver (Ag) due to their inherent stability. Other metal nano-
materials, such as copper (Cu) and ferrum (Fe), demonstrate
higher chemical activity, rendering them more susceptible
to oxidation and instability. High aspect ratios are critical
for metal NWs to achieve both high electrical conductiv-
ity and mechanical compliance [48-50]. It is worth noting
that while noble metal nanomaterials generally exhibit good
stability, they can still undergo oxidation or other chemical
reactions under specific environments or conditions, includ-
ing exposure to strong oxidants, high temperatures, and high
humidity [S1-53].

The conductivity of solid metal-based SECs under ten-
sile deformation can be improved through various structural
designs of solid metal nanomaterials.

(1) Deposition of a micro-crack network pattern on a
thin metal layer [54-57]. For example, inspired by
the puffer fish, Sun et al. [57] proposed an interlayer
adjustment strategy by introducing an intermediate
layer (FeO,) between the polymer substrate and metal
film to achieve stretchability (Fig. 2a—d). The Ag/FeO,
film was deposited on a polydimethylsiloxane (PDMS)
substrate via a two-step deposition process. The surface
roughness of FeO, can be controlled by adjusting the
deposition pressure. The strong interfacial adhesion
between Ag and FeO, layers facilitated the effective
transfer of the crack mode of FeO, to the metal film,
enabling crack modulation. This approach resulted in
a nearly 20-fold increase in the stretchability of the Ag

@ Springer
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Fig. 1 Overview of the categories, structure designs, fabrication techniques, and applications of SECs. Metal-based SECs. AgNWs: Reproduced with permission
[177]. Copyright 2023, Wiley-VCH GmbH. Magnetron sputtering: Reproduced with permission [26]. Copyright 2020, Wiley-VCH GmbH. Inorganic nonmetallic
materials-based SECs. CNT and graphene: Reproduced with permission [19]. Copyright 2021, MDPI, Basel, Switzerland. MXene: Reproduced with permission
[20]. Copyright 2023, Wiley-VCH GmbH. Vacuum filtration: Reproduced with permission [237]. Copyright 2024, Elsevier Ltd. Conductive polymer-based SECs.
PEDOT:PSS: Reproduced with permission [252]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 3D Printing: Reproduced with permis-
sion [288]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 1D stretchable structure designs. Spiral: Reproduced with permission [42].
Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Wave: Reproduced with permission [194]. Copyright 2014, Royal Society of Chemistry.
Kirigami: Reproduced with permission [199]. Copyright 2023, Wiley-VCH GmbH. 2D stretchable structure designs. 2D buckling: Reproduced with permission
[205]. Copyright 2022, Elsevier Ltd. 2D snakeskin: Reproduced with permission [209]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 3D
stretchable structure designs. 3D porous sponge: Reproduced with permission [40]. Copyright 2024, Elsevier B.V. 3D structure: Reproduced with permission [218].
Copyright 2023, Springer Nature Limited. 3D percolating network: Reproduced with permission [41]. Copyright 2023, Springer Nature Limited. Applications in
energy conversion devices. Nanogenerators (tribo-/piezo-/pyro-/thermo- electric): Reproduced with permission [310] [329]. Copyright 2022, Wiley-VCH GmbH.
Reproduced with permission [316]. Copyright 2024, Wiley-VCH GmbH. Solar cell: Reproduced with permission [27]. Copyright 2024, Springer Nature Limited.
Fuel cell: Reproduced with permission [356]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Applications in energy storage devices. Bat-
tery: Reproduced with permission [367]. Copyright 2024, American Chemical Society. Fiber battery: Reproduced with permission [378]. Copyright 2023, Don-
ghua University, Shanghai, China. Supercapacitor: Reproduced with permission [388]. Copyright 2022, Elsevier B.V. Applications in sensors. Motion detection:
Reproduced with permission [407]. Copyright 2025, Elsevier Ltd. Tactile sensing: Reproduced with permission [419]. Copyright 2021, Springer Nature Limited.
Chemical detection: Reproduced with permission [422]. Copyright 2022, Elsevier B.V. Implantable monitor: Reproduced with permission [425]. Copyright 2023,
Korean Society of Medical and Biological Engineering. Other applications. NFC antenna: Reproduced with permission [440]. Copyright 2023, Elsevier Ltd. Wear-
able heater: Reproduced with permission [439]. Copyright 2023, Elsevier B.V. Electromagnetic interference shielding: Reproduced with permission [29]. Copyright
2017, American Chemical Society
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film (maximum strain: 295%), while maintaining con-
ductivity over 900 cycles at 40% strain.

(2) Construction of hybrid structures combining metal
nanomaterials with thin metal layers [58-61]. For
example, Cho et al. [60] developed a type of SEC
using metal/Ag NWs/metal hybrid structures on a
PDMS substrate. Hybrid structures of Ag/AgNWs/Ag
(ANA) and Cu/AgNWs/Cu electrodes achieved low
sheet resistances of around 100 mQ sq~!. The AgNWs
between the top and bottom metal electrodes improved
the tensile properties under both single and multi-
cycling strain conditions. The randomly interconnected
AgNWs generated a new conductive path across cracks
and wavy structures in the metal electrodes, thereby
enhancing the conductivity of these SECs under strain.
Ali et al. [61] prepared an SEC by screen printing Ag/
AgNWs composites on thermoplastic polyurethane
(TPU) substrates. The SEC features two structural
designs: straight-line and wavy-line configurations
(Fig. 2e, f). Under an elongation of 3 mm, the straight-
line and wavy-line structures exhibited resistance
changes of 238.9% over 100 cycles and 243.6% over
200 cycles, respectively. The wavy-line configuration,
with a smaller width-to-radius (w/r) ratio, demonstrated
superior stretchability and sensitivity (33% resistance
change per 1% strain), higher than the straight-line con-
figuration (21% resistance change per 1% strain).

(3) Creation of a metal network structure. Unlike the ran-
dom arrangement of metal nanowires on flexible sub-
strates, metal networks are generally well arranged,
which is conducive to large-scale process production
and results in low initial square resistances (as low as
0.12 Q sq_l) [62—66]. For example, Chen et al. [65]
developed a transparent Cu mesh SEC with good con-
ductivity and multidirectional stretchability (Fig. 2g—i).
The Cu mesh was initially prepared by template elec-
troplating, followed by encapsulation with PDMS.
The resulting SEC demonstrated a low sheet resist-
ance of <0.12 Q sq~! and could withstand a maximum
strain of 160%. The resistance change remained below
5% under 60% strain. After 1000 cycles of stretching
and releasing under 10% strain, the Cu mesh remained
intact with negligible resistance change.

2.1.2 LM-Based SECs

LMs, such as eutectic gallium indium (EGaln) and Galin-
stan, represent a kind of metal materials that exist in a liquid
phase at or near room temperature, exhibiting characteris-
tics of both fluids and metals [67, 68]. LMs possess high

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

electrical conductivity, thermal conductivity, and chemical
stability [69—72]. Given their inherent fluidity, LMs generally
require integration with a supporting polymer matrix to form
areliable SEC for practical applications, and there have been
mainly three integration strategies.

(1) Injection of LMs into elastomer microchannels

The LM can be sealed in a soft elastomer by injection
[73-77]. For example, Chen et al. [77] fabricated an SEC
by injecting EGaln into a wavy microchannel elastomer
matrix (Fig. 3a—c). As a first step, the elastomer (Ecoflex)
was poured into a microfluidic channel mold to solidify.
A layer of elastomer was then spin coated on its surface.
Finally, EGaln was injected into the microchannel using
a syringe. The fabricated SEC exhibited an increase in
resistance with applied strain, with a relative resistance
change (AR/R) of approximately 2 at 100% tensile strain
(R and R, are the measured resistances under a certain
strain and zero strain, respectively). The SEC was applied
as a microfluidic flexible strain sensor that can withstand
a strain of up to 320%, with AR/R,, versus strain curves
exhibiting a monotonic increase with minor discrepancy.
The SEC-based strain sensor shows stable performance (a
tiny drift of 3.96%) under dynamic loading of 500 cycles
of stretching/releasing at a peak strain of 100%.

(2) Adhesion and patterning of LMs onto elastomer sur-
faces

Various techniques, including 3D printing, molding,
embossing transfer, and screen printing, have been applied
to pattern LMs onto diverse elastomer substrates for the
fabrication of SECs [78—81]. The introduction of metal
NWs into LM followed by selective laser processing and
etching can obtain self-supporting LM films, which can
be applied directly to curved surfaces [82]. However, the
high surface tension of LMs and their weak interfacial
bonding with most elastomers still pose key challenges.
To address these limitations, Wang et al. [81] proposed
a method of combining LMs with soft elastomers using a
super-hydrophilic laser-induced graphene (SHL-LIG) pro-
cess (Fig. 3d-f). This involved coating a polyimide (PI)
film with Cu to navigate LMs into specific patterns. The
resulting LMs/SHL-LIG was then transferred to an Ecoflex
substrate to obtain an SEC. This SEC exhibited a low sheet

@ Springer
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resistance of 3.54 mQ sq~! and could extend up to 480%.
In addition, the resistance of this SEC changed by only 8%
at 300% tensile strain and demonstrated strong insensitiv-
ity to temperature and pressure changes.

By inkjet printing, the LM acts as the printing ink in the
preparation of SECs. Since the conductivity is limited by
the formation of an insulating oxide layer outside the liq-
uid metal particles (LMPs), the LM needs to be doped or
modified [83-86]. For example, Veerapandian et al. [86]
introduced hydrogen (H) doping on the surface of the LM
oxide layer using ultrasonic treatment to enhance both con-
ductivity and deformability. This H-doped LM solution was
then employed as the ink for nozzle printing to manufacture
circuit lines on a PDMS substrate. The metallic conductiv-
ity of the prepared printed circuit reached 25,000 S cm™".
Under 500% uniaxial stretching, the resistance of the circuit
increased from 2.4 to 2.9 Q.

(3) Self-assembly of modified LMs into films

The LM-based SECs can also be prepared by forming an
LM film and then adhering it to an elastomer. To achieve
spontaneous film formation, the LM needs to be modified
to overcome the problem of high surface tension through
techniques including the laser-induced method, thermal
evaporation method, and solvent treatment method [87, 88].

The laser-induced method induces plasma resonance
on the local surface of LM by laser irradiation, promotes
the rupture of the oxide shell on the surface of LMPs, and
enhances the interface adhesion between the LM and sub-
strate, thus facilitating the spontaneous formation of LM
films [89, 90]. Cho et al. [90] developed an SEC combining
LM and AgNWs and regulated the degree of entanglement
of these two-phase materials through a laser-induced photo-
thermal reaction, enabling high-precision patternization and
spatial programming of electromechanical properties in a
single step (Fig. 3g—i). The obtained SEC achieved an elec-
trical conductivity of 8.65 X 10° S m~!, a relative resistance
change of about 1.27 at 100% tensile strain, and maintained
stable conductivity over 12,000 cycles at 100% strain.

The thermal evaporation method enhances the interfa-
cial adhesion between the LM and the substrate by ther-
mally vaporizing nanoclusters, such as indium (In)/gal-
lium (Ga) nanoclusters, onto the substrate. Subsequent

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

selective formation of an oxide layer in the air allows for
the creation of a multi-layer LM network [91-93]. For
example, Han et al. [93] proposed an SEC composed of an
In/oxide film/Ga (InOG) structure. The InOG was obtained
by depositing In nanoclusters onto an O, plasma-treated
TPU substrate using high-vacuum thermal evaporation.
The sample was then exposed to air for a few seconds
to form a thin layer of In oxide (In,0;)/In hydroxide on
its surface, followed by the deposition of Ga nanoclus-
ters onto the oxide layer via thermal evaporation. In the
InOG structure, In and Ga were separated by an oxide
film, which enhances the wettability of Ga, resulting in
a multi-layer nanocluster network. The resistance of the
InOG structure was reduced during the stretching process,
which could be mainly attributed to two factors: 1) the
increase in the size of the In and Ga nanoclusters leads to
a decrease in sheet resistance, and 2) the fracturing of the
interlayer oxide film during stretching initiates the forma-
tion of EGaln and creates a new electrical pathway with
the surrounding nanoclusters. After 50,000 fatigue tests
at 50% tensile strain, the InOG’s resistance increased by
no more than 50%.

The solvent treatment method represents an advanced
technique for interface modification based on the selective
interaction between a solvent and LM’s surface oxide. This
method effectively removes the Ga oxide passivation layer
on the surface of the LM droplet through the permeation of
the solvent and reduces the thickness of the interfacial oxide
layer to a nanometer level. In subsequent processing, the
interdroplet oxide can be broken by mechanical stretching
so that the LM can form a film on the substrate [94-96]. For
example, Vallem et al. [96] reported an SEC based on LMPs
where the LM surface was chemically modulated by ultra-
sonic crushing of EGaln combined with solvent treatment.
Specifically, hydrochloric acid and 1,6-hexane dithiol were
added to an isopropyl alcohol solution containing LMPs for
ultrasonic treatment. Subsequently, the interdroplet oxide
was broken by stretching the substrate, enabling the forma-
tion of a film on the substrate. The prepared SEC exhibited
high electrical conductivity (1.64x10° S m™"), a large sur-
face area (1,257% greater than LM film with the same loca-
tion), and an almost strain-insensitive resistance (normalized
resistance (R/R;)=1.23 at 600% strain).
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mass loadings. f Resistance measurements of the SEC in the pressure range of 100-1,000 kPa and temperature range of 25-85 °C. Reproduced
with permission [81]. Copyright 2023, American Chemical Society. g Schematic diagram, optical image, and pseudo-color SEM image of the
AgNWs-EGalnPs SEC. h Relative resistance change as a function of uniaxial tensile strain of the LM/AgNWs SEC after etching with various
laser power irradiations. i Relative resistance changes of the laser-irradiated biphasic metallic LM/AgNWs SEC subjected to cyclic uniaxial ten-
sile loading to 100% for up to 12,000 cycles. The schematic illustration shows the structure of the LM/AgNWs SEC, and the inset describes the
operating profile of the applied strain. Reproduced with permission [90]. Copyright 2022, Wiley-VCH GmbH

2.2 Inorganic Nonmetallic Materials-Based SECs nanomaterials such as In,O;, have found applications in the
preparation of SECs. Among them, carbon nanomaterials
Inorganic nonmetallic materials, including carbon nanoma-  and MXenes, which offer high conductivity, good flexibility

terials, MXenes, and certain metal oxide semiconducting
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and contribute to the mechanical robustness of the SECs
[97-100], will be the primary focus of this section.

2.2.1 Carbon Nanomaterials-Based SECs

Carbon nanomaterials can be divided into zero-, one-,
two-, and three-dimensional (0D, 1D, 2D, and 3D) nano-
structures. Among them, 1D and 2D carbon nanomateri-
als are more commonly applied in SECs due to their high
electrical conductivity and flexibility [101, 102].

(1) 1D carbon nanomaterials-based SECs

Carbon nanotubes (CNTs) and carbon nanofibers
(CNFs) are typical 1D carbon nanomaterials. CNTs offer
advantages such as high conductivity, large surface area,
good flexibility, and high chemical stability [103-105].
However, the widespread adoption of CNTs in SECs is
hampered by: (1) sheet resistance exceeding 100 Q sq~!
due to impurities introduced during mass manufactur-
ing and (2) limited stretchability of CNT fibers or films,
leading to a rapid increase in resistance upon stretch-
ing. To improve the strain tolerance and conductivity
of CNTs-based SECs, strategies such as network struc-
ture designs, binding CNTs with soft elastomers, and
prestretch-release processes of CNT/elastomer compos-
ites are usually employed [106—110]. Cao et al. [109]
developed a layered CNT SEC by transferring a crumpled
vertically aligned CNT-forest onto an elastic substrate
(VHB 4910) using a thermal annealing process in an
atmospheric environment (Fig. 4a—c). The flexibility and
intertwined networks within the crumpled CNT-forest
allowed the film to maintain good conductivity through-
out cyclic crumpling/unfolding, enabling the creation
of stretchable and robust SECs that were applied as the
electrodes for supercapacitors. Zhang et al. [110] pro-
posed an SEC based on whisker-CNTs (Fig. 4d, e). The
SEC was obtained using a simplified Langmuir-Blodg-
ett method, where loose whisker-CNTs were densified
through porous sponge capillary compression to form a
conductive network, which was then laminated between
PDMS elastic substrates. Its conductivity could reach
8,156 S m~! and remained stable after 1,000 cycles at
40% strain.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

(2) 2D carbon nanomaterials-based SECs

Graphene is a 2D form of carbon atoms packed in a hex-
agonal lattice, with unique properties such as a theoretically
large specific surface area of 2,630 m? g~!, high carrier
mobility up to 200,000 cm? V= s7!, high chemical/thermal
stability, and high flexibility [111-113]. While graphene
itself is not inherently stretchable, graphene-based SECs
are typically prepared by compounding graphene with other
materials. For example, graphene can form a multi-layer
structure with nanomaterials possessing a high aspect ratio
to manufacture SECs [114—117]. Huang et al. [117] inserted
AgNWs between two graphene layers to form a G/AgNWs/G
sandwich structure as an SEC (Fig. 4f-h). The AgNWs not
only suppress the formation of cracks and pores in the gra-
phene layers, which could result in conductivity loss under
tensile strain, but also bridge existing cracks to compensate
for the conductive path loss. Compared with one layer and
two layers of graphene, the G/AgNWs/G sandwich structure
exhibited the slowest rate of resistance change under strain.
The conductivity of the sandwich structure remained stable
after 100 stretching/releasing cycles under 20% strain.

Graphene-based SECs can also be prepared by coating or
transferring graphene onto a pre-stretched elastomer layer
[118-121]. For example, Lin et al. [121] reported an SEC
based on pleated graphene. This involved initially transfer-
ring multiple layers of graphene from Cu foil to a PDMS
supporting layer and subsequently onto a pre-stretched
acrylic elastomer film. Upon release of the pre-stretch, the
graphene formed a pleated structure due to compression.
The transfer of the pleated graphene to PDMS was facilitated
by the differential swell ratio between the solvent (acetone)
swollen elastomer and the target substrate. In the 0-75%
strain range, the resistance demonstrated a linear change
with strain, with a sensitivity coefficient of 0.557. The sta-
bility was maintained after 2,000 cycles at 40% strain, and
the elongation at break reached 150%.

2.2.2 MXenes-Based SECs

MXenes are a class of 2D metal carbides, nitrides, and car-
bon nitrides. The chemical formula of MXenes is M, | (X, T,
(n=1~4), where M represents early transition metals of
group III-VT, such as Ti, Zr, V, and Mo, X denotes carbon
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Fig. 4 Carbon nanomaterials-based SECs. a SEM image of the crumpled pattern formed by the CNT-forest on a fully relaxed elastomer sub-
strate (VHB 4910) with a pre-strain up to 300% X 300%. Scale bar, 100 pm. b Resistance variation of a uniaxial crumpled CNT SEC with a
pre-strain up to 300%. ¢ Resistance variation of a biaxially crumpled CNT SEC with a pre-strain up to 200% x200%. Reproduced with per-
mission [109]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. d Schematic illustration of the fabrication of whisker-
CNT (WCNT) nanocomposite films and the structure of the SEC. e The relative resistance changes of WCNT-based SECs and conventional
CNTs-based SECs during stretching. Reproduced with permission [110]. Copyright 2021, Elsevier Ltd. f Schematic diagram of the G/AgNW/G
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Copyright 2021, MDPI

atoms or nitrogen atoms, n indicates the number of layers
of carbon or nitrogen, and T, means the surface groups on
the outermost M layer, typically —OH, -0, —F, and —CI.
MXenes exhibit unique properties including high electrical
conductivity, large specific surface area, good mechanical

© The authors

properties, and good hydrophilicity, making them promising
candidates for SECs [122-125].

Among the MXene family, Ti;C,T, is the most exten-
sively studied for SEC applications, and the preparation
methods for MXene-based SECs are similar to those used

https://doi.org/10.1007/s40820-025-02009-3
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for graphene-based SECs [126—134]. For example, Zhou
et al. [129] prepared a freeze-resistant and mechanically
strong polyvinyl alcohol (PVA) organic hydrogel SEC by
integrating 1D CNF with 2D MXene (Fig. Sa—c). Provid-
ing high conductivity through molecular interactions and
geometric synergy, glycerol and KOH were also incorpo-
rated to improve the stretching and freezing resistance of
the hydrogel. The prepared SEC maintained a conductivity
of 6.2 S m~! at — 20 °C and exhibited an elongation at break
of up to 866%. Li et al. [134] coated a thin layer of poly(4-
vinylphenol) on an MXene layer using a two-step spinning
coating method and obtained a polymer-laminated-MXene
(PL-MXene) SEC (Fig. 5d—f). An electroluminescent dis-
play prepared using the PL-MXene SEC functioned nor-
mally under high temperature (70 °C) and humidity (50%)
conditions and exhibited excellent antioxidant properties.
In addition, the SEC maintained good transparency, with
a transmittance of approximately 76% at a wavelength of
550 nm.

2.3 Conductive Polymer-Based SECs

Conductive polymers have shown great potential for the
preparation of SECs owing to their inherent elasticity
and flexibility, along with the tunability of polymer chain
interactions and chemistry [135-140]. These polymers,
typically z-conjugated systems, exhibit inherent electrical
conductivity arising from the delocalized z electrons that
can move freely throughout the polymer chain. While con-
ductive polymers generally possess some degree of stretch-
ability, their tensile properties can be further improved
through strategies such as the addition of small molecule
plasticizers and solution treatment. Common conductive
polymers include polypyrrole (PPy), polyaniline (PANI),
poly (3,4-vinyldioxythiophene):poly (styrene sulfonic acid)
(PEDOT:PSS). Among them, PEDOT:PSS is the most
studied for SECs [141, 142]. PEDOT:PSS can form self-
supporting films and is non-toxic and chemically adjustable
(allowing covalent bonding with biomolecules), although
its tensile properties are somewhat limited. The following
methods have been applied to improve its tensile properties
and/or electrical conductivity.

(1) Incorporation of small molecule plasticizers [143—

146]. The insertion of a small molecule plasticizer
into the PEDOT:PSS chain can weaken the strong H
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2)

3)

bond and electrostatic interaction in the PSS phase,
thereby reducing the rigid binding between molecular
chains. At the same time, the plasticizer, as a lubricat-
ing medium, promotes the slippage and rearrangement
of molecular chains, disperses the stress concentration,
and thus improves the tensile properties of the mate-
rial. For example, He et al. [146] prepared a D-sorbitol-
PEDOT:PSS (s-PEDOT:PSS) SEC by spin coating a
mixed solution of PEDOT:PSS and D-sorbitol on a
glass substrate (Fig. 6a—c). The conductivity and tensile
properties of PEDOT:PSS were improved by adding the
biocompatible D-sorbitol. The prepared PEDOT:PSS
SEC exhibited a conductivity of up to 1,000 S cm™!
at a tensile strain of 60%, with negligible change in
conductivity after 10 stretching/releasing cycles. The
enhanced performance was due to the disruption of H
bonds between the PSSH chains by D-sorbitol, making
the PSSH chains more prone to conformational changes
under stress.

Surfactant treatment [147—-150]. Surfactants are embed-
ded into the PSS phase via their fluorinated hydropho-
bic chains in their amphiphilic structures, partially
shielding the strong H bonds and electrostatic interac-
tions between PSS chains. This reduces the rigid bind-
ing of molecular chains and promotes phase separation
between PEDOT and PSS, leading to the formation of a
more continuous flexible network. Dauzon et al. [150]
treated PEDOT:PSS with a mixed solution containing
polyethylene oxide (PEO) as a precursor, Zonyl sur-
factant, and 5% dimethyl sulfoxide (DMSO) as a sol-
vent, resulting in a transparent PEDOT:PSS-based SEC
(Fig. 6d—f). The obtained SEC exhibited a conductivity
of up to 1,230 S cm™!. The R/R,, of the conductor with
5 wt% PEO + 1 wt% Zonyl increased by 1.7 times after
250 cycles at 60% strain.

Doping. The conductivity of PEDOT:PSS can be
improved by doping polar solvents, strong acids,
ionic liquids, and other substances. Polar solvents can
induce a solvation effect, bringing the PEDOT chains
closer together, which is conducive to the transmission
of electrons. Strong acids can impose a protonation
effect, promote the rearrangement and accumulation
of PEDOT chains, and form more orderly conductive
channels. The introduction of ionic liquids can provide
additional ion transport channels and increase the over-
all conductivity [151-155]. For example, Song et al.
[155] spin-coated a PEDOT:PSS aqueous solution on
a polyether sulfonate (PES) substrate and then treated it
with 80 wt% H,SO,. Following with a post-processing,
an SEC with a maximum conductivity of 2,673 S em™,
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high transparency (> 85%), and a sheet resistance of
89 Q sq~! was obtained (Fig. 6g, h).

2.4 Composite Materials-Based SECs

The composite materials-based SECs reviewed in this sec-
tion mainly focus on those manufactured by blending stretch-
able polymers with conductive fillers. The stretchable poly-
mers serve as the supporting matrix, while the conductive
fillers are dispersed within this matrix to form conductive
pathways. The increase in the volume fraction of the conduc-
tive network will generally increase the conductivity of the
composite materials-based SECs. When the volume fraction
exceeds a certain value, the conductivity of the composite
materials-based SECs will reach what is called the perco-
lation threshold. At present, the general effective medium

© The authors

(GEM) model is commonly employed to study the electrical
performance trend of the composite materials-based SECs
[156-159]. The model formula is as follows [156]:

(=)
N ir_o-r;t
ot o ®
1 o' +Aoc,
1-¢,
A= - 2
P, @

where o,, is the conductivity of the stretchable composite
materials-based SECs, o; is the conductivity of the i-th com-
ponent, ¢; is the volume fraction of the i-th component, ¢,
is the percolation threshold, ¢ is the critical index, and A is
a parameter that changes with the percolation threshold. In

https://doi.org/10.1007/s40820-025-02009-3
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this model, the critical exponent ¢ can be determined through inorganic nonmetallic materials [164-166], conductive
calculation or curve fitting techniques. polymers [167-169], and a combination of different con-
Composite materials-based SECs have been prepared  ductive fillers [170, 171]. Li et al. [163] reported an SEC
by mixing polymers with metal nanostructures [160-163],  with a low resistance and stable performance based on
a PDMS-Ag nanosheet composite (Fig. 7a—c). With the
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synergistic action of the high tensile properties of PDMS
and the excellent electrical conductivity of Ag nanosheets,
the minimum resistivity of the SEC reached 4.28 Q m,
and the resistance increased by about 4 Q under 20%
strain. Although the internal conductive pathways were
damaged at 200% strain, the SEC still worked normally
after the stress was released. Dong et al. [166] prepared
an SEC using PU as the matrix and CNT as the conduc-
tive filler. The dynamic boron ester bonds and H bonds in
PU endowed the electronic conductor with a self-healing
efficiency of 78%, a tensile strength of 15.4 MPa, and an
elongation at break of 420%, while the CNT contributed
to a high conductivity of 0.57 mS cm™!. Kim et al. [169]
blended PEDOT:PSS with a highly stretchable non-ionic
waterborne PU (WPU) and coated the mixture onto a TPU
film. WPU interacts with PEDOT:PSS through H bonding
and coulomb attraction. By varying the WPU content, the
electrical and tensile properties of the SEC could be tuned.
At a WPU concentration of 2.0 wt%, the sheet resistance
was about 400 Q sq~! and remained almost unchanged at
100% strain. Even at 400% strain, the surface of the SEC
showed no signs of damage.

