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HIGHLIGHTS

•	 This review systematically summarizes solar evaporator design and optimization using renewable lignocellulosic biomass.

•	 Unique structural merits and fabrication methods for photothermal layer and hydrophilic substrