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HIGHLIGHTS

• The controllable fabrication methods, the unique properties, and relative applications of 2D heterostructures were summarized.

• The generation and detection of interlayer excitons in 2D heterostructures with type II band alignment indicate a longer lifetime and 
larger binding energy than intralayer excitons.

• The advances in magnetic tunneling junctions based on 2D heterostructures can be applied in spintronic devices to realize spin filter‑
ing.

ABSTRACT With a large number of researches being conducted on two‑dimen‑
sional (2D) materials, their unique properties in optics, electrics, mechanics, and 
magnetics have attracted increasing attention. Accordingly, the idea of combining 
distinct functional 2D materials into heterostructures naturally emerged that pro‑
vides unprecedented platforms for exploring new physics that are not accessible 
in a single 2D material or 3D heterostructures. Along with the rapid development 
of controllable, scalable, and programmed synthesis techniques of high‑quality 2D 
heterostructures, various heterostructure devices with extraordinary performance 
have been designed and fabricated, including tunneling transistors, photodetectors, 
and spintronic devices. In this review, we present a summary of the latest progresses 
in fabrications, properties, and applications of different types of 2D heterostruc‑
tures, followed by the discussions on present challenges and perspectives of further 
investigations.
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1 Introduction

Since the successful preparation of graphene in 2004 [1], 
the properties and applications of two‑dimensional (2D) 
materials have attracted much attention. 2D materials 
can be divided into single‑element 2D materials (such as 
graphene, black phosphorus (BP), silylene, germanene, 
etc.) and compound 2D materials (TMDs, hBN, TMCs, 
III–V group elements, compound semiconductor, etc.) [2]. 
Compared to bulk materials, layered 2D materials pos‑
sess many peculiar properties that are strongly related to 
their number of layers. For example, the band structure 
at the Dirac point of a monolayer of graphene exhibits a 
linear dispersion relation, which is quite different from 
the parabolic band structure of double‑layered grapheme 
[3]. And for black phosphorus (BP), the bandgap displays 
an evident redshift as the number of layers increases [4]. 
Besides, the direct‑to‑indirect band gap transition has been 
demonstrated in TMD semiconductors when it changes 
from single layer to multilayer [5]. 2D thin‑layered mate‑
rials have been considered as promising building blocks 
for the next generation of electronic and optoelectronics 
devices due to their extraordinary properties. In particular, 
2D atomically thin structures are immune from the short 
channel effect and their mechanical strength allows for 
integration into flexible and wearable circuits [6, 7].

However, a number of issues limit the application of sin‑
gle 2D materials. Specifically, the direct deposition of metal 
electrodes on 2D semiconductors during device fabrication 
results in a high contact resistance due to the Schottky bar‑
rier [8–10]. Also, the intralayer excitons generated in single 
2D semiconductor materials are hard to manipulate due to 
their short lifetime [11], which restricts their applications 
in exciton devices. Furthermore, hBN and most insulated 
2D materials are not suitable to be applied in devices alone, 
and BP is easily oxidized when exposed to air.

Therefore, the idea of that 2D materials can be assem‑
bling 2D materials into heterostructures was put forward 
[12], and many novel properties of these heterostructures 
have been discovered [13–19]. Heterostructured 2D mate‑
rials can be divided into two categories: the vertically 
stacked heterostructures and the epitaxial grown planar 
heterostructures. In this paper, we focus on the fabrica‑
tion methods, the properties, and the applications of 2D 
heterostructures in these two types.

2  Fabrications of 2D Heterostructures

2.1  Deterministic Transfer Method

The layered 2D materials prepared through mechanical 
exfoliation and chemical vapor deposition can be trans‑
ferred onto different substrates at a desired location. This 
usually requires a long working distance optical inspec‑
tion system in combination with an XYZθ direction micro‑
manipulator for accurate placement and certain polymer 
layers as a transfer medium. There are four types of 
polymer carriers: (I) PMMA/sacrifice layer [12, 20], (II) 
PDMS [21, 22], (III) thermoplastic polymer [23], and (IV) 
hybrid stamp composed of PDMS/PPC (or PC, PMMA)/
hBN [24]. The transfer processes are slightly different 
from each other as schematically illustrated in Fig. 1. 

Step 1: The polymer carriers are spin‑coated layer by 
layer onto a Si/SiO2 substrate (mainly for type I transfer 
media) or a glass slide and then mechanically exfoliate 
thin flakes of 2D nanostructures onto the carriers; Step 2: 
mount the glass slide on the micro‑manipulator directly 
or after the wet transfer process (mainly for type I car‑
riers, the PMMA with flakes is attached to a glass slide 
when released from the Si/SiO2 substrate through deso‑
lating the sacrificial layer) and then align the flakes on 
the polymer carriers with the target material prepared on 
existing substrate into the desired location and orientation 
under microscope with micro‑manipulate arms, and then 
the glass slide was lowered down until the two flakes make 
contact to form the van der Waals heterostructure; Step 3: 
directly pick up the target flakes and combine with another 
layered material to form multi‑heterostructure (for type IV 
carriers) or release the heterostructure by slowly lifting 
the glass slide and remove the residual polymer in acetone 
solution. (For type ΙΙΙ and type IV transfer media, heating 
substrates are needed to release the stacking.)

The comparison between the different deterministic 
transfer methods is presented in Table 1 [25]. The clean‑
ness is mainly determined by whether the interfaces in 
the heterostructure are exposed to the polymer. And 
the easiness and speed are dependent on the number 
of steps and specific procedures such as spin coating, 
heating, and wet transferring, which will increase the 
complexity and slow down the speed to some extent. 
The PDMS dry transfer is considered the easiest and 
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quickest method, as the progress does not involve spin 
coating, wet transfer, or heating process. PDMS films 
have become commercialized commodities, and their vis‑
cosity is strongly related to the speed when being peeled 
off [26]. Meanwhile, the pickup method remains the best 
way to assemble multi‑heterostructure with no residual 
polymer at interfaces. In conclusion, the deterministic 
transfer method has high flexibility in fabricating vari‑
ous heterostructures, but its drawbacks are obvious. It 
is inevitable to cause polymer residue at the interface 
or on the surface, and the 2D material samples may be 
destroyed or got wrinkled during the transfer process. 
Another challenge of the deterministic transfer method 
is the control of the stack orientation.