In order to further improve the conductivity and mechan-
ical stability of composite materials-based SECs, a com-
bination of various conductive fillers can be incorporated
by leveraging the attractive forces between different fillers
[172-175]. For example, Chio et al. [175] designed a stretch-
able transparent nanofiber network SEC (STNNE) based on
an electrospun stretchable nanofiber network structure com-
posed of a mixture of PU/reduced graphene oxide (rGO)/
Ag nanoparticles (AgNPs) (Fig. 7d—f). The resistance of the
STNNE film reached 210 Q sq‘l, with a mechanical stretch-
ability of up to 40% and relatively high electrical stability.

Furthermore, the combination of surface-modified nano-
materials of different sizes can allow the composite mate-
rials-based SEC to maintain a percolation network under
different strain levels, thereby improving both the tensile
properties and electrical conductivity of the SEC [176]. For
example, Jung et al. [176] employed an optimum combi-
nation of OD, 1D, and 2D Ag nanomaterials treated with
1-decanethiol to form an SEC that demonstrated insensitiv-
ity to uniaxial or biaxial strain (Fig. 7g—i). The surface modi-
fication of Ag nanomaterials by 1-decanethiol promoted
the strain-induced rearrangement of Ag nanomaterials in a

© The authors

viscoelastic matrix (poly(styrene ethylene butylene styrene),
SEBS), which helped preserve a connected percolation net-
work under strain. This SEC, composed of diverse dimen-
sional Ag nanomaterials and block copolymer elastomers,
exhibited highly stable electrical properties with less than
1% resistance change under less than 50% strain, and its
initial conductivity reached 31,000 S em™ L

In addition, through the dual-ligand surface-modified
nanomaterials combined with high-humidity-environment
control, the local bonding structure of the nano-network
can be constructed to cooperatively enhance both the
electrical conductivity and tensile strength of the compos-
ite materials-based SECs [177]. Jung et al. [177] modi-
fied the surface of AgNWs with a dual ligand of 1-pro-
pyl mercaptan and 1-decyl mercaptan. These modified
AgNWs were then mixed with SEBS under highly humid
conditions. The high humidity promoted local binding
among the modified AgNWs. This localized binding
improved the conductivity of the AgNWs network and
strengthened the interconnections between AgNWs. The
obtained SECs demonstrated excellent electrical conduc-
tivity (122,120 S cm™!) and stretchability (elongation at
break reaching 200%). At 100% tensile strain, AR/R, was
approximately 5.

3 Summary of This Chapter

SECs can be divided into metal-based, inorganic nonme-
tallic materials-based, conductive polymer-based, and
composite materials-based SECs, based on their primary
conductive components. Among metal-based SECs, solid
metals (e.g., Ag) are generally processed into nanostruc-
tures, which exhibit excellent electrical conductivity but
lack sufficient flexibility. Coordination between conduc-
tivity and tensile properties for solid metal-based SECs
can be achieved through methods such as micro-crack net-
work regulations, hybrid structures incorporating metal
nanowire interlayers, and designs like template electro-
plated metal mesh. LMs (e.g., EGaln) exploit their fluidic
properties combined with elastomer packaging strategies
to construct highly stable conductive networks through
means such as microchannel injection, adhesion and pat-
terning of LMs on elastomer surfaces, and self-assembly
of modified LMs into films. The high surface tension and
weak interfacial bonding with most elastomers of LMs

https://doi.org/10.1007/s40820-025-02009-3
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are the main challenges for LM-based SECs. Inorganic
nonmetallic materials-based SECs mainly include carbon
nanomaterials (e.g., CNT and graphene)- and MXenes
(e.g., Ti;C,T,)-based SECs. Their mechanical adaptabil-
ity can be enhanced through techniques such as coating on
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pre-stretched elastomers and combination with other nano-
materials to form multi-layer structures. Conductive poly-
mer-based SECs are predominantly based on PEDOT:PSS,
whose stretchability can be enhanced by incorporating of
small molecule plasticizers and surfactant treatment, and
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conductivity can be improved by doping with substances
such as polar solvents, strong acids, and ionic liquids. The
addition of small molecule plasticizers and surfactants
enhances the stretchability of PEDOT:PSS by weakening
the strong H bond and electrostatic interaction in the PSS
phase, while the doping of polar solvents, strong acids, and
ionic liquids brings the PEDOT chains closer, facilitating
electron transfer and thus improving conductivity. Com-
posite materials-based SECs are typically manufactured
from a mixture of stretchable polymers and conductive
fillers. The conduction—stretchability synergies can be
enhanced through methods like multi-packing coordina-
tion, nano-size regulation, and dual-ligand surface modi-
fication. The GEM model can be applied to optimize the
percolation threshold to analyze the optimal performance
of the conductive network. Table 1 summarizes the typical
characteristics of SECs categorized on the basis of differ-
ent conductive materials.

4 Structure Designs of SECs

The stretchability of SECs can be achieved through ingen-
ious structural designs. Specific designs can circumvent the
typical decline in conductivity observed under tensile strain,
allowing the SECs to maintain their original conductivity
within a certain strain range. The structure design of SECs
can be categorized into three types based on the number
of dimensions of stretchable directions: 1D, 2D, and 3D
stretchable configurations.

4.1 1D Stretchable Structure Designs

1D stretchable structure designs can maintain the conductiv-
ity of the SECs during the stretching process in a single lin-
ear direction. This is primarily realized via buckling, spiral,
wave, and kirigami structures [178—181].

(1) Buckling structure

1D buckling structures are mainly manifested as bend-
ing or torsion deformation along their longitudinal axis.
These structures can be constructed by forming control-
lable folds on an elastic substrate, such as PDMS, through
a prestretch-release process. In addition, the matrix can
be precisely induced to form buckling morphologies of
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different characteristic scales by coordinating the gradi-
ent combination of pre-stretching amplitude and chemical
reduction frequency [182—185]. Yoon et al. [185] applied
a dense distribution of AgNP networks in PU to fabricate
a strain-insensitive fiber conductor consisting of a highly
conductive buckling shell through a simple chemical pro-
cess (Fig. 8a—c). Repeated absorption and reduction in
the Ag precursor increased the AgNP content within the
fiber. By changing the number of absorption and reduc-
tion cycles, three kinds of buckling structures, meaning
periodic (squares), fold (circles), and ridge (triangles)
fibers, were created. With increasing chemical reduction
cycles and decreasing pre-strain, the surface morphology
of the fiber tended to transition from a ridge shape to a
periodic shape. Finally, the experimental results showed
that the ridge-shaped fibers exhibited lower resistances and
superior tensile insensitivity. The critical strain gradually
increased from 30 to 180% as the pre-strain went up from
50 to 250%.

(2) Spiral structure

When the spiral structure is stretched, the fibers inside
will gradually straighten, similar to a spring. The inclined
winding fibers progressively align with the direction of
the applied tension, and the distance between adjacent
coils increases, analogous to straightening a coiled tel-
ephone cord where the coil spacing widens and the over-
all length grows. The amplitude of the geometry adapts
to accommodate the applied stress, allowing the SEC to
be stretched without stress concentration in the material
itself [42, 186—190]. Woo et al. [42] developed an SEC
based on a highly stretchable spiral-structured PU-based
fiber containing AgNPs with invariantly high conductiv-
ity (Fig. 8d-f). To impart electrical conductivity to the
fibers, the Ag precursor solution was reabsorbed and
reduced on the PU-based fibers. When the spiral diameter
of the SEC was 3 mm, the resistance showed a negligi-
ble increase even at 1,000% strain. After 10,000 tensile
cycles, the electrical properties remained stable. Liang
et al. [189] constructed a stretchable PEDOT @bacterial
cellulose (BC)/CNT hybrid spiral fiber with a “reinforced
cement—sand” structure using a wet spinning and winding
process. Dissolved BC acted as the bonding matrix, undis-
solved bacterial nanofibers and CNTs served as the sup-
porting body, and PEDOT functioned as the reinforcing
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Table 1 Typical characteristics of SECs categorized on the basis of different conductive materials

Type of SECs  Conductive Materials Conductivity or ~ Substrate or  Stretchability =~ AR/Rjunder  Preparation Reference
materials sheet resistance  supporting strain Process
matrix
Metal-based Solid metal AgNPs - PDMS 200% 4.1 under Laser depo-  [54]
SECs 100% strain sition
AgNPs 8~9Qsq! Parylene 50% - Vacuum [55]
vapor
deposition
template
method
AgNPs - PDMS 100% 1.4 under 30% Screen print- [56]
strain ing and
sacrificial
Liquid metal EGaln 22.532'S cm™! TPU 2260% 1.59 under 3D printing  [76]
1650% strain
EGaln - PVA hydrogel 400% 0.8 under Noncontact  [78]
100% strain laser cut-
ting and
magnetic
coating
EGaln 8.65x10°Sm™' PDMS, PET, 100% 127 under  Laser sinter- [90]
PI 100% strain ing
Inorganic Carbon nano- ~ Whisker 8156 Sm™! PDMS 420% - Langmuir-  [110]
nonmetallic materials CNTs Blodgett
materials- method
based SECs Graphene 7Scm™! PDMS 80% 0.244 under Chemical [116]
80% strain vapor
deposition
Laser- 114 Qsq~! SEBS 300% 0.32 under 5% Laser sinter- [118]
induced strain and ing
graphene 3.75 under
30% strain
MXenes . Ti;C,T, 23Scm™! PTFE 180% - Dot-matrix ~ [127]
drop-
casting
method
Ti;C,T, 8.7Sm™! PVA 820% - Chemical [129]
vapor
deposition
Conductive Conducting PEDOE:PSS 1603 S cm ! SEBS/silicon  — 3.4 under Drop casting [143]
polymer- polymers /PR? 100% strain
based SECs PEDOT:PSS/ 1230 S cm™! PDMS 120% - Drop casting  [147]
CNP*
Composite Composite PU/AGO/ 48 S cm™! PDMS - 0.83 under Electrostatic [175]
materials- conductive AgNPs 40% strain spinning
based SECs ~ materials AgNWs/  31.000Scm™ - 800% 0.01 under  Solution [176]
SEBS 50% strain mixing
*Polyrotaxane
®Cellulose nanofibril paper
SHANGHAI JIAO TONG UNIVERSITY PRESS @ Springer
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Fig. 8 1D stretchable structure designs. a Schematic illustrations of the formed buckle shapes. b Wavelengths and shapes of buckled structures of the fib-
ers based on the number of reduction cycles and pre-strain. ¢ Resistance and quality changes of the buckled AgNPs/PU fibers (one reduction cycle) due
to the applied tensile strain. Reproduced with permission [185]. Copyright 2023, American Chemical Society. d Schematic diagram of the helical fiber
interconnect. ¢ Normalized relative resistance changes of helical fibers with different helical diameters as a function of tensile strain. f Resistances of the
PDMS-coated helical fiber with a helical diameter of 3 mm under 10,000 stretching/releasing cycles from 0 to 100% applied strain with a frequency of
0.5 Hz. The inset shows the range of stretching cycle numbers between 0 and 2,500. Reproduced with permission [42]. Copyright 2020, WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. g Schematic diagram of a supercapacitor composed of wavy SECs. h Electrical resistance variation of the wavy
shaped porous graphene as a function of the stretching status. i The capacitance retention of the supercapacitor over 100 cycles of stretching/releasing tests
at 20% strain. The inset schematically illustrates the SECs-based supercapacitor in a stretched state. Reproduced with permission [194]. Copyright 2014,
Royal Society of Chemistry. j Photograph of the LM-based elastic kirigami SEC. k Stress—strain curves of five different patterned SECs. 1 Cyclic loading
test of the SEC for 1,000 cycles at 0—-100% strain. Reproduced with permission [199]. Copyright 2023, Wiley-VCH GmbH
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material. This structure avoids the reliance on an elastic
matrix or auxiliary materials to provide elasticity. The
spiral fiber exhibited elongation at a break of 1,175% and
demonstrated good cyclic stability. Ma et al. [190] created
shape-programmable LM fibers via the phase transition of
Ga. The solid Ga wire could be easily molded into a spiral
structure, and after coating the wire with PU, the structure
was retained even after the Ga metal was liquefied. Spiral
LM fibers fractured at approximately 1,273% strain, sig-
nificantly higher than the fracture strain of 1D linear LM
fibers at 358%.

(3) Wave structure

When the material of the wavy structure is stretched,
the angle between adjacent elements gradually expands,
and the distance between them widens synchronously.
This dynamic adjustment mechanism effectively disperses
and offsets the tensile stress, endowing the structure with
sufficient stretchability [191-195]. Xie et al. [194] intro-
duced a wavy PANI/graphene-based SEC. Initially, nickel
(N1) foam was manually manufactured into a wavy shape,
followed by the growth of porous graphene on the wavy
Ni foam using the atmospheric pressure chemical vapor
deposition (CVD) method (Fig. 8g—i). The Ni skeleton
was then removed by wet etching with a 3 M HCI solu-
tion. Finally, PANI was uniformly and densely deposited
on the surface of graphene via pulse electrodeposition
to obtain the PANI/graphene-based SEC. A supercapaci-
tor composed of this SEC maintained high mechanical
strength and capacitance at even 30% tensile strain. Yu
et al. [195] prepared a wavy SEC, which was fabricated
via bulk silicon micromachining and subsequently depos-
ited perylene C on the wafer through thermal evaporation,
followed by sputtering platinum onto it. The perylene C
served as a flexible substrate to support the platinum. A
capacitive sensor fabricated by embedding the wavy SEC
into a PDMS layer exhibited low hysteresis (0.64%) and
high sensitivity (a gauge factor of 0.27 at 25% strain).

(4) Kirigami structure

The kirigami structure is prepared by cutting materials
into specially designed patterns, which effectively releases
the internal stress of the material through out-of-plane
deformation and enables the material to maintain stable

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

electrical properties under large deformations. Similar to
other structure designs, while the kirigami structure was
able to increase the tensile limit of the electronic conductor
to varying degrees, the inherent rigidity of the material still
limits its ultimate elongation at break [196—199]. Choi et al.
[199] developed an LM-based elastic kirigami SEC through
a fusion of kirigami structural mechanics, an elastic silicone
substrate, and an LM conductive material (Fig. 8j—1). The
SEC was based on a silicone elastic film (Dragon Skin 10,
thickness 500 pm) cut into a kirigami pattern using a laser,
with its conductive layer constructed by magnetron sputter-
ing deposition of a 10-nm-thick Au film and then coating
with EGaln. As an intermediate layer, the Au film not only
enhanced the interface bonding force between the LM and
the substrate but also effectively maintained the conduc-
tive stability of the electrode under extreme deformation by
forming a solid-liquid biphase metal layer with EGaln. The
resistance of this SEC increased by 0.33 times under 820%
tensile strain, showing good electromechanical stability.

4.2 2D Stretchable Structure Designs

2D stretchable structures can retain a certain conductiv-
ity when stretched along both the horizontal and vertical
axes. The primary 2D stretchable structure designs for SECs
include the buckling structure, snakeskin structure, and mesh
structure [200-203].

Compared with its 1D counterpart, the 2D buckling struc-
ture shows more complex buckling behaviors, including in-
plane wrinkles and irregular wave shapes. Generally, the
conductor is designed with geometric features such as wrin-
kles, ripples, or a fishing net-like configuration to realize the
buckling structure. When the conductor is stretched or bent,
these wrinkled, corrugated, or reticular geometric configura-
tions allow for deformation to a certain extent without frac-
turing or losing conductivity as readily as traditional rigid
conductors. Such designs impart adequate two-directional
stretchability to intrinsically rigid or non-stretchable conduc-
tors, enabling them to adapt to a variety of complex defor-
mations and stresses [204—207]. Zhao et al. [207] prepared
an SEC with multidirectional stretchability through a pre-
stretching process (Fig. 9a—c). Initially, the PDMS base was
stretched by 90% bidirectional along the X/Y axis and placed
in an ultraviolet/ozone environment to oxidize the surface
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and enhance its viscosity. Subsequently, single-sided, sticky
polyethylene terephthalate tape was attached to the treated
PDMS surface, and CuNWs dispersion was sprayed on the
back of the tape. After acid etching, a disordered conduc-
tive network was formed. This Cu nano-network was then
encapsulated with a chitosan layer. Upon release of the
substrate pre-strain, the CuNWSs/chitosan composite layer
spontaneously formed a wavy fold structure. Under 50%
tensile strain, the sheet resistance of the fabricated multidi-
rectional SEC remained constant. When the strain increased
to 70%, the sheet resistance grew by only 5%, attributed to
the buffering effect of the fold structure on the deformation
and the anchoring effect of chitosan on the CuNWs. After
1,000 cycles of 70% tensile strain in a 2D direction, the sheet
resistance of the multidirectional SEC remained unchanged.

The snakeskin structure is normally composed of a
series of parallel wavy or curved lines, which can be made
of metal, conductive polymer, or other conductive mate-
rials. These lines are arranged at certain intervals in the
plane of the conductor, forming a grid-like structure simi-
lar to snakeskin scales. When the conductor is stretched or
bent, the wavy or curved lines in the snakeskin structure
can stretch or bend with the deformation without breaking
or losing electrical conductivity [208-212]. For example,
Jiang et al. [211] proposed an SEC that not only exhibits
mechanical flexibility and electronic functionalities simi-
lar to electronic skin but also offers self-protection and
protection for underlying software from external physi-
cal damage (Fig. 9d, e). The geometry of the mechanical
metamaterial (MM) ensures auxetic stretchability and
large areal coverage for sufficient protection. Analogous
to the composition of snakeskin, the SEC was composed
of rigid tiles connected by soft materials at selected nodes
within the MM pattern. The MM pattern’s soft hinges
were made of a soft polymer composite (silicone rubber
K-704 doped with 70 wt% Ag), which endows the SEC
with a high conductivity (2.84 x 10> S m~!). Material fail-
ure, indicated by a sudden increase in resistivity, occurred
when stretched to 78% strain.

The mesh structure refers to a grid-like design constructed
from small lines or fibers. This structure allows the con-
ductor to move its internal lines or fibers without breaking
or losing electrical conductivity when subjected to defor-
mations such as stretching and bending [213-216]. For
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example, Xu et al. [216] developed a transparent mesh SEC
composed of the LM (Galinstan) and PDMS. The SEC was
based on a PDMS elastomer, and a PDMS/LM composite
ink was filled into the mesh mold using the blade scraping
method. After curing, the conductive network was activated
by mechanical sintering. The LM was uniformly distrib-
uted in the PDMS matrix in the form of microdroplets, and
the applied mechanical pressure disrupted the oxide layer
and formed a continuous conductive pathway. The design
of the network structure provided the SEC with high light
transmission (up to 62%) and stretchability (elongation at
break > 150%). Zhou et al. [217] prepared a transparent SEC
with in-plane stretchability. They employed a breath-figure
method to prepare a porous honeycomb pattern as a template
for the deposition of an Ag mesh film, and a PVA stamp was
then adopted to transfer the Ag mesh film to a PDMS layer.
The Ag mesh/PDMS SEC exhibited almost identical AR/R|,
values in plane of three tensile directions under the same
strain within the range of 0-25% and could withstand 800
stretching/releasing cycles under a strain of 20%.

4.3 3D Stretchable Structure Designs

1D and 2D stretchable structure designs are limited by their
uniaxial or biaxial deformation mechanisms, making them
challenging to adapt to omnidirectional deformation require-
ments in complex 3D scenarios. In contrast, 3D stretchable
structure designs address these dimensional limitations
through unique spatial topological designs, enabling coor-
dinated deformation in 3D space [218]. Lee et al. [218] fab-
ricated 3D-structured SECs through an omnidirectional 3D
printing technique based on an emulsion-based composite
ink (Fig. 9f-h). They developed a printable ink by dispers-
ing Ag particles and multiwalled carbon nanotubes (MWC-
NTs) in PDMS, followed by the addition of diethylene glycol
(DEG) and chloroform (CHCl,). This ink addressed the limi-
tation that traditional inks can only be deposited in a layer-
wise manner, enabling the direct printing of 3D structures.
The prepared 3D-structured Ag/MWCNT/PDMS SECs
exhibited stretchability of up to 160%, and the R/R,, values
remained stable within 3.0 and 5.5 under strain of 30 and
50% strain over 3,000 cycles, respectively.
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S Summary of This Chapter

The stretchability of SECs can be realized through structural
designs, which can be divided into 1D, 2D, and 3D stretchable
structures based on the number of stretchable dimensions. 1D
stretchable structure designs achieve conductive stability under
uniaxial deformation primarily by employing four topologi-
cal forms: buckling, spiral, wave, and kirigami. The buckling
structure adopts a multistage interfacial bending deformation
mechanism induced by pretension. The spiral structure uti-
lizes a strain-progressive dissipation strategy via its spring-like
geometry. The wavy structure dynamically adjusts the steric
hindrance of adjacent elements to diffuse the stress. The kiri-
gami structure releases internal stress by altering its surface
shape. 2D stretchable structure designs realize the reconstruc-
tion of the conductive network through routes mainly including
bidirectional pre-stretching, encompassing buckling configura-
tions, snakeskin bionic metamaterial interconnection designs,
and mesh topological deformation compensation mechanisms.
The snakeskin bionic structure can realize 2D stretchability
through the composite construction of rigid elements and
flexible nodes, while the mesh system can maintain 2D elec-
tromechanical stability through the topological tunability of
the continuous conductive network. 3D stretchable structure
designs overcome dimensional limitations and enable coor-
dinated deformation in the 3D space. These structural design
paradigms break through the stretchability limitations of tradi-
tional materials and provide customizable mechanical adapta-
tion solutions for SECs under complex deformation scenarios.
Table 2 summarizes the typical characteristics of SECs with
1D, 2D, and 3D structure designs.

6 Fabrication Techniques for SECs

Each type of SECs benefits from specific preparation meth-
ods, and the selection of fabrication techniques depends on
a consideration of customary needs such as desired electrical
or mechanical performance, preparation cost, and process
feasibility [219-221].

6.1 Fabrication Techniques for Metal-Based SECs
The essence of the fabrication of metal-based SECs involves

forming a metal film on the surface of a stretchable substrate,
which can be manufactured through methods such as rotary
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evaporation, magnetron sputtering, and electroless deposi-
tion (ELD). Note that since the fabrication techniques for
LM-based SECs are mentioned in Sect. 2.1, we will mainly
review the fabrication techniques for solid metal-based SECs
in this section. The thickness of the solid metal film is gener-
ally controlled to be less than tens of nanometers to ensure
that the obtained SECs possess both good conductivity and
certain stretchability. While these preparation processes are
relatively simple and low cost, they still encounter chal-
lenges such as nonuniformity, undesirable stability, and
limited tensile performance [222-225].

The preparation of metal films on stretchable substrates
can be broadly categorized into physical and chemical
methods. (1) Physical methods primarily encompass
evaporation and sputtering. The evaporation method
involves heating the metal material to its evaporation
temperature so that it vaporizes and then condenses as
a thin film on the surface of a substrate. The sputtering
method is to bombard a metal target with an ion beam in
a vacuum chamber, and the metal atoms on its surface
are detached and deposited onto the substrate. Sputtering
offers advantages such as low-temperature deposition of
high-quality films, large-area deposition on non-single-
crystal substrates, strong target selectivity, and good film
adhesion [226-230]. Chen et al. [230] took filament pro-
tein as the base of an SEC and worked with CaCl, and
environmental water to plasticize the protein (Fig. 10a,
b). An Au film was deposited onto the protein surface
using vacuum sputtering, and a fold structure was formed
through ambient hydration. The initially high Young’s
modulus (5-12 GPa) and low stretchability (< 20%) of
the original filament protein were modified to 0.1-2 MPa
and > 400%, respectively, achieving an SEC with high
stretchability (> 100%). The initial sheet resistance of the
40 nm Au film on the stretchable filament was 7 Q sq~!,
and the R/R, at 40% strain was 2.45. (2) Chemical meth-
ods mainly contain ELD and electroplating. ELD is an
autocatalytic redox reaction that enables the deposition
of thin metal films on almost all flexible and rigid sub-
strates. The electroplating method leverages metal ions
in an electrolyte solution to deposit a metal film onto the
surface of a conductive substrate via an electrochemi-
cal reaction [231-233]. Zhang et al. [233] developed a
surface modification technique to successfully construct
a metal (Cu, Ni, Ag) conductive layer with high adhe-
sion by implementing the ELD technology on a PDMS

https://doi.org/10.1007/s40820-025-02009-3
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Table 2 Typical characteristics of SECs with 1D, 2D, and 3D structure designs
Structure design Material Conductivity or = Stretchability (%) AR/R,under strain  Preparation Reference
sheet resistance Process
1D Buckling structure AgNWs/ZnS:Cu/ 26.8 Qsq”! 180 - Spray coating [183]
PDMS
AgNPs/PU 26,128 Sm™! 200 0.005 under 10% Electrochemical [185]
strain deposition
Spiral structure PEDOT@ BC/CNT - 1175 0 under 100% strain ~ Wet spinning and ~ [189]
coiling process
Gallium/PU - 1273 0.09 under 100% Direct curing [190]
strain method
Wave structure Tetramethylammonium — 25 0.02 under 25% Microfabrication [195]
hydroxide/PDMS strain process
PDMS/MWCNTs - 40 0 under 40% strain 3D printing [193]
process
Kirigami structure Ag/Pd/Cu/PU - 50 1.5 under 50% strain Magnetron sput- [197]
tering
EGaln/Au/silicone - 820 0.33 under 820% Laser cutting and ~ [199]
rubber strain sputtering
2D Buckling structure Cu NWs/PDMS - 70 0.05 under 70% Spray coating [207]
strain
Snakeskin structure  Ag/silicone rubber 2840 S m™! 240 0 under 60% strain ~ Mechanical cutting [211]
Kirigami structure AgNW/PI - 50 0.0015 under 50% Laser cutting and  [212]
strain sputtering
Mesh structure Galinstan/PDMS 12x10*Sm™" >150 <0.09 under 60% Casting molding [196]
strain and mechanical
sintering
3D 3D complex struc- Ag/IMWCNTs/PDMS 6682 S cm™! 160 - 3D printing [218]
tures process

substrate. The adhesion to the substrate was enhanced
by polydopamine surface modification. Subsequently,
an ethanol-glycol composite ink containing Ag nitrate
was spin coated on the modified surface and treated with
1000 mbar atmospheric pressure plasma for 30 min to
promote the reduction and fixation of Ag ions. Finally,
the Ag-PDMS was immersed into the Cu plating bath, and
the Cu-PDMS SEC was achieved through the ELD pro-
cess. The obtained Cu-PDMS SEC exhibited a conduc-
tivity of up to 1.2x 107 S m~!, approaching that of bulk
Cu (5.96x 107 S m™"). It maintained stable conductivity
under 700% tensile strain, with a resistance change rate
of less than 5% after 5,000 cycles of stretching/releasing.

6.2 Fabrication Techniques for Inorganic Nonmetallic
Materials-Based SECs

The preparation of inorganic nonmetallic materials-based
SECs involves forming an inorganic nonmetallic film on the
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surface of a stretchable substrate, which can be manufac-
tured through techniques including solution spin coating,
vacuum filtration, and layer-by-layer self-assembly. Typical
examples are discussed below.