2.2  Chemical Vapor Deposit (CVD) Growth

CVD synthesis is a bottom‑up strategy for the preparation 
of vertical 2D heterostructures and is able to realize the 
growth of planar multi‑junction heterostructures. In order 
to obtain an atomically sharp heterojunction and a clean 
interface in vertically stacked heterostructures, as well as 
achieve scalable and controllable fabrication of both verti‑
cal and planar heterostructures, various approaches have 
been explored to realize CVD growth of heterostructures.

2.2.1  The One‑Step CVD Method

The schematic diagram of Fig. 2a shows the processes 
of this method, which is suitable for preparing hetero‑
structures with the component materials containing the 
same elements. Gong et al. [27] successfully fabricated 
both vertical and planar  MoS2/WS2 heterostructures by 
this one‑step CVD method that demonstrated the in‑plane 
epitaxial growth at a lower temperature of 650 °C, as the 
provided energy was not enough for the nucleation of  WS2 
on the surface of  MoS2, but at a higher temperature of 
850 °C vertically stacked structure could be formed as the 
van der Waals heterostructure was more thermodynami‑
cally stable.

Polymer Carrier

Alignment

Target
Flake

Attach

30-40 °C
Pick Up

100 °C, the polymer
melting

80-95 °C
Release

Long
Working
Distance
Objective

Tape

Flake

Flake

DI Water

(I) PMMA Carrier

Water-soluble layer Glass Slide
Si/SiO2

(II) PDMS

Adhesive tape

h-BN
PPC

PDMS
(IV) Transfer
      Stamp

(III) Thermoplastic
    Polymer

Glass slide

1

1 2

1
2

1 2

1 2

Slowly Peel Off the Glass Slide or PDMS
Desolve the Polymer Residue in Acetone

Fig. 1  The deterministic transfer method. The yellow, blue, green, and red dashed lines correspond to the process of transfer using polymer car‑
riers of types I to IV, respectively, and in the end a bare heterostructure or a multilayer heterostructure covered by hBN will be fabricated. (Color 
figure online)

Table 1  Comparison between the different deterministic placement 
 methods1. Reprinted with permission from Ref. [25]

1 The numbers of symbol ▲ indicate the degrees in cleanness, easi‑
ness and speed

Carrier type Cleanness Easiness Speed

PMMA/sacrifice layer ▲▲▲ ▲▲▲ ▲▲▲
PDMS ▲▲▲ ▲▲▲▲▲ ▲▲▲▲▲
Thermoplastic polymer ▲ ▲▲ ▲▲▲
PDMS/PPC (or PC, 

PMMA)/hBN
▲▲▲▲▲ ▲ ▲▲
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2.2.2  The Two‑Step CVD Method

This is a more commonly adopted approach using the 
as‑grown layered crystals as a substrate for the second 
layer. Such procedures were also adapted for both the 

vertically stacked and lateral heterostructures that are 
mainly affected by the rate of gas flow and the synthesis 
time. Li et al. [28] reported the growth of 2D GaSe/MoSe2 
heterostructure by this two‑step CVD method. Such MX/
MX2 vertical heterostructures exhibit incommensurate 
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Fig. 2  Chemical vapor deposit (CVD) growth. a The diagram of the synthesis of  MoS2/WS2 heterostructures through one‑step CVD method. 
S powder is placed at the upstream, and a wafer with mixed powder of W and Te is put downstream. Reprinted with permission from Ref. [27]. 
b Multi‑step CVD growth of realized through direction‑switchable carrier flow and cooling process. Reprinted with permission from Ref. [32]. 
c the modulable growth of  WS2 − WS2(1−x)Se2x (0 < x ≤ 1) monolayer lateral heterostructures using dual heating quartz tube and d the optical 
picture and PL intensity mappings of heterostructures with different x. Reprinted with permission from Ref. [30]. e The principle of one‑pot 
synthesis strategy and f the optical picture and PL intensity mappings of the hetero‑superlattice indicating the sharp interlines. Reprinted with 
permission from Ref. [31]
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superstructures because of the large lattice misfit between 
the two layers. In addition, the synthesis of a stacked 
TMD/hBN heterostructure was also realized by using the 
Ni–Ga alloy and Mo foil as the substrate without any 
intermediate operations. In such a case, the Ni–Ga alloy 
promoted the formation of the hBN honeycomb lattice, 
while the Mo foil was a source of Mo [29].

2.2.3  The Multi‑step CVD Method

By switching the direction and modulating the compo‑
nents of gas flow [30–32], the multi‑step CVD method 
was developed (Fig. 2b). This approach makes the bound‑
ary of heterojunctions sharper and enables the sequen‑
tial growth of the multi‑junction heterostructure. Biyuan 
Zheng et al. [30] reported an efficient method to grow 
modulable  WS2 − WS2(1−x)Se2x (0 < x ≤ 1) monolayer pla‑
nar heterostructure (Fig. 2c) with tunable band alignment 
(Fig. 2d). Using the dual heating furnace, the switching of 
the synthesis from a pure  WS2 growth to a  WS2(1−x)Se2x 
(0 < x ≤ 1) alloy formation can be controlled by changing 
the direction and the temperature of the Ar gas flow. The 
parameter x is modulated by the ratio of the mixed  WS2/
WSe2 powders.

Moreover, the control of growth can also be realized 
by changing the components of the gas flow. Sahoo et al. 
[31] reported the one‑pot synthesis strategy by placing 
two precursors  (MoX2 and  WX2 mixed powders) in the 
same boat at the heating zone, while the substrate was 
held at a lower temperature. The mechanism is vividly 
illustrated in Fig. 2e: under the  N2 + H2O (g) gas flow, 
only the growth of  MoX2 was promoted. When the gas 
flow was switched to the Ar + H2(5%) gas flow, only 
the growth of  WX2 was allowed. Reversing the gas flow 
would terminate the current reaction. Figure 2f shows 
the optical images and the Raman intensity maps at 240 
and 250 cm−1 revealing the well‑defined spatial distribu‑
tion and sharp interface of the  MoSe2 and  WSe2 domains 
in the multi‑junction heterostructure. Compared with the 
one‑step and the two‑step CVD methods, the multi‑step 
CVD method is more flexible and controllable that ena‑
bles the possibility of creating spatially selected optoelec‑
tronic devices due to the separation of electrons and holes 
into different materials.