(1) Inorganic nonmetallic nanomaterials-based SECs can
be fabricated by spin coating a solution/suspension
onto an elastomer surface, or filtering the nanomateri-
als-contained suspension by vacuum to form films and
then transferred to elastic substrates [234—-237]. For
example, Liu et al. [237] developed an SEC based on a
folded structure of MXene/single walled CNTs (SWC-
NTs) double-layer composite film. The process began
by mixing the 2D MXene and 1D SWCNTs in an aque-
ous dispersion. A hybrid conductive network was then
formed through vacuum filtration. Finally, the conduc-
tive network was transferred to a pre-stretched elastic
substrate (3 M VHB tape) and released. An SEC with
a folded structure was thus obtained. Its conductivity
could reach 3.01x10° S m~!, and AR/R, was about
0.38 at 500% tensile strain, indicating high conductive
stability.
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sion [230]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ¢ Schematic illustration of the fabrication rocess for MGGs
as an SEC. Reproduced with permission [241]. Copyright 2017, American Association for the Advancement of Science. d Schematic illustration
for the fabrication process of the PEDOT:PSS @PDMS-PSF SEC. e Photograph of the PEDOT:PSS film loading on pistils of a flower. Repro-
duced with permission [251]. Copyright 2024, Wiley-VCH GmbH. f Schematic illustration of the 3D printing processes of SECs with designs of
serpentine wavy structures. Reproduced with permission [297]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(2) Inorganic nonmetallic nanomaterials-based SECs can charged rGO), using electrostatic adsorption to achieve

be fabricated via processing into multi-layer stacked
structures using layer-by-layer self-assembly or decal
transfer methods. Layer-by-layer self-assembly is
generally achieved by alternately immersing the sub-
strate in a nanosheet dispersion solution with opposite
charges (e.g., negatively charged MXene and positively

© The authors

a step-by-step stacking of layered nanomaterials. The
decal transfer method involves synthesizing a layer of
inorganic nonmetallic nanomaterials on a rigid sub-
strate (e.g., graphene grown on a Cu foil via CVD),
followed by the spin coating of a polymeric sacrificial
layer (e.g., polymethyl methacrylate (PMMA)). Sub-
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sequently, the rigid substrate is etched away through
chemical processing, and the acquired film is trans-
ferred as a whole to the target stretchable substrate
[238-241]. For example, Liu et al. [241] developed
a transparent, conductive graphene structure called a
multilayer graphene/graphene vortex (MGG), achieved
by inserting graphene scrolls between graphene layers
(Fig. 10c). Initially, graphene was grown on a Cu foil
through a CVD method, with the foil suspended in the
center of a CVD quartz tube to allow graphene growth
on both sides. The obtained G/Cu/G structure was then
spun onto a thin layer of PMMA to protect one side of
the graphene. Afterward, (NH,),S,0; was utilized to
etch away the Cu foil in the entire film. The bottom
graphene, without PMMA coating, formed a graphene
scroll due to surface tension. The MGG structure was
obtained by repeating this transfer process multiple
times on the same substrate. The MGG structure could
retain 65% of the original conductivity at 100% strain
perpendicular to the current flow direction and 60% of
its original current output at 120% strain parallel to the
charge transfer direction.

6.3 Fabrication Techniques for Conductive
Polymer-based SECs

The preparation of conductive polymer-based SECs
involves a multi-scale collaborative regulatory strategy to
balance the inherent conflict between the material’s elec-
trical conductivity and mechanical stretchability. Three
primary fabrication techniques are commonly employed:
solution treatment, in situ polymerization, and laser-
induced technique [242-249].

(1) The solution treatment technique is mainly to deposit
a conductive polymer solution on an elastic substrate
by means like spraying, spin coating, and immersion,
or to fabricate accurate conductive patterns exploiting
a conductive polymer solution/ink by means like inkjet
printing and 3D printing [250-254]. For example,
Nie et al. [252] proposed a PEDOT:PSS/PDMS SEC
(Fig. 10d, e). As a first step, the PDMS was treated by
a foaming process to form a porous elastic foam (PSF).
The PSF was then treated with O, plasma to activate
its surface. Finally, the activated PSF was immersed in
a PEDOT:PSS aqueous solution, with ultrasonic assis-
tance to facilitate infiltration of PEDOT:PSS into the
PSF, followed by drying. The resulting PEDOT:PSS/
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PDMS SEC exhibited a AR/R, value of about 97.4% at
60% compression strain.

(2) The in situ polymerization technique involves trigger-
ing the chemical or electrochemical polymerization of
conductive polymers directly on the elastic substrate
surface (e.g., PEDOT grown on PDMS via oxidative
CVD) to enhance interfacial bonding [255-257]. For
example, Li et al. [257] proposed an SEC with a pleated
PPy coating on PU (PU@PPy). The PU fibers were
pre-treated by soaking in an ethanol solution contain-
ing pyrrole for pre-treatment and then immersed in
FeCl;-6H,0 and sodium sulfonyl salicylate (NaSSA)
composite solution for in situ polymerization at a
low temperature of 2 °C. This process resulted in a
uniform conductive coating of PPy. The doping with
NaSSA could improve both the electrical conductiv-
ity (to 634 S m~") and the stretchability (to a fracture
strain of > 100%) of PPy. The obtained SEC exhibited
an initial conductivity of 634 S m~!, AR/R of 3.5%
under 50% tensile strain, and an elongation at break of
approximately 850%.

(3) The laser-induced technique is capable of directly
bonding PEDOT:PSS to various polymer substrates
through photothermal reaction in the interface induced
by a laser, which enables the patterning of PEDOT:PSS
on polymer substrates with micrometer-scale resolution
[249, 258]. Won et al. [258] developed a PEDOT:PSS
hydrogel-based SEC by a laser-induced process, which
stably adheres patterned pure PEDOT:PSS hydrogel to
polymer substrates through a continuous-wave 532 nm
laser-induced phase separation and interface structures.
After the laser scanning process, the PEDOT:PSS was
dipped in ethylene glycol to strengthen the intercon-
nections between the PEDOT-rich domains. The
PEDOT:PSS hydrogel-based SEC possessed a wet elec-
trical conductivity of up to 101.4 S cm™!, peel strength
of 64.4 N m™!, and lap shear strength of 62.1 kPa.

6.4 Fabrication Techniques for Composite
Materials-based SECs

Composite materials-based SECs comprise conductive fill-
ers dispersed in a single or composite polymer matrix. The
primary manufacturing objective is to construct a stable and
efficient conductive network within a stretchable polymer
matrix. Techniques such as solution mixing and molding,
electrospinning, screen printing, and 3D printing have been
commonly utilized in the preparation of composite materi-
als-based SECs [259, 260].
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The most common preparation technique for com-
posite materials-based SECs is solution mixing and
molding, where conductive fillers (e.g., CNTs, MXene,
PEDOT:PSS) [261-264] are dispersed in a liquid elas-
tomer precursor, followed by casting and curing [18,
265-270]. The key to solution mixing and molding is
to ensure a uniform dispersion of conductive packing
in the polymer matrix, and methods such as continuous
stirring, sufficient grinding, and dispersant addition are
widely applied to achieve the uniform dispersion.

Continuous stirring is the most commonly adopted
method to achieve even dispersion of conductive fill-
ers [271-274]. Sharma et al. [271] fabricated an SEC
using PEDOT:PSS, polyvinylpyrrolidone (PVP), and
CNF as raw materials. In the first stage, PEDOT:PSS
and PVP were mixed and continuously stirred until
they were completely dispersed. Subsequently, CNF
was immersed in the solution to obtain PEDOT:PSS-
PVP/CNF composites, which were then infiltrated into
PDMS for encapsulation. The obtained SEC could
withstand repeated bending, folding, and twisting
and could recover its original state after the removal
of external forces. Its conductivity reached up to
1.08 S cm™!. Luo et al. [274] added p-tert-octylphenol
(Triton X-100) to PEDOT:PSS to create a mixed solu-
tion, which was then mixed with PDMS and stirred vig-
orously. The uniformly dispersed mixture was placed
onto a mold and dried to obtain an SEC that exhibited a
minimum sheet resistance of 20 Q sq~! and elongation
at a break of about 82%.

Sufficient grinding can effectively disaggregate the
conductive packing and promote its uniform dispersion
in solution [275-278]. Ahn et al. [275] fabricated a
snake-like CNT-nanocomposite-based SEC. Initially,
CNTs were ground with carboxymethyl cellulose
(CMC) in distilled water for 30 min, and the slurry was
then squeezed into a PDMS mold for drying to obtain
an SEC. The measured minimum resistance of the SEC
was 138 Q, and the elongation at break was around
357%. Xu et al. [278] reported an SEC by mixing a
PDMS-based bottle brush elastomer (BBE) with SWC-
NTs and then solidifying the mixture to form a SWCNT
percolation network in the elastomer matrix. The high
aspect ratio of SWCNTs (length/width is about 2,500)
resulted in good electrical conductivity (>2 S m™!) of
the SEC, and a relatively low loading concentration
yielded good tensile properties (stretchability > 100%).

The addition of a dispersant can also promote the
uniform dispersion of the conductive filler in the solu-
tion [279-281]. Chen et al. [281] constructed an SEC
of polyacrylamide (PAAM)-graphene-PANI ternary
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composite with a multistage conductive pathway
through component design and decentralized regula-
tion. The rGO and PANI nanofibers were dispersed
in an acrylamide (AAM) monomer solution. On this
basis, PVP and lignin were introduced as dispersants
to achieve even filler distribution through the steric hin-
drance effect. Finally, a 3D interpenetrating network
structure was formed after polymerization and curing
by ultraviolet light. Graphene provides an effective con-
ductive network in the SEC and enhances the electrical
stability under tensile strain. At 200% strain, the resist-
ance increased by 5.6 times with graphene, whereas it
increased by 16.9 times without graphene. In addition,
the tensile strength of the SEC reached 44.31 kPa, and
the elongation at break reached 306.7%, higher than
that of the SEC without graphene.

Electrospinning exploits a high-voltage electric field to
stretch a conductive polymer solution into a network
of microfibers, forming an SEC with both high flex-
ibility and good conductivity [282-284]. For example,
Yin et al. [284] prepared a composite materials-based
SEC by uniformly blending rGO and PEDOT:PSS into
a PVA solution and then employing the electrospinning
technique combined with a high-speed turntable receiv-
ing screen to directly regulate fiber arrangement. The
acquired SEC exhibited an electrical conductivity of
1.7 S m~" and elongation at a break of 61.13%.
Screen printing for the fabrication of SECs involves
achieving microscale patterns by combining a conduc-
tive paste of high viscosity (e.g., AGNWs/PDMS com-
posite ink) with an elastic substrate (e.g., PDMS, TPU)
and a structural design (e.g., island bridge structure),
which enables the preparation of SECs over a large
area [285-287]. Shang et al. [287] prepared an SEC via
screen printing and water jet sintering. Firstly, EGaln
was dispersed in propylene glycol and PVP as the ink,
and then, the ink was screen printed on a TPU substrate
and water jet sintered. Finally, the SEC was obtained by
TPU encapsulation. Its electrical conductivity was as
high as 7.3 10° S m™". Its resistance increased by only
10% after 500 cycles of 50% strain, and it maintained
conductive stability even when stretched to 800%.

3D printing has been employed to build SECs with
complex 3D structures. While electrospinning and
screen printing can also utilize inks to prepare com-
posite materials-based SECs, 3D printing offers unique
advantages [288, 289]. First of all, it enables custom-
ized structure designs to meet the needs of SECs for
different application scenarios. Secondly, 3D printing
technique can manufacture SECs with complex shapes
and internal structures with high stability. Thirdly, 3D
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printing boasts high production efficiency and material
utilization [290-293]. The preparation process of SECs
by 3D printing technology typically starts with the mix-
ing of the selected polymer matrix and conductive fill-
ers, followed by the addition of solvents and surfactants
to formulate 3D printing inks. The prepared ink is gen-
erally required to exhibit rapid curing, good interface
bonding, and stretchability. It is then printed layer by
layer into an SEC with a 3D printer [35, 294-297]. For
example, Hong et al. [297] applied 3D printing to man-
ufacture a free-standing SEC (Fig. 10f). Initially, CNTs
were dispersed in ethyl acetate, followed by ultrasonic
homogenization. PDMS base was then added into the
uniform CNTs suspension and homogenized again.
Subsequently, the ethyl acetate was evaporated at 80 °C
to obtain the PDMS-CNT composite ink. An SEC with
a snake-shaped cross section was then fabricated by a
3D printer. The SEC achieved high tensile properties
and high electrical stability, with an elongation of 315%
at the break at a 45° connection angle and a relative
resistivity change of 5% at 100% strain.

7 Summary of This Chapter

Different kinds of SECs necessitate distinct preparation
approaches. The fabrication techniques for solid metal-
based SECs can be mainly divided into physical methods,
mainly evaporation and sputtering, and chemical methods,
primarily ELD and electroplating. While sputtering allows
for low-temperature film formation, it can suffer from the
issue of nonuniformity. ELD enables the deposition of thin
metal films on almost all flexible and rigid substrates. The
preparation of inorganic nonmetallic materials-based SECs
can be mainly achieved by techniques including solution
spin coating onto an elastomer, vacuum filtration followed
by a transfer to elastic substrates, and processing into multi-
layer stacked structures with supporting elastic substrates via
layer-by-layer self-assembly or decal transfer. Conductive
polymer-based SECs are mainly fabricated by the solution
treatment, in situ polymerization, and laser-induced tech-
niques. The solution treatment technique employs meth-
ods like spraying, spin coating, and immersion to deposit
a conductive polymer solution on an elastic substrate; or
constructs accurate conductive patterns utilizing a conduc-
tive polymer solution/ink by means like inkjet printing and
3D printing. The in situ polymerization technique chemi-
cally synthesizes a conductive layer directly on an elastic
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substrate’s surface. The laser-induced technique can adhere
PEDOT:PSS onto a variety of polymer substrates through
interface photothermal reaction by using a laser. The most
common preparation technique for composite materials-
based SECs is solution mixing and molding, which can
employ methods like continuous stirring, sufficient grind-
ing, and dispersant addition to ensure uniform dispersion of
conductive fillers. In addition, techniques such as electro-
spinning, screen printing, and 3D printing can be adopted to
achieve various patterns/structures of SECs. Specifically, 3D
printing overcomes the limitations of traditional manufactur-
ing dimensions through customized ink formulations and
layered stacking strategies, enabling the efficient molding
of customizable complex 3D structures. Table 3 summarizes
the typical fabrication techniques employed for SECs.

8 Applications of SECs

SECs have been adopted as fundamental and crucial com-
ponents in stretchable electronics, including serving as the
electrodes of stretchable devices, functioning as the sens-
ing material components of stretchable sensors, or acting as
interconnecting components bridging devices of electronic
systems, which are subject to different requirements accord-
ing to different application scenarios.

8.1 Stretchable Energy Conversion Devices

Stretchable energy conversion devices can maintain their
energy conversion functionalities even when subjected to
mechanical deformations, such as stretching, bending, and
twisting. SECs with high conductivity can help reduce
energy loss and improve overall energy conversion effi-
ciency, and SECs with high mechanical stability and dura-
bility can help save maintenance costs [298, 299]. Up to
now, SECs have been applied in various kinds of energy
conversion devices, including nanogenerators, solar cells,
and fuel cells.

8.1.1 Stretchable Nanogenerators
In stretchable nanogenerators, such as stretchable piezoelec-

tric nanogenerators (PENGs), triboelectric nanogenerators
(TENGs), pyroelectric nanogenerators, and thermoelectric
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nanogenerators, SECs have been employed as the electrodes
and functional material components [300-310]. The specific
characteristics required for the SECs of these nanogenera-
tors vary depending on the distinct working mechanisms and
device structures.

As for stretchable TENGs and PENGs, which exhibit
high internal impedances, especially TENGs, the resist-
ances of their stretchable electrodes can fluctuate within
a wide range without affecting their electrical outputs
[311-314]. (1) PENGs: Due to the piezoelectric effect,
PENGs must undergo mechanical deformation during
energy harvesting, which requires the applied SECs which
serve as their electrodes or piezoelectric materials to with-
stand prolonged cyclic strain [315, 316]. Xu et al. [316]
prepared a droplet-like porous barium zirconate titanate
ceramic using a freeze-casting method and sputtered Au
on its surface. Subsequently, the LM (EGaln) was printed
on the polymer substrate according to a specific pattern via
3D printing, yielding a stretchable PENG. The LM elec-
trode helped the device maintain high working stability.
After 5,000 stretching/releasing cycles at 60% strain and
5,000 twisting cycles at 180°, the open-circuit voltage of
the stretchable PENG remained stable. (2) TENGs: When
an SEC functions not only as an electrode of a TENG but
also as one of the two triboelectric layers, it is advanta-
geous to have a significant difference in its tendency to
gain or lose electrons from the other triboelectric layer
[317-320]. This disparity facilitates the generation of
more triboelectric charges upon contact between the two
triboelectric layers, contributing to higher electrical out-
puts. Specifically, in a sliding-mode TENG, where tribo-
electric layers are more prone to wear, the SEC as one
triboelectric layer also needs to possess strong abrasion
resistance. Zhang et al. [321] developed an SEC with high
performance through constructing an interfacial percola-
tion network (PN), which integrates a 2D AgNWs PN and
a protruding 3D AgNWs PN (Fig. 11a, b). The protrud-
ing PN was formed by introducing polypropylene-graft-
maleic anhydride domains in the near-surface region of
a poly(styrene-isobutylene-styrene) (SIBS) elastomer
matrix, causing AgNWs to change from horizontal to
quasi-vertical arrangement and protrude out. The SEC
achieved a conductivity of 13,500 S cm™~! under static
conditions and elongation at a break of 660% strain. This
SEC was applied as the conductive electrode layer in a
single-electrode-mode TENG. The TENG showed an
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Fig. 11 Applications in stretchable energy conversion devices. a Schematic diagram of the conduction mechanism of the SEC with interfacial
PN under stretching. b Output voltage of the TENG with the SEC as the conductive electrode layer for monitoring finger bending at 30°, 60°,
and 90°. Reproduced with permission [321]. Copyright 2024, Wiley-VCH GmbH. ¢ Schematic illustration of the fabrication processes for the
SOSC with the PEDOT:PSS SEC as the bottom electrode. d The photovoltaic performance and durable stretchability of the SOSC with the
PEDOT:PSS SEC and EGaln SEC as the two electrodes. Reproduced with permission [340]. Copyright 2021, American Chemical Society. e
The design of the dragon-tattoo like epidermal fuel cells with EP-AuNW SEC and EP-AuPdNW SEC as the electrodes. f Oxidation peak cur-
rent densities of the EP-AuPdANW SEC in a stretching/releasing loop within 0—100% strain. Reproduced with permission [355]. Copyright 2022,

Elsevier B.V

output voltage of about 60 V under 300% strain and could
effectively monitor finger bending at 30°, 60°, and 90° by

generating distinct voltage signals.

As for stretchable pyroelectric and thermoelectric
nanogenerators, which operate in environments with tem-
perature fluctuations or temperature gradients [322, 323],
the SECs applied as their electrodes need to possess high

© The authors

thermal stability [324-327]. It has been reported that
SECs (e.g., LM-based SECs) replacing traditional rigid
conductive materials as the interconnects and thermal
interface materials can help improve the performance
involving enhancing the interface thermal conductivities
and mechanical stability [328]. Additionally, SECs owning
thermoelectric effect can serve as thermoelectric materials
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in thermoelectric nanogenerators, which are favored to
possess a high Seebeck coefficient, high electrical con-
ductivity, and low thermal conductivity in order to have
high thermoelectric conversion efficiency [329, 330]. He
et al. [329] developed a stretchable CNT/PVP/PU con-
ductive textile via sequential electrospinning and air pres-
sure spraying processes to serve as a core component of
wearable thermoelectric devices. The fabrication involved
first electrospinning PU nanofibers to create a breathable
substrate, followed by the spray coating of CNT disper-
sions stabilized with PVP. The PU acted as the supporting
skeleton, the CNT served as the thermoelectric material
and the PVP not only improved the dispersion of CNTs
but also served as interfacial binders between the CNT
and PU. This hierarchical architecture, combining elastic
polymer skeleton with conductive CNT networks, yielded
250% elongation and 425 mm s™! air permeability. By seri-
ally connecting five layers of the optimized CNT/PVP/
PU conductive textile into a thermoelectric device, they
achieved room-temperature voltage generation of 0.75 mV
through harvesting body heat. Chai et al. [324] developed
a (4-aminotetrahydropyran),PbBr,Cl, (APBC)-polycar-
bonate (PC)@poly(vinylidene fluoride-trifluoroethylene)
[P(VDE-TrFE)] core sheath nanofiber SEC via coaxial
electrospinning as the electrode in a pyroelectric device.
The fabrication process of this SEC involved dissolving
organic—inorganic perovskite APBC crystals into a PC
core solution, while P(VDF-TrFE) served as the sheath
material of the SEC. Through precise electrospinning con-
trol, flexible fibers having diameters of 300—700 nm were
formed in the SEC, with APBC uniformly embedded in the
PC core and P(VDF-TrFE) encapsulating the periphery of
the SEC. This hierarchical structure exhibited a pyroelec-
tricity of 58.2 pC m~2 K~! at 333 K, where the pyroelectric
effect originated from spontaneous polarization changes
under temperature fluctuations.

8.1.2 Stretchable Solar Cells

Stretchable solar cells, which convert solar light into elec-
tricity [331-333], are typically composed of a photoac-
tive layer, transparent electrode, back electrode, protec-
tive layer, interconnecting component, and encapsulation
layer [334-336]. SECs have been applied as the electrodes,
interconnecting components, and photoactive layers in
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stretchable solar cells. When employed as the transparent
electrode, the SEC is required to exhibit both high trans-
parency to maximize light transmission to the light absorp-
tion layer and high conductivity to ensure efficient electron
transport. When employed as the back electrode, the SEC is
required to have both high conductivity and high reflectivity
to trap light inside the device [337-340]. Noh et al. [340]
integrated a TPU substrate, PEDOT:PSS and EGaln elec-
trodes to fabricate stretchable organic solar cells (SOSCs)
(Fig. 11c, d). Among them, PEDOT:PSS modified with
polyethylene glycol and citric acid was utilized as the trans-
parent electrode in SOSCs. A precise spray coating system
was utilized for atomizing the EGaln electrode. The SOSCs
retained over 74% of their original performance even after
1,000 cycles at 10% tensile strain.

When employed as an interconnecting component in solar
cells, the SEC connects different functional layers and is
preferred to possess sufficient stretchability and mechanical
strength [341]. Liu et al. [341] embedded electrospun poly-
propylene fibers in Ecoflex as an elastic substrate and coated
its surface with a semi-LM (EGaln doped with Ag-coated
Cu particles) to prepare SECs. These SECs acted as an
interconnecting component for solar cell arrays, connecting
rigid monocrystalline silicon solar cells to maintain a stable
electrical connection when stretched, bent, and twisted. The
SEC delivered a conductivity of as high as 6x10° S m™!
and exhibited excellent mechanical properties, with a single
structural unit achieving elongation at a break of 200% and
remaining stable after 5,000 stretching/releasing cycles. The
short-circuit current of the whole solar cell array decreased
by only 0.22% under 100% tensile strain.

When the SEC serves as a photoactive layer in a solar cell,
it is responsible for converting solar energy into electricity,
so it requires not only high optical absorption and charge
transport capabilities but also mechanical stability, chemical
durability, and good compatibility with other functional lay-
ers [342, 343]. Lee et al. [343] obtained a block copolymer
PDs (D18, 4-s-PEHDT, ,) through the chemical bonding of
rigid poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-
2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-5,5'-(5,8-bis(4-
(2-butyloctyl)thiophen-2-yl)dithieno[3',2":3,4;2",3":5,6]
benzo[1,2-c][1,2,5]thiadiazole)] (D18) and flexible
poly[bis(2-hexyldecyl) 5-(4,8-bis(5-(2-ethylhexyl)-4-fluoro-
thiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b’]dithiophen-2-
yD)-5"-methyl-[2,2":5',2"-terthiophene]-3,3"-dicarboxylate]
(PEHDT). This stretchable copolymer acted as the
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photoactive layer in the fabricated solar cell. The D18 block
maintained excellent light absorption and charge transport
properties, while the PEHDT block maintained exceptional
tensile properties. The SOSCs achieved a power conversion
efficiency of 14.3% while retaining 80% of their initial effi-
ciency at 31% strain.

8.1.3 Stretchable Fuel Cells

Stretchable fuel cells convert chemical energy into electri-
cal energy, in which SECs have been mainly applied as the
electrodes, current collectors, and interconnecting compo-
nents [344-347]. The SEC as the stretchable electrode is
typically composed of a conductive and electrochemically
active material integrated with a stretchable polymer matrix.
It acts as the primary site for electrochemical reactions and
is responsible for receiving and transmitting electrons. Its
stretchability can be achieved through specialized structural
designs (wavy, serpentine, etc.) or intrinsic stretchability
[348-350]. The SEC as the stretchable current collector is
typically a highly conductive material, such as a metal mesh
and conductive polymer, supported by a stretchable polymer
substrate, which is mainly responsible for collecting the cur-
rent generated on the electrode and transmitting it to the
external circuit [351-353]. Interconnecting components are
usually made of stretchable conductive materials that con-
nect electrodes with current collectors to form a complete
circuit for electron transmission, and ensure the smooth pro-
gress of internal chemical reactions in the fuel cell during
the connection process, such as providing suitable transmis-
sion paths for reactive gases or liquids [17, 354].

The SEC is essential for the performance stability of
stretchable fuel cells in practical applications [355]. Lu et al.
[355] presented a tattoo-like epidermal fuel cell based on Pd
conformally-coated and one-end-embedded percolation Au
nanowire (EP-AuNW/EP-AuPdNW) networks (Fig. 11e, f).
Among them, EP-AuNW and EP-AuPdNW, combined with
PDMS, were applied as the electrodes in the stretchable fuel
cell, with EP-AuNW acting as the anode, and EP-AuPdNW
as the cathode. The ultra-long Au NWs, unable to stand verti-
cally, lay on the elastic surface to form a stacked permeable
conductive network. Pd adhered to the surface of AuNW to
form a uniform and stable film, which enhanced the complete-
ness of the conductive pathway, ensuring conductivity during
stretching. The EP-AuPdNW electrode maintained its initial
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electrocatalytic performance under 60% strain. The fuel cell
could operate under a variety of mechanical deformations,
including tension, compression, bending, and torsion, retain-
ing 75% of its performance even at 80% strain.

Specially designed structures for the SEC in a stretchable
fuel cell can help improve the device’s performance [356].
Zhai et al. [356] proposed a stretchable fuel cell with flam-
mulina velutipes-like vertically aligned Au NWs (v-AuNWs)
embedded into a fully cured PDMS film as the stretchable
electrodes. The current density of the fuel cell with the tail-
exposed (the growing end in contact with the base) v-AuNWs
electrode was higher than that of the fuel cell with the head-
exposed (the upward end when growing) v-AuNWs electrode.
The tail-exposed v-AuNWs electrode served as the anode, and
the Pt-modified tail-exposed v-AuNW acted as the cathode.
The fuel cell with these stretchable electrodes exhibited high
overall performance, with a power density of 80 pW cm™2,
a current density of 0.475 mA cm~2, and a stretchability of
50% tensile strain. Even at 50% strain, the power density of
the fuel cell was 47 pW cm ™, approximately 60% of its initial
power density.

8.2 Stretchable Energy Storage Devices

Stretchable energy storage devices, generally referring to
stretchable batteries and supercapacitors, provide stable power
for stretchable electronics, and SECs are an indispensable
component to maintain their normal functions [357-362].