3  Properties

3.1  Band Alignment

The band alignment is the fundamental property of 2D het‑
erostructures. Most charge transport behavior and illumi‑
nance properties are originated from the band structures, 
especially the band alignment. The band energy can be 
calculated in theory based on the first principles and meas‑
ured through μ‑XPS. Figure 3a [33] shows the band align‑
ments of a monolayer semiconducting TMDs and mon‑
olayer  SnS2 calculated by Perdew–Burke–Ernzerhof (PBE) 
with spin–orbit coupling (SOC). The results indicate that, 
for the monolayer TMDs in  MX2 form, the energy of the 
conduction band minimum (CBM) and the valence band 
maximum (VBM) increases with the atomic number of X. 
Thus, when two different materials with sizable band gaps 
get combined into a heterostructure, there will be three 
types of I–III band alignments without considering the 
band bending at the interface, which are called straddling 
gap, staggered gap, and broken gap, respectively. The type 
I band alignment contributes to the fast recombination of 
electrons and holes that allows them to be used in lumi‑
nescent devices, such as light‑emitting diodes (LEDs) [34, 
35]. The type II band alignment can facilitate the effective 
spatial separation of electrons and holes, prolonging the 
lifetime of interlayer excitons and making them a good 
candidate for the application in electron–hole separators 
and related optoelectronic devices. The type III band align‑
ment allows the band‑to‑band tunneling (BTBT) effect of 
carriers and enables the operation of the tunnel field effect 
transistors (TFET). Compared with the type II band align‑
ment, the speed of the transportation of the electrons and 
holes in type III heterostructures is much faster that results 
in a large number of electrons and holes separating into 
different layers of the material, so the heterojunction dis‑
plays semi‑metallic features generating a strong built‑in 
electric field that makes the type III heterostructures ideal 
for new‑generation thermal photovoltaic cells.

Interestingly, when taking the band bending at the inter‑
face into consideration, the band structure of the hetero‑
structures presents more novel properties. For example, 
when two semiconductors form a PN junction with type I 
band alignment (Fig. 3b), the VB and the CB on the dif‑
ferent sides will bend in the opposite directions, forming a 
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notch and a peak, respectively. There is none symmetry in 
ΔEC and ΔEV values which will cause different potential 
barriers for electrons and holes.

In addition, the band structure of a 2D heterostructure 
can be affected by many factors. Firstly, the quality of 
the interface is very important. For example, the inter‑
face defects and impurities can cause the defect or impu‑
rity energy level; and intrinsic metal‑induced gap states 
(MIGS) or extrinsic disorder induced gap states (DIGS) at 

the interface would lead to the occurrence of Fermi‑level 
pinning effect [36]. Bampoulis et al. [37] demonstrated 
that the subsurface metal‑like defects in  MoS2/metal het‑
erostructures could hugely decrease the Schottky barrier 
height (SBH) that attributed to strong Fermi‑level pinning 
at the defects. On the other hand, a weak Fermi‑level pin‑
ning led to the SBH modulation by electrical gating [38], 
and a very weak Fermi‑level pinning has been observed 
at the graphene/TMD interfaces. A shift of about 120 mV 
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was observed between the spectra of scanning tunneling 
spectroscopy (STS) of flakes residing on single‑layer 
graphene (SLG) and bilayer graphene (BLG) substrates, 
which is equal to the difference in the work function of 
SLG and BLG. Secondly, the lattice constants of the mate‑
rials and their stake orientation are also important factors. 
When two 2D materials with similar lattice constants form 
heterostructures, such as graphene/hBN [39] and  SnS2/
MoS2 [40], a periodic Moiré pattern will be formed. Fig‑
ure 3c, d shows the STM measurements on graphene/hBN 
heterostructure with a rotation smaller (Fig. 3d) and larger 
(Fig. 3c) than 1°. The later one displays a nearly same 
spatial periodic behavior exhibiting a much larger Moiré 
pattern due to the high Young modulus of graphene. Such 
deformation of lattice structure results in a much stronger 
van der Waals interaction and causes extra periodic poten‑
tial in graphene that adjusts its band structure. Moreover, 
the indirect band gap varies appreciably with the stacking 
orientation [41]: the largest redshift for AA‑(twist angle 
of 0°) and AB‑(twist angle of 60°) stacked bilayers and 
a significantly smaller but constant redshift for all other 
twist angles (Fig. 3e).

However, adjusting the band alignment through the above 
structural factors is complex and inflexible. The band struc‑
ture of heterojunction can also be externally controlled by 
an electric field, magnetic field and light field [44]. The band 
engineering regulated by the gate voltage leads to the tran‑
sitions in 2D heterostructures between band alignments of 
type I–III. Particularly, graphene has a unique linear disper‑
sion relationship with a finite DOS; thus, the Fermi level 
and work function of graphene are gate modulable, making 
graphene widely used as the contact between the electrodes 
and the channel of the 2D material to reduce the contact 
resistance (Rc). What’s more, band structure can also be 
optically modulated to behave like a photogate, a phenom‑
enon looking like the addition of a local gate (ΔVg) to the 
device when under illumination [45]. The band diagram of 
a photodetector with the  WS2/MoS2 hetero‑bilayer as a light 
absorption layer and the graphene as the electrode contact is 
shown in Fig. 3f [42]. Under illumination, the accumulation 
of holes at the region acts as a positive gate on the source 
graphene electrode, effectively raising the Fermi level of the 
graphene electrode and lowering the SBH. Figure 3g [43] 
shows a typical band structure of floating‑gate devices with 
an Au floating‑gate layer to form energy well to trap the 
charges.

3.2  Charge Transport Properties in 2D 
Heterostructures

Different band alignments result in a variety of charge 
transport characteristics accompanied by the process 
of energy transfer. On the one hand, the single‑particle 
transportation, including interlayer tunneling effect and 
charge trapping phenomena, has been widely reported and 
novel devices based on those transportation mechanisms 
have been fabricated that exhibit low energy‑assumption 
with high performance; on the other hand, the many‑body 
transport and the separation of electron–hole pairs in 2D 
heterostructures have also been theoretically predicted and 
practically demonstrated [11], which enable the prospect 
of broad applications in optoelectronic field [46–50].

3.2.1  Single‑Particle Transports

The ultra‑narrow channel length and atomically sharp 
interfaces can realize band‑to‑band tunneling (BTBT) 
effect by electrostatic gating to avoid deprivation of 
band‑edge sharpness resulted from chemical doping [51]. 
As shown in Fig. 4a–c [52], when applying a small Vg 
(Fig. 4b), the CBM of  WSe2 is higher than the VBM of 
 SnSe2. The electrons in  SnSe2 cannot tunnel into  WSe2, but 
diffusion of charges occurs at the interface, corresponding 
to channel current and high resistance state, respectively, 
when applied with a positive and negative bias voltage. 
This corresponds to the off state of the device. When keep‑
ing on increasing the Vg while the CBM of  WSe2 is set 
below the VBM of  SnSe2 (Fig. 4c), a tunneling window 
is opened, such that an interlayer tunneling can flow from 
 SnSe2 to  WSe2. In type I band alignment, the layer with a 
wide bandgap will cause spatial confinement of electrons 
and holes in the “well” layer with a narrow bandgap [53] 
that causes a strong PL in a trapping layer and a quenched 
PL in the other (Fig. 4d).

When taking the band bending into consideration, the 
interfacial charge trapping can be seen in the PN junction of 
type II band alignment. Cai et al. [54] developed an electric‑
gating switchable photodetector based on p‑MSB/WSe2 by 
epitaxial growth of 2D van der Waals, in which the p‑MSB 
serves as a light absorber, while in the p‑MSB/WSe2 hetero‑
structure an interfacial energy barrier and a band bending 
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between the lowest unoccupied molecular orbital of p‑MSB 
and the CBM of  WSe2 (Fig. 4e) enable unidirectional carrier 
injection. When a negative Vg is applied (Fig. 4f), the Fermi 
level of  WSe2 shifts downward, leading to an increase of 

the interfacial energy barrier that enhances the interfacial 
charge trapping process. It is believed the interface quality 
is the key to avoid the on‑state current decreasing under such 
plasma treatment.
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Another way to obtain charge trapping is to place a 
floating‑gate layer, which is usually sandwiched with 
the tunneling and blocking dielectric layers, between 
the channel and control gate as a charge trapping layer 
[43, 55–60]. Figure 4g [61] shows the charge transport in 
the floating‑gate structure with graphene as the trapping 
layer and monolayer  MoS2 as the channel. When a − 6 V 
(+ 6 V) drain bias is applied, a large potential difference 
between the drain and graphene, and a nearly equal poten‑
tial of the source electrode and graphene are generated. 
As a result, the electrons (and holes) are able to tunnel 
through the hBN layer at the drain electrode side and are 
trapped in the floating‑gate layer, so are unable to tunnel 
back to the source electrode or the  MoS2 channel.

3.2.2  The Generation of Interlayer Excitons

For the type II band alignment, the CBM and VBM are in 
different layers that lead to the spatial separation of elec‑
trons and holes. The ultrafast separation of electron–hole 
pairs could be detected by the pump–probe technique [48, 
62, 63]. In the  WS2/MoS2 heterostructure, after the  MoS2 
monolayer is directly pumped the photo‑induced signal will 
appear instantaneously. The experimentally observed signal 
in the heterostructure shows a rising time that is shorter than 
50 fs (Fig. 5a).

The detailed charge separation processes in the hetero‑
structure are presented in Fig. 5c [62]. After the excitation of 
the  WS2(MoS2) monolayer, the electrons (holes) transferred 
from the CBM (VBM) of  WS2  (MoS2) monolayer to the 
conduction (valence) bands just above (below) CBM (VBM) 
of the  MoS2(WS2) monolayer within 50 fs, generating a hot 
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interlayer exciton with a relatively long distance. The hot 
excitons then reorganized and dissipated the excess energy 
to form the tightly bound interlayer excitons within 800 fs. 
The existence of the final tightly bound interlayer excitons 
could be distinctly demonstrated in photoluminescence spec‑
tra [62, 64] as shown in Fig. 5b [27]. The photoluminescence 
signal was taken from number 1 and 2 regions corresponding 
to the A‑exciton resonances in the monolayer  MoS2. But 
the signals from the heterostructure regions displayed exci‑
ton resonances in  MoS2 and  WSe2, leading to an additional 
interlayer exciton peak. The exciton photoluminescence sig‑
nals of  MoS2 and  WSe2 were quenched in the heterostructure 
due to the charge transfer process.

3.3  The Properties of Excitons in 2D Heterostructure

The interlayer excitons hold the prolonged lifetime [50] and 
large binding energy which is strongly related to the distance 
between the two layers in vertical heterostructures. Simone 
Latini et al. [65] developed a QEH (quantum electrostatic 
heterostructure) model based on the  MoS2/x‑hBN/WSe2 
vertical heterostructures. (The parameter x is the number of 
hBN layers.) The binding energy of the interlayer excitons 
is calculated up to 0.3 eV and decreases with the increas‑
ing parameter x, indicating a stable existence of the inter‑
layer excitons at room temperature. But the weak oscillator 
strength and momentum‑indirect nature make it challenging 
to directly observe the interlayer excitons by resonant optical 
excitation [66]. Figure 6a shows the spectra of electrolu‑
minescence (red line) and photoluminescence (black line) 
for lateral p–n junctions based on a vertical  MoSe2–WSe2 
hetero‑bilayer. The inset picture illustrates the electrode con‑
tacts of each layer. When applying a forward Vsd, the carriers 
would be injected in and recombine at the edge of the hetero‑
bilayer (orange arrows). It turned out that the photocurrent 
amplitude from the interlayer exciton was about 200 times 
smaller than that of the resonant excitation of the intralayer 
exciton.