8.2.1 Stretchable Batteries

The storage of energy in batteries normally involves the
insertion and extraction of ions into electrodes [363-366],
and SECs have been employed as both the current collectors
and electrodes of stretchable batteries. SECs as the stretcha-
ble current collectors are primarily responsible for collecting
the current generated at the electrode and transporting it to
the external circuit, which need to meet the requirements of
high conductivity, high electrochemical stability, firm com-
bination with electrochemically active electrodes, and good
tensile properties. The preparation process and properties of
stretchable current collectors directly affect the overall per-
formance of stretchable batteries [367-373]. Gu et al. [373]
developed an SEC based on gradient-assembled AuNPs/PU
to serve as the current collector in stretchable lithium-ion
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batteries. The SEC was assembled by vacuum-assisted filtra-
tion to form a gradient multilayer structure (90/50/90 wt%).
The outermost layer was a highly conductive film composed
of 90 wt% AuNPs and WPU, while the middle layer was a
lower-content compound of 50 wt% AuNPs. The interface
avoided stratification through strong interaction. The stretch-
able battery with the SEC as the current collector provided
a specific capacity of 100 mAh g~! at a current density of
0.5 A g~! and a capacity retention rate of 96% after 1,000
cycles of charging/discharging at a current density of 0.5 A
g

The SECs as the stretchable electrodes not only need to
fulfill the functions of traditional battery electrodes but also
are required to maintain stable electrochemical properties
under mechanical deformations such as stretching, bending,
and twisting. They serve three main functions in stretch-
able batteries: (1) electron conduction and charge transfer;
(2) active material loading and interface reaction; and (3)
mechanical support. Special electrode structures, such as a
patterned electrode structure, can be designed to improve
the electrochemical performance of the stretchable bat-
tery. These unique structures can ensure stable contact and
ion transport between key components of electrodes and
electrolytes when the battery is stretched or bent, thereby
preserving the key performance of the battery [374-378].
For example, Lu et al. [377] proposed SECs fabricated
by laser ablation of active material films and employed
them as the electrodes of stretchable lithium-ion batter-
ies (Fig. 12a—c). The Li,Ti;O,, or LiFePO, active mate-
rial was mixed into a paste with carbon black and PVDF in
N-methyl-2-pyrrolidone. The obtained viscous slurry was
coated on an Ag—Cu/Ni carbon-based conductive silicone
substrate. Subsequently, the SEC was formed with an inde-
pendent micrometer square array structure by laser abla-
tion. The Li,TisO,-based SEC acted as the anode and the
LiFePO,-based SEC served as the cathode. The structure
alleviated stress concentration through micro-discretization
of the active material. The microarray design allowed the
conductors to maintain conductive network continuity under
stretching, while a high load capacity of 10 mg cm™2 ensured
energy storage capacity. Combined with a gel electrolyte
and PDMS packaging, the stretchable battery retained 90.2
and 70.9% of its capacity under 50 and 100% strain, respec-
tively, with a surface capacity of 1.2 mAh cm™2. After 500
cycles of stretching/releasing at 100% strain, the SECs as the
electrodes exhibited a slight decrease in specific capacity,
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with approximately 5% degradation observed, showing good
strain adaptability and stability. Cheng et al. [378] devel-
oped an SEC of NiCo,S, ,@carbon yarn (CY) composite
as the battery electrode based on a sulfur vacancy regula-
tion strategy (Fig. 12d, e). The SEC was constructed as a
hollow nanotube array on the surface of the conductive CY
via a two-step hydrothermal process. Specifically, sulfur
vacancies (local defects formed by ion exchange blocking)
were induced by adjusting the concentration of sulfur pre-
cursors, and hollow nanotube structures were then formed
by the Kirkendall effect. The electron delocalization effect
induced by the sulfur position optimizes the charge trans-
fer path, reducing the charge transfer resistance to 1.314 Q
and achieving a high specific capacity of 271.7 mAh g~!.
The zinc-ion battery with the SEC as the cathode showed
good mechanical properties, with a capacity retention rate of
71.9% under 300% tensile strain and 81.4% after 100 cycles
at 200% strain.

8.2.2 Stretchable Supercapacitors

Energy storage in supercapacitors involves the absorption/
desorption of ions or/and fast redox reactions at the elec-
trode surface [379-385]. Like in stretchable batteries, SECs
have also been mainly employed as the current collectors
and electrodes in stretchable supercapacitors. (1) When serv-
ing as the current collectors, SECs are preferred to exhibit
high conductivity and strong adhesion to the active elec-
trodes [386—389]. Cui et al. [389] prepared an SEC by coat-
ing an LM onto a textile substrate and integrated it as the
current collector, with CNTs as the active material and an
ionic liquid polymer gel as the electrolyte to form a stretch-
able supercapacitor. The authors explored different textile
substrates and found that EGain formed the most uniform
and stable coating on polyester-based textiles. At 50% elon-
gation, the resistance of the polyester-based SEC changed
by less than 10% after 100 stretching/releasing cycles. The
supercapacitor retained 92% of its initial capacitance at
200% strain, which can be equipped into clothing to pro-
vide a reliable and continuous power supply for LEDs dur-
ing human movement. (2) When serving as the electrodes,
SECs are favored to possess a large specific surface area,
abundant electrochemically active sites, high conductivity,
and adequate stretchability [263]. Wang et al. [263] depos-
ited thiophene and 3-methyl thiophene on a stainless steel
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Fig. 12 Applications in stretchable energy storage devices. a Schematic diagram of the microarray SEC fabricated by laser ablation. b Photo-
graph of a light-emitting diode bulb lighted by the stretchable battery with the SECs as the electrodes. ¢ Discharging/charging voltage profiles of
the stretchable battery with the SECs as the electrodes in the unstretched, 50% stretched, and 100% stretched states. Reproduced with permission
[377]. Copyright 2022, Elsevier Inc. d Schematic diagram showing the fabrication process of the NiCo,S,—x@CY SEC. e The capacity reten-
tion of the yarn-based zinc-ion battery with the SEC as the electrode under strain from 0 to 300%. Reproduced with permission [378]. Copy-
right 2023, Donghua University, Shanghai, China. f Schematic diagram of the preparation process and fabrication mechanism for sAPU. g The
Ragone plots of the as-assembled sAPUGE-ISSC and APUGE-ISSC with carbon-based SECs as the electrodes. The inset is the cycling perfor-
mance at a current density of 5 mA cm~2. Reproduced with permission [392]. Copyright 2022, Wiley-VCH GmbH

wire via electrochemical polymerization to prepare an SEC.
The SEC exhibited a maximum tensile rate of 250% and
was applied as an electrode in a stretchable supercapacitor,
with a PVA/H,SO, hydrogel as the electrolyte and PDMS
as an encapsulation layer. The constructed supercapacitor
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maintained 93% of its capacitance after 10,000 stretching
cycles to 100% strain.

The structural designs of SECs in stretchable superca-
pacitors, such as wavy, spiral, and core—shell structures, can
help improve the devices’ tensile properties [390-392]. Lin
et al. [392] developed an ant-nest amphiphilic polyurethane
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(sAPU) hydro-/organo-gel electrolyte, which interacted with
carbon-based SECs as the electrodes for integrated stretch-
able supercapacitors (ISSCs) (Fig. 12f, g). A stretchable
carbon-based electrode coated with sAPU fiber was prepared
by electrospinning, and a porous interfacial layer was formed
through layer folding and chemical crosslinking. This
hybrid electrolyte—electrode structure was then immersed
in a NaClO,/H,O/trimethyl phosphate electrolyte to create
a flame-retardant integrated device. The 3D porous interface
of this ant-like nest structure enhanced the toughness of the
supercapacitor through mechanical meshing of the fiber and
chemical crosslinking of the surface. The fabricated ISSC
achieved a wide electrochemical window of 2.2 V, provided
a high energy density of 13.7 mWh cm™, and maintained
98.3% of its capacitance after 500 stretching/releasing cycles
at 100% strain.

8.3 Stretchable Sensors

In the realm of stretchable sensors and sensing systems,
SECs have been commonly utilized as the sensing compo-
nents or the electrodes, which play a vital role in realiz-
ing the basic functions and multi-functional integration of
sensors for applications such as motion monitoring [248,
393-396], tactile sensing [397-399], and physiological sig-
nal monitoring [400—-405].

SECs whose resistances change linearly with strain within
a certain range have been applied as strain sensors in myriad
areas [406] For example, Zhang et al. [406] utilized a self-
healing maleic acid-grafted natural rubber/PANI/phytic acid
(MNR/PANI/PA) SEC as a stretchable strain sensor. The
device was prepared using a solution-processable method.
Initially, maleic acid was grafted onto natural latex to form
MNR. Aniline was then oxidized and polymerized in situ
on the MNR template, with PA serving as both a crosslink-
ing agent and a dopant. Finally, a uniform conductive film
was formed by solution casting. The obtained SEC strain
sensor exhibited high linearity (GF=13.8@0-250% strain,
GF=32.0@250-1,000% strain), 1,000% stretchability, 2.5
MPa strength, and room-temperature self-healing capability.

For motion detection, stretchable sensors monitor and
record various motion states in real time, which often
involves mechanical deformation or abrasion. Applied in
motion detection sensors, SECs are expected to exhibit sta-
bility under cyclic mechanical deformation and high wear
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resistance [407—411]. Tian et al. [410] developed an SEC
based on a multistage composite structure as the core sens-
ing element of a motion sensor. A three-step integrated
process was employed to construct the gradient conductive
network. (1) Flexible substrate construction: a TPU fabric
with a bionic fiber interlace structure was prepared by elec-
trospinning. (2) Conductive network optimization: AgNPs
were loaded on the fiber surface via a dopamine-mediated
in situ growth method, and acid-treated CNTs (ACNTSs) were
sprayed on the surface after plasma treatment to form an
“AgNPs-ACNTSs” bridging conductive pathway. (3) Interface
function enhancement: fluorine CNTs/silica hybrid particles
(FCNT-SIO,) were sprayed to construct a super-bisophobic
surface with a concave corner structure. This multi-layer
design enabled the SEC to achieve a tensile strength of
21.7 MPa and elongation at a break of 939% while main-
taining a conductivity of 20.8 S cm™!. The motion sensor
based on this SEC showed a wide detection range of 155%
and a fast response time of 62 ms, maintaining stable sig-
nal output in extreme temperatures from — 60 to 60 °C and
corrosive liquid environments, and successfully realizing
real-time graded monitoring of a rider’s movement speed
(slow, medium, and fast). Bhuyan et al. [411] fabricated an
SEC composed of an uncrosslinked polysiloxane elastomer
(ExSil 100) and a rheologically modified LM. The oxidized
LM was coated on the surface of the elastomer layer using
a template wetting method to obtain the SEC (Fig. 13a—c).
The SEC served as the electrode of a capacitive motion sen-
sor, and its excellent stretchability contributed to the sen-
sor’s ability to detect the human body’s respiratory activity
through the device’s volume change.

For tactile sensing, stretchable sensors respond to exter-
nal stimuli and provide information such as pressure, tem-
perature, humidity, and tangential strain, which can be
employed in applications such as electronic skin and vir-
tual reality [412—417]. They are often required to be capa-
ble of detecting weak stimuli signals. In this regard, SECs
as the electrodes of tactile sensors are favored to have
strain- or temperature-insensitive electrical properties,
with their change in conductivity remaining within a cer-
tain range that does not affect the sensors’ sensing capabil-
ity and adapting to a variety of external stimuli [418-420].
Kim et al. [420] introduced an SEC based on plasticized
polyvinyl chloride (PVC) and graphene. The SEC was
obtained by coating graphene on a glass substrate, spin-
coating PVC gel on it, molding, and evaporating. The SEC
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Fig. 13 Applications in stretchable sensors and other applications. a A stretchable capacitive motion sensor with the LM/ExSil 100 SEC as the
electrode expands under various volumes of inlet air. b Relative capacitance changes of the motion sensor with the SEC as the electrode during
the injection and release of various air volumes. ¢ The motion sensor with the SEC as the electrode detects respiration under various breathing
modes. Reproduced with permission [411]. Copyright 2022, Elsevier B.V. d Schematic illustration of the snake-like P-Gr SEC-based electro-
chemical Na sensor. e Photograph of a person wearing a P-Gr SEC-based sensor during on-body and cutting/healing tests. f The electromotive
force responses and a calibration curve of the P-Gr SEC-based sensor. Reproduced with permission [422]. Copyright 2022, Elsevier B.V. g
Schematic illustration of the implantable stretchable sensor with PAN/Au SEC as the electrode. h PAN/Au SEC array conforms to the surface of
the rat brain. Scale bar, 600 pm. i Real-time recording of the local field potential waveforms of the PAN/Au SEC. Reproduced with permission
[425]. Copyright 2023, Korean Society of Medical and Biological Engineering. j Photograph of the serpentine SEC placed on a leaf. k Sche-
matic illustration of the serpentine SEC composed of MWCNT percolation network on the WPU matrix as a stretchable heater. 1 IR image of the
serpentine SEC heater at straightening. Reproduced with permission [439]. Copyright 2023, Elsevier B.V
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could work normally under 50% tension. A TENG with
this SEC as the electrode exhibited good biocompatibility
and could act as a tactile sensor for the detection of the
contact shape of objects.

For chemical detection, stretchable chemical sensors
often detect chemicals in human fluids like sweat, and SECs
applied in these sensors should possess high chemical sta-
bility and resistance to swelling in the presence of fluid or
humidity [421, 422]. Son et al. [422] fabricated an SEC
based on self-healing elastomers and graphene (Fig. 13d-f).
In the first stage, a highly self-healing, conductive, and print-
able poly (1,4-cyclohexanedimethanol succinate-co-citrate)/
graphene (P-Gr) ink was prepared through fluid-induced
shearing and mixing. A snake-like SEC was then obtained
by screen printing. It exhibited an electrical conductivity of
1,243 S m™!, self-healing properties (negligible resistance
change in 10 cutting-healing cycles), and a stretchability of
213% tensile strain. The SEC was applied as the electrode
of an ion sensor to detect Na™ in sweat, demonstrating good
stability and high sensitivity (— 62.30 mV/log [Na']).

For implantable stretchable sensors, they are implanted
in vivo for detections such as the neural signal and epicardial
signal [423, 424], and the employed SECs should exhibit
excellent biocompatibility. Specifically, SECs for transient
electronics should be capable of degrading in physiological
environments in a controlled manner [425]. Yang et al. [425]
manufactured an SEC by first preparing a polyacrylonitrile
(PAN) nanofiber network through electrospinning and then
depositing Au film via thermal evaporation (Fig. 13g-i).
This SEC demonstrated high flexibility and low electro-
chemical impedance. This is because the PAN nanofiber
network effectively prevents the Au film from cracking
under strain and increases the surface roughness and effec-
tive active area of the Au film, which greatly reduces its
impedance. The SEC was employed as the core recording
electrode component of a microelectrode array, which was
placed at the junction of a rat’s somatosensory cortex and
motor cortex to record the increase in the amplitude and
frequency of the neural signal.

8.4 Other Applications

SECs have also found utility in other applications such as
wearable heaters [426—431], antennas [432, 433], actuators
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for soft robotics or artificial muscles [434—436], and electro-
magnetic interference shielding [29, 66, 437, 438].

When applied as heating elements in wearable heaters,
SECs efficiently convert electrical energy into thermal
energy for local heating. This application necessitates good
mechanical durability and thermal stability [439]. For exam-
ple, Yuan et al. [439] developed a snake-like SEC composed
of MWCNTs/WPU nanocomposite yarns and applied it as
a wearable heating device (Fig. 13j-1). The preparation pro-
cess of the SEC-based wearable heater involved two steps.
(1) The nanocomposite conductive yarn (MWCNTs/WPU)
was prepared via a wet spinning process, followed by a stress
drying method to promote the densification of the conduc-
tive network. (2) The conductive yarn was encapsulated in
a thick WPU elastic sheath through solution impregnation
combined with thermal curing, and then, the serpentine
structure was formed using 3D printing templates. This
strain-insensitive SEC-based wearable heater exhibited
high electrical stability (AR/R,<1.6% at 100% strain) while
achieving rapid joule heating to 47 °C in 90 s at 15 V, with
waterproof property and self-healing capability.

When applied as radiation elements in an antenna, SECs
are capable of transmitting or receiving electromagnetic
wave signals to support wireless communication [432, 433,
440]. This application demands SECs with high conduc-
tivity and resistance to environmental interference. A key
challenge is the declined wireless performance under strain,
which can be alleviated through strategies like exploiting a
“dielectro-elastic” composite substrate with tunable dielec-
tric properties to offset resonance frequency shifts [441]. He
et al. [440] developed a biomimetic SEC based on a spider
web architecture and LM microchannel as the core compo-
nent of a near-field communication antenna. The SEC was
prepared via a 3D direct-write printing process. To begin
with, EGaln was uniformly dispersed in a silicone elasto-
meric matrix to form a printable composite ink. A spider-
shaped serpentine web was then constructed via 3D printing.
Subsequently, an ultra-thin LM conductive channel encap-
sulated by a protective silicone barrier was prepared using
a peeling-off activation strategy. The architecture achieved
high electromechanical stability, maintaining reliable energy
transmission and information communication with a mini-
mum resonant frequency shift of 2.75 MHz at 300% tensile
strain, as well as strong performance through 5,000 stretch-
ing/releasing cycles at 100% strain and complex deforma-
tions including 170° folding, 270° twisting, and 360° rolling.
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When applied as actuators for soft robotics or artificial
muscles, based on different actuating mechanisms, the SECs
may serve as the electrodes or functional materials (e.g., as
the heater for heat-driven actuators), high conductivity or
high mechanical and thermal stability are required for such
application scenarios. When applied for electromagnetic
interference shielding, high conductivity is the main key
for the SECs to achieve high shielding, and nanostructure
designs to reduce the reflection is conducive to high effi-
ciency of electromagnetic interference shielding.

9 Summary of This Chapter

The applications of SECs cover the three core areas of
energy conversion, energy storage, and sensing. (1) In
applications of energy conversion, SECs can be applied for
nanogenerators, solar cells, and fuel cells. SECs for PENGs
demand high cyclic strain tolerance and mechanical durabil-
ity; SECs as the triboelectric layer of TENGs require high
wear resistance; and SECs for pyroelectric and thermo-
electric nanogenerators necessitate high thermal stability.
In solar cells, SECs can serve as the transparent electrodes
(require high transparency and high conductivity), back elec-
trodes (require high conductivity and prefer high reflection
of light), interconnecting components (require high conduc-
tivity and mechanical strength under tension), or photoactive
layers (require high light absorption efficiency, mechanical
stability, and chemical compatibility). In fuel cells, SECs
can serve as the electrodes, current collectors, and inter-
connecting components. As the electrodes, they need to be
electrochemically active and sufficiently conductive. As
the current collectors, high conductivity and mechanical
adaptability are essential. As interconnecting components,
strain-insensitive conductivity and fatigue resistance are
favored. (2) In applications of energy storage, SECs can be
applied as the electrodes and current collectors for batteries
and supercapacitors. When employed as the current collec-
tors, high conductivity and good interface bonding force are
preferred. When employed as the electrodes, large specific
surface area, good conductivity, and high electrochemical
activity are favored. (3) In applications of sensing, SECs
can be applied for various kinds of sensors to detect motion,
tactile, chemical, etc., serving as the sensing components or
electrodes. In motion detection sensors, SECs are required
to have high mechanical stability and wear resistance under

© The authors

cyclic mechanical deformation. In tactile sensors, SECs are
required to have high electrical stability and stimulus adapt-
ability. In chemical detection sensors, SECs are required to
possess high chemical stability and anti-swelling property.
In implantable sensors, SECs must possess high biocom-
patibility. (4) In addition, SECs have other applications
such as wearable heating devices antennas, actuators, and
electromagnetic interference shielding. In wearable heating
devices, SECs need to have good mechanical durability and
thermal stability. In antennas, SECs need to possess high
electrical conductivity and resistance to environmental inter-
ference. In actuators for soft robotics or artificial muscles,
high conductivity or high mechanical and thermal stability
are needed based on different actuating mechanisms. For
electromagnetic interference shielding, high electrical con-
ductivity is required and nanostructure designs to reduce
reflection are favorable. Table 4 summarizes the diverse
applications of SECs.

10 Conclusion and Future Prospects

As an indispensable base material of stretchable electronics,
SECs have become a research hotspot in recent years. SECs
can take into account both mechanical stretchability and
electrical properties, enabling electronic devices to adapt
to complex application scenarios involving various defor-
mations. This capability is poised to promote the practical
implementation of stretchable electronics in myriad areas
including medical care, robotics, sports, and entertainment.

SECs can be divided into metal-based, inorganic non-
metallic materials-based, conductive polymer-based, and
composite materials-based SECs based on their primary
conductive components. (1) Metal-based SECs. Solid metal
materials are generally processed into various nanostruc-
tures, subsequently manufactured into designed shapes, and
combined with stretchable substrates to create SECs. LM
generally requires a combination with a supporting polymer
matrix to form an SEC, with preparation methods includ-
ing microchannel injection, adhesion and patterning on the
surface of an elastomer, and self-assembly of modified LMs
into films. (2) Inorganic nonmetallic materials-based SECs.
Inorganic nonmetallic nanomaterials can achieve stretch-
ability through integration with elastomers, or combination
with high-aspect-ratio nanomaterials to form multilayer
or network architectures, which can be prepared through

https://doi.org/10.1007/s40820-025-02009-3
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Table 4 Diverse applications of SECs

Application Device type

Function of the SECs

Requirement

Stretchable energy conversion
devices

Triboelectric nanogenerator

Piezoelectric nanogenerator

Pyroelectric nanogenerator

Thermoelectric nanogenerator

Solar cell

Fuel cell

Stretchable energy storage devices Battery

Supercapacitor

Electrode

Triboelectric layer

Electrode/piezoelectric material

Electrode/pyroelectric material

Electrode

Thermoelectric material

Transparent electrode
Back electrode
Interconnecting component

Photoactive layer

Electrode

Current collector

Interconnecting component

Electrode

Current collector

Electrode

Current collector

High mechanical strength, fair con-
ductivity and high stability

Strong abrasion resistance, high
mechanical stability

High mechanical strength, high
cyclic durability under strain

High thermal stability and durability

High thermal stability, high conduc-
tivity and stability

High Seebeck coefficient, high
electrical conductivity, and low
thermal conductivity

High transparency and electrical
conductivity

High conductivity and high reflec-
tivity

Sufficient stretchability, high
mechanical strength

High optical absorption and charge
transport capabilities, high
mechanical stability, and high
chemical durability

High conductivity, corrosion resist-
ance

High conductivity, low contact
resistance, high mechanical
durability

Gas impermeability, thermal stabil-
ity, low interfacial resistance

Good conductivity, high electro-
chemical stability, and good
tensile properties

Ultra-low resistance, strong adhe-
sion to active electrodes, good
stretchability

High specific surface area and fast
charge transfer process

High conductivity, strong adhesion
to active electrodes, and good
stretchability
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Table 4 (continued)

Application Device type

Function of the SECs Requirement

Stretchable Sensors Motion monitoring sensor

Tactile sensor

Chemical sensor

Implantable stretchable sensor

Strain sensor

Other applications Wearable heater
Communication antenna

Actuator

Electromagnetic interference
shielding

Electrode/sensing component ~ High stability and high wear resist-

ance

Electrode/sensing component Strain- or temperature- insensitive
electrical properties and high
conductivity as the electrode; high
sensitivity and stability as the

sensing component

Electrode/sensing component ~ High conductivity and chemical

stability

Electrode/sensing component  Excellent biocompatibility, high
conductivity and good stretch-

ability

Sensing component High sensitivity and strain-resist-
ance linear response, high durabil-

ity under cyclic strain

Electrode High conductivity, strain-insensitive
property

High mechanical durability and
thermal stability

Heating element

Radiation element High conductivity and anti-environ-
mental interference ability

Sufficient stretchability and high
conductivity

Sufficient stretchability; high
mechanical and thermal stability
(heat driven)

Electrode

Functional component

Functional materials High conductivity and sufficient

stretchability

techniques such as solution spin coating, vacuum filtration,
layer-by-layer self-assembly and decal transfer. (3) Conduc-
tive polymer-based SECs. PEDOT:PSS is the predominantly
employed conductive polymer, whose tensile properties can
be improved by incorporating small molecule plasticizers
or surfactants, and conductivity can be enhanced by doping
with substances like polar solvents, strong acids, and ionic
liquids. Conductive polymer-based SECs can be mainly
prepared by solution treatment, in-situ polymerization and
laser-induced techniques. (4) Composite materials-based
SECs. They can achieve enhanced conductivity and stretch-
ability by means of multi-packing coordination, nano-size
regulation, and double-ligand surface modification, whose
most common preparation technique is solution mixing
and molding, with uniform dispersion of conductive fillers
being a critical factor. In addition, electrostatic spinning,
screen printing, and 3D printing can be employed to create

© The authors

SECs with diverse structures. The stretchability of SECs
can also be achieved through structural design strategies,
the core principle of which is to maintain the continuity of
the conductive pathways by dispersing the external stress
through geometric deformation. The applications of SECs
span the three core areas of energy conversion, energy stor-
age, and sensing and extend to stretchable heaters, antennas
and electromagnetic interference shielding. In energy con-
version devices, they primarily function as the electrodes
or functional active layers. In energy storage devices, they
can serve as the current collectors or active electrodes. In
sensing applications, they can act as the sensing elements or
electrical signal transmission media.

At present, SECs still face tough challenges, such as conduc-
tivity loss upon applied strain, susceptibility to external envi-
ronmental factors, undesirable performance stability, and high
cost. (1) The electronic structures within the SEC are often

https://doi.org/10.1007/s40820-025-02009-3
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altered or damaged during deformation, resulting in conductiv-
ity loss under strain. (2) Surrounding environmental stimuli
such as temperature, pressure and humidity could also impact
the conductivity of SECs, while prolonged exposure to ultra-
violet light or atmospheric environment could induce degrada-
tion or oxidation, impairing the SEC’s electrical and mechani-
cal stability. (3) The fatigue-induced performance decrements
under repeated stretching/releasing cycles and the performance
decline due to long-term gradual oxidation or degradation are
also critical concerns. (4) Concerning the cost, the prices of
raw materials like liquid metal, Ag NWs, CNTs, MXenes, and
PEDOT:PSS for the preparation of SECs are relatively high,
and the production costs would be elevated to a level out of
ordinary consumers’ reach if superimposing expensive fab-
rication processes, which limit their large-scale production.
To address these challenges, it is necessary to explore novel
materials, preparation processes, and design routes. (1) As for
overcoming the problem of conductivity under strain, the key
is to maintain a connected conductive path within the SEC
under strain, which could be achieved through structural design
of conductive components to counteract stress with geometric
deformation or material design to separate the continuous con-
ductive phase with the supporting stretchable polymer phase.
(2) As for the surrounding environmental effects, a combi-
nation of conductive components with positive and negative
temperature coefficients could circumvent the problem of the
intrinsic conductivity variation of a single conductive compo-
nent to temperature change, and a polymer substrate or matrix
prepared by binary or multiple polymer components with
positive and negative thermal expansion coefficients could
be a solution for the conductivity change caused by the vol-
ume change of the polymer substrate or matrix with changing
temperature. Material protection of a polymer with a higher
Young’s modulus for the SEC could avoid the impact of pres-
sure, and surface modification with a superhydrophobic effect
or outside packaging layer for the SEC could circumvent the
influence of humidity or atmosphere. (3) As for the undesirable
performance stability, material design with adjustment of the
micro-/nano-structure and composition could be explored to
improve the fatigue performance and long-term stability. (4)
As for the high cost, developing efficient fabrication techniques
and refining process parameters could increase the produc-
tion efficiency, reduce the fabrication costs, and promote the
large-scale production. With continued research progress and
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industrial development in these areas, both the performance
and application potential of SECs will keep enhancing and
expanding.

In summary, the rapid development of stretchable and
wearable electronics pushes up the refinement and improve-
ment in SECs while the momentous advancement of SECs
fuels the birth of new-generation electronics and technolo-
gies. The SECs hold bright prospects and a prosperous
future, with great application potential and huge market
value. The realization of such visions calls for the collabo-
rative efforts and support of researchers, enterprises, and
governments.
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