Interlayer excitons also have ideal valley‑contrast phys‑
ics. Figure 6b [17] shows the schematic of the interlayer 
exciton recombination in the K± valley in a  MoS2/WSe2 
heterostructure with the twist angle of 0° and 60°. After 
circularly polarized light excites intralayer excitons in the 
K+ valleys of  MoS2 and K+ valleys of  WSe2, a fast inter‑
layer charge hopping forms the interlayer exciton in the K+ 

valley. The solid (dashed) arrows denote the dipole transi‑
tion (interlayer hopping). Rivera et al. [67] observed long 
valley lifetime and valley drift–diffusion of host interlayer 
excitons in  MoSe2–WSe2 heterostructures with small twist 
angles (Fig. 6d). The valley polarization is greatest at + 60 V 
and highly suppressed at − 60 V. The valley polarization 
lifetime increases with Vg, reaching 39 ± 2 ns at + 60 V, 
as determined by fitting a single exponential decay. The 
extraordinary valley‑contract properties allow the possibil‑
ity of the excitonic optoelectronic circuit to switch the val‑
ley functionalities and provide a platform for investigating 
excitonic superfluidity and condensation.

In addition to intralayer and interlayer excitons, there is 
the theoretical existence of trions in 2D heterostructures. 
Figure 6e shows the different kinds of combinations of trions 
in a  MoS2/WS2 heterostructure. Thorsten Deilmann et al. 
[68] calculated the interlayer excitation in a  MoS2/WS2 het‑
erostructure and predicted the existence of bound interlayer 
trions below the neutral interlayer. The binding energies are 
18 and 28 meV for the positive and negative interlayer trions 
with both electrons/holes located on the same layer.

3.4  Magnetic Properties in 2D Heterostructures

For the low‑dimensional magnetic materials, the coerciv‑
ity, saturation magnetization, Curie temperature (TC), and 
other magnetic parameters of the materials are related to 
the number of layers and grain size. Therefore, 2D materials 
usually present magnetic properties that differ from its bulk 
form. The application of 2D magnetic materials in hetero‑
structures is of great significance for the study of spintronics, 
valleytronics, and electromagnetics [69]. The magnetic prop‑
erties of 2D heterostructures are significant for the external 
ways to control (gate) the propagation of spin and valley 
(polarized) currents at room temperature. The massive theo‑
retical calculations and experimental results indicate that 
by assembling 2D materials (graphene or TMDs) with fer‑
romagnetic materials into a van der Waals heterostructure 
[70], a large magnetic exchange field can be generated at 
the interface and thus the regulation of the spin and valley 
pseudospin in 2D materials can be realized [71–73]. The 
existence of the magnetic exchange field can amplify the 
effect of the external magnetic field, which originates from 
the proximity effects of the heterojunction [74]. Figure 7a 
shows the sublattices of graphene on EuO represented with 
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different colors and letters. Due to the existence of the EuO 
substrate, the two sublattices of isolated graphene break 
into six folders as shown in Fig. 7b. Such structural change 
resulting from the proximity effect will enhance the mag‑
netic moment of surface Eu atoms, causing variable spin 

polarizations on the graphene sublattices with a calculated 
spin polarization of about 24% in average, and change the 
band structure of graphene. The recent research suggests 
that such magnetic exchange field (MEF) can be tuned 
over a range of 20T by small changes in the laser excitation 
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power [75]. Figure 7c shows the magnetization of  CrI3 in a 
monolayer  WSe2/multilayer  CrI3 heterostructure probed via 
reflection magnetic circular dichroism (RMCD) as a func‑
tion of the external magnetic field at different excitation light 
power. The RMCD exhibits a very similar power‑dependent 
hysteresis loop behavior. Such opto‑magnetic effect enables 
the power‑switchable valley properties as illustrated in the 
PL spectra in Fig. 7d, where the polarization ρ (defined as 
(I+ − I−)/(I+ − I−), with I± being the PL peak intensity excited 
by σ± polarized laser) flips in sign at certain external mag‑
netic field with the increasing of the excitation power.

The search of suitable 2D magnetic materials remains 
a challenge at the moment. The  CrI3 mentioned above is 
layered magnetic material whose magnetic properties are 
strongly related to the number of layers [76]. Besides, a new 
class of magnetic heterostructure materials, called transition 
metal phosphorus trichalcogenides (TMPS, TM = V, Mn, Fe, 
Co, Ni, or Zn), could also be easily exfoliated and their mag‑
netic ground state is strongly depended on the TM element. 
An Ising‑type antiferromagnetic ordering from bulk to the 
monolayer has been reported for  FePS3, a TMPS material. 
The Raman peaks (Fig. 7e) show a transition at the Neel 
temperature (TN) of 118 K [77].

The TC of ferromagnetic materials in the above het‑
erostructures is too low for them to be applied at room 

temperature. Current theoretical calculations have shown 
that  XS2/VS2 heterostructures are ferromagnetic and are 
expected to have ultrahigh TC [78]. Figure 7f shows the opti‑
mized configurations, local magnetic arrangements, mag‑
netic moments and energy relative to that of the ferromag‑
netic configuration for non‑magnetic (NM), ferromagnetic 
(FM), and antiferromagnetic (AFM) states, respectively. 
Clearly, the FM state is the most stable one for the two het‑
erostructures. The  XS2/VS2 heterostructures have the FM 
ground states in theory, and their TC can be calculated by 
the following equation:

where γ is the dimension of the  XS2/VS2 system, kB is the 
Boltzmann constant, and EAFM and EFM are the energies of 
the unit‑cell system with AFM and FM coupling, respec‑
tively. The obtained very high Tc values are 485 K for the 
 MoS2/VS2 heterostructure and 487 K for the  WS2/VS2 het‑
erostructure. Interestingly, a semiconductor–metal transition 
occurred under the modulation of the external electric field 
(Fig. 7g), indicating a potential for generating pure spin‑
polarized currents. Moreover, many other 2D magnetic 
materials have been studied experimentally or theoretically 
as shown in Table 2. Most of the 2D magnetic materials are 
in the form of MX (M = Cr, Co, V, Mo, Mn, etc., and X = C, 
O, S, Se or N) or MAX (M = Cr or Fe; A = Ge, Si, Al, Sn, 
etc., and X = Te), and most of them are semiconductors.

𝛾k
B
T
C
⊖∕2 = E

AFM
− E

FM

Table 2  The calculated or experimental properties of different 2D magnetic materials

Theoretically predicted materials are marked by (*). The ML, BL, TL, and HS are short form of monolayer, bilayer, and heterostructure, respec‑
tively

Material Tc (K) Saturation magnetiza‑
tions (μB/unit)

Band gap (eV) Exchange parameters Kerr rotation angle References

VSe2 ML > 330 K 15 55 m (15 K) – – [80]
Fe3GeTe2 207 K (bulk)

130 K (ML)
– – – – [81]

TL  Fe3GeTe2] ~ 300 K (Vg = 1.75 V) 1.8 – Jij = 10 mV (Heisenberg model) – [82]
*CrC ML > 330 K 8 2.85 J1 = 7.4 meV J2 = 14.7 meV 

(Heisenberg model)
– [83]

*MnO2 ML 140 K
210 K (strained)

3 (< 75 K) 3.41 J = 1.72 meV (Ising model) – [84]

*Co2S2 ML > 404 K – J1 = 58.7 meV J2 = 15.8 meV 
(Ising model)

– [85]

GdAg2 85 K 5 (5 K) – – – [86]
*MnS2 ML 225 K, 330 K (strained) 3 0.69 – – [87]
*MnSe2 ML 250 K, 375 K (strained) 3 0.01 – – [87]
CrI3 61 K (bulk)

45 K (ML)
AFM (BL)

3 – – 5 ± 2 mrad at μoH = 0 T [76]

*MoS2/VS2 HS 485 K 14.6 Tunable – – [51]
*WS2/VS2 HS 487 K 14.7 Tunable – – [51]
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Furthermore, a magnetoresistance (MR) effect has been 
detected in some graphene‑based heterostructures due to the 
interface state in the heterostructures. Liu et al. [79] fabri‑
cated a highly stable monolayer graphene/black phosphorus 
(Gra/BP) heterostructure device (Fig. 7h) that exhibits a 
giant MR (defined as [R(B)−R(0)]

R(0)
× 100% ) of 775% (Fig. 7i), 

and the nonlocal MR more than 10,000% in the Gra/BP 
device at room temperature due to an enhanced flavor Hall 
effect induced by the BP channel. Those experimental results 
provide valuable information for the study of magnetization 
dynamics in devices such as magnetoresistive random‑
access memories.

4  Applications in Devices

4.1  Electronic Devices

2D materials have been extensively explored as channel 
materials for future electronic device applications because 
of their atomically thin channels that offer ideal electrostatic 
control to enhance the immunity to the short channel effects 

[88] and the deprivation of band‑edge sharpness resulting 
from chemical doping. The electronic devices based on the 
band engineering of 2D heterostructures have been widely 
reported.

Typically, the TFET usually uses an insulator thin layer 
of hBN as the dielectric layer, as well as TMDs with large 
band gap. Using 2D materials to replace traditional metal‑
lic oxides effectively avoid pinholes, oxygen doping, and 
interlayer defects [89]. The TFET based on the  SnSe2/WSe2 
vertical heterostructure (Fig. 8a) was fabricated with a sub‑
threshold swing of 80 mV  dec−1 and ultrahigh ION/IOFF ratio 
over  106 (Fig. 8b), and such high performance can be real‑
ized simply by tuning the back‑gate voltage to switch the 
BTBT effect [52].

Likewise, memories based on the floating‑gate struc‑
ture are also important applications of 2D heterostructures, 
where the selection of the floating‑gate layer is crucial. To 
suppress the dark current in the device channel, gold nano‑
particles (AuNPs) were selected to serve as the trapping 
layer [58]. Recently, researchers designed a programmable 
memory device based on a vertically stacked  MoS2/hBN/
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graphene heterostructure with graphene as the floating‑gate 
[61] (Fig. 8c) which has ultrahigh on/off ratio and a high 
stretchability (> 19%). With the dielectric layer of hBN hav‑
ing an appropriate thickness, the on/off ratio over  109 has 
been obtained. Figure 8d shows the memory cycles real‑
ized by repeated voltage pulses as programming (1), reading 
(2), erasing (3), and reading (4) operations. Such functions 
can also be demonstrated in the hysteresis behavior in the 
Ids − Vds plot (Fig. 8e) and are originated from the tunneling 
effect through hBN and the asymmetric potential drop 
caused by the highly resistivity of  MoS2. Moreover, Si et al. 
[90] integrated 2D ferroelectric insulator of  CuInP2S6 on the 
top of  MoS2 to build a nonvolatile memory device with a 
stable ferroelectric hysteresis loop in transfer characteristics.

4.2  Optoelectronic Devices

2D materials are outstanding candidates for optoelectronic 
devices due to their unique properties, including the wide 
response spectrum range, excellent flexibility, and strong 
light–matter interaction [91, 92]. Similarly, due to the 
generation of interlayer excitons and flexible band engi‑
neering, 2D heterostructures have been widely applied in 
optoelectronics including photodetectors [93, 94], photo‑
voltaic devices, and light source devices [95–101]. Many 
experiments have shown that the photodetectors based on 
2D heterostructures can be applied in a broad range of spec‑
trum from ultraviolet (UV) to near‑infrared (NIR), the same 
range as that of the photodetectors based on bulk materials, 
but wider than that of a single 2D heterostructure. Table 3 
lists the main parameters of the latest photodetectors based 

on 2D heterostructures. Actually, the photodetectors based 
on 2D heterostructures perform better due to the genera‑
tion of the strong built‑in electrical field in such atomically 
thin structures [102]. Also, researchers are keeping explor‑
ing multi‑ways to modulate devices and multi‑structures 
to improve devices performance. It has been demonstrated 
that using graphene as the contact electrodes is an effective 
strategy to significantly increase the response speed (up to 
5.5 ps Ref. [97]) of an atomically thin photodetector [95, 
100, 101], because graphene, as a 2D material with ultrahigh 
carrier mobility, can minimize the lateral diffusion in the 
semiconductor [103]. Recently, Tan et al. [42] built  WS2/
MoS2 hetero‑bilayer devices with layered graphene elec‑
trodes (Fig. 9a). By tuning the work function of graphene, 
the modification of the SBH at the interface of graphene 
and the TMD layer can be achieved. The lowering of the 
barrier as a result of the photogating effect would facilitate 
the re‑injection of electrons into the TMD channel. Such 
devices displayed the highest photoresponsivity of up to 
2340 A  W−1 and a large internal photoconductive gain over 
3.7 × 104, with an estimated specific detectivity of 4 × 1011 
Jones. Moreover, photodetectors based on  MoS2–WS2 planar 
heterostructures [104] have also been reported to reach a 
detectivity of 4.36 × 1013 Jones. The p–n heterostructures are 
usually self‑powered because the generated electron–hole 
pairs can get separated under built‑in potential at zero bias. 
Compared with vertical heterostructures, the fabrication of 
in‑plane junctions is much controllable and scalable due to 
the difficulties of controlling the stacking orientation. The 
extraordinary flexibility of heterostructures enabled the 
researchers to design a curved image sensor array based on a 

Table 3  The performances of 2D‑heterostructure‑based photodetectors

Heterostructures Response spectrum Responsivity Detectivity (Jones) Conditions EQE References

MoS2–GaTe – 21.83 A  W−1 8.4 × 1013 Vg = 70 V 61.68% [106]
MoS2/Gra/WSe2 400–2400 nm 104 A  W−1 (Vis) 1011 (NIR)

1014 (Vis)
Vds = 1 V, Vg = 0 V
Pin = 10−10 W

106% [107]

Gra/MoS2 – 5 × 108 A  W−1 (300 K) – Vds = 0.1 V, Vg = − 50 V – [108]
BP/MoS2 – 2.17 A  W−1 – Vbias = 0 V – [109]
MoS2–WS2 planar HS – 4.36 mA W−1 4.36 × 1013 Vbias = 0 V 1.02% [104]
Polydiacetylene/Gra UV to visible light 556 A  W−1 6 × 1011 Vds = 1 V, Vg = 0 V – [110]
Gra/WTe2 – 8.7 A  W−1 – Vds = 0.5 V 165% [111]
WS2/MoS2 – 1173 A  W−1 4.1 × 1011 Vds = 10 V, Vg = 0 V – [42]
InSe–Gra 400–1000 nm 60 A  W−1 2.5 × 1012 Vds = 10 V, Vg = 0 V 14,850% [95]
Gra/p‑GaSe/n‑InSe/Gra 270–920 nm 350 A  W−1 3.7 × 1012 Vds = 2 V, Vg = 0 V – [100]
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 MoS2–graphene heterostructure [105] which can be applied 
as a human eye‑inspired soft implantable optoelectronic 
device for detecting optical signals through programmed 
electrical stimulation to optic nerves.

Moreover, the optoelectronic memories based on 2D het‑
erostructures have been designed which can accumulate and 
release photo‑generated carriers under an electric field and 

light irradiation. In addition, the introduction of 2D materi‑
als makes it possible to realize miniature, flexible, and low‑
energy‑consumption optoelectronic storage [105]. Recently, 
Xiang et al. [112] successfully fabricated a multi‑bit nonvol‑
atile optoelectronic memory based on a stacked  WSe2/hBN 
heterostructure as shown in Fig. 9b, which is also a filter‑free 
color image sensor. The device can be programmed to read 
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and erase by adjusting the gate voltage and the light pulse. 
The corresponding band alignment is shown in Fig. 9. The 
positive charges can be stored in hBN even after removing 
the negative gate and switching off the light (Fig. 9c). The 
device has performed a retention time over 4.5 × 104 s and 
possesses over 128 (7 bit) storage states. Interestingly, the 
storage states at different wavelengths are highly distinct 
(Fig. 9d), indicating excellent wavelength distinguishing 
capability of the  WSe2/hBN optoelectronic memory.

In addition, the reduced Coulomb screening in the atomi‑
cally thin crystals led to a dramatic increase in the exciton 
binding energy and therefore stabilized these excitons at 
room temperature. Recently, Unuchek et al. [113] reported 
excitonic devices made of  MoS2/WSe2 van der Waals het‑
erostructures encapsulated in hBN (Fig. 9e) demonstrating 
electrically controlled multi‑gate transistor actions at room 
temperature. The interlayer exciton was excited in the heter‑
ostructure, and the recombination was successfully observed 
at the edge of the heterostructure (Fig. 9g). The device was 
switched by adjusting the Vg1, reaching an on/off ratio of 
100. Furthermore, under the modulation of the bias voltage, 
the excitons would drift (forward bias voltage) to the low 
potential or be limited in the potential hydrazine (reverse 
bias voltage), so the diffusion distance of the exciton could 
be adjusted to reach 5 μm under a forward bias voltage.

4.3  Spintronic and Valleytronic Devices

2D materials have excellent spin‑valley properties; for 
example, graphene exhibits outstanding electrical, thermal, 
and mechanical properties. It also displays a very long spin 
diffusion length up to room temperature that facilitates the 
spin injection, manipulation, and detection in an integrated 
device leading to the realization of scalable and ultrafast 
nonvolatile logic circuits with ultralow energy dissipation. 
More recently, the spin valve effect in FM/2D‑material/
FM sandwich‑like magnetic junction has been observed 
[114–117]. Particularly, in certain FM/G/FM junctions 
(FM = Ni, Co etc.), the lattice mismatch between graphene 
and FM is very small, and simultaneously, a spin filtering 
effect is theoretically permitted. As shown in Fig. 10a [118], 
only the spin states at Dirac point in FM can be injected into 
graphene and the calculation indicates that only minority 
spins exist at the Dirac point. The introduction of 2D het‑
erostructures in magnetic tunneling junctions can efficiently 

modulate the result of the spin filter due to the different spin 
polarizations at different interfaces. Iqbal et al. [119] suc‑
cessfully observed the negative tunnel magnetoresistance 
(TMR) of − 0.85% in a NiFe/G–hBN/Co magnetic junction 
under room temperature (Fig. 10b). However, the quality of 
the interfaces and the lattice orientation between different 
layers are very crucial.

Besides, monolayer TMDs with a broken inversion sym‑
metry own two degenerated inequivalent valleys that are 
related by time‑reversal symmetry [120]. This property and 
the strong spin–orbit coupling are responsible for the unique 
physics in TMDs, especially the coupled spin and valley of 
freedom. With a direct band gap, TMDs offer the opportu‑
nity to excite carriers selectively within a particular valley 
with a specific valley pseudospin using circularly polarized 
light. Also, the valley Hall effects can be observed in a cer‑
tain doped TMD sample [121, 122].

However, the external control of valleytronic devices 
remains a challenge because the conditions of lifting the 
valley degeneracy by Zeeman splitting in a single 2D mate‑
rial are very demanding that usually require strong magnetic 
field and low temperature [123], while tailoring graphene 
magnetic properties by structural engineering such as doping 
[10] and defects [124] inevitably increase the complexity in 
operations.

Utilizing the interfacial magnetic exchange field (MEF) 
from a ferromagnetic substrate that greatly enhanced valley 
splitting in monolayer TMDs has been found recently. Chuan 
Zhao et al. [125] successfully put the  WSe2 monolayer on 
Si/SiO2 and on ferromagnetic EuS substrates. The magnetic 
field was perpendicular to the plane (Fig. 10c). In  WSe2 on 
the  SiO2 substrate, the ΔE was 1.5 meV at 7 T and 7 K. But 
in  WSe2 on the EuS, the valley splitting reached 3.9 meV. 
Figure 10d, e shows the measurements of the systematic 
field and temperature dependences of the splitting. With the 
field increased further, the rate of ΔEex increase got slower 
and then tended to saturation at high magnetic fields. Also, 
with the increase in temperature, ΔEex decreased accord‑
ingly. Such behaviors are very similar to the field‑ and the 
temperature‑dependent magnetization of EuS.

Another thought of combining is to select another 
material whose properties can compensate for the set‑
backs of the material. Typically, for the graphene and 
TMDs in spintronics [127], the long‑distance spin trans‑
port capability of graphene has been demonstrated at 
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room temperature [128], but the lack of the SOC made 
it complicated to generate pure spin current. In contrast, 
spin/valley polarization can be efficiently generated in 
monolayer TMDs such as  WS2 and  MoS2 via external 
excitation field. Recently, lateral spin or valley transport 
has been realized at room temperature by fabricating 
 MoS2/few‑layer graphene hybrid spin valves as shown in 
Fig. 10f. Luo et al. [126] fabricated the monolayer  MoS2/
few‑layer‑graphene hybrid spin valves and successfully 
injected the spin signal generated by circularly polarized 

light excitation on the TMD layer into the graphene layer. 
Figure 10g shows the illustration of optical spin injection, 
lateral spin transport, and electrical spin detection in a 
monolayer  MoS2/few‑layer‑graphene hybrid spin valve 
structure. Figure 10h shows the electrical spin signal 
VNL as a function of external magnetic field By under 
T = 10 K. The spin signal can still be easily detected at 
room temperature but it’s about 5 times smaller due to the 
increased intervalley scattering which reduces the valley 
polarization in monolayer  MoS2.
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5  Summary and Outlook

It is clear that remarkable progress has been achieved in 
the study of 2D heterostructures, such as the develop‑
ment in realizing controllable CVD growth of planar het‑
erostructures, the distinctive properties of magnetism and 
spatially separated excitons, as well as the various design 
and effective modulation of devices. These advances are 
fundamental bases for future scalable applications of 2D 
heterostructures. Additionally, 2D heterostructures can 
display unique physics phenomena due to the coupling 
effect and the electronic transport at the junction, offer‑
ing an ideal platform for fundamental research in physics.

Nevertheless, there are still great challenges in the 
research of 2D heterostructures. At the first, successful 
synthesis of vertical heterostructures by CVD has been 
rare and more often the stacked heterostructures were fab‑
ricated by artificial transfer that needed a proper anneal‑
ing process, a procedure that could cause damage to the 
samples. Thus, the priority is to develop new strategies for 
scalable and controllable fabrication of 2D heterostruc‑
tures with high‑quality interfaces and certain stack orien‑
tation, while the CVD synthesis is an ideal method its gas 
system needs to be optimized to for better control of the 
reaction conditions. As for deterministic transfer method, 
in‑depth studies on surface physical chemistries are 
needed for the invention of new types of transfer carriers. 
Secondly, new materials, such as layered magnetic materi‑
als with high TC, need to be created, which will enable a 
lot of new combinations of 2D heterostructures. Thirdly, 
to modulate the magnetic properties, band structure, and 
charge transport characteristics of 2D heterostructures, 
conducting external electric field, optical field, magnetic 
field, strain treatment, together with the structural and 
surface engineering on the materials, will be meaningful 
and helpful research points. What’s more, for the fabrica‑
tion and design of devices, the selection of proper materi‑
als as the electrode contact for reducing the RC remains a 
tough task. The structural design of new devices to include 
floating‑gate, multi‑gate, and array structures is also very 
challenging.

In order to further explore the properties and applica‑
tions of 2D heterostructures, several opinions could be 
taken into consideration for future development. Firstly, 
the integration of layered ferromagnetic insulator and 

monolayer TMD will greatly enhance the valley split‑
ting in TMD, so the synthesis of a layered ferromagnetic 
insulator material whose TC is over the room temperature 
could enable the development of valley‑storage or valley‑
logical devices. Secondly, mix‑dimension devices based 
on 0D–2D, 1D–2D, or 3D–2D heterostructures are also an 
effective way to solve the current problems. By combin‑
ing quantum dots, nanowire, nanoribbon, or waveguide 
structures [129] with 2D sheets, more novel properties, 
such as interfacial disorders, will be realized. Finally, the 
fabrication strategy needs further improvement. For the 
CVD method, modulation of gas flow direction and tem‑
perature is a key factor for controlled reaction. For the 
transfer method, the development of a new transfer media 
layer and an automatic strategy is helpful to realize scala‑
ble fabrication and high yield. Hence, the heterostructures 
of 2D materials are promising for exploring new phys‑
ics in 2D materials and realizing functional applications. 
The future of 2D heterostructures is full of massive novel 
possibilities.
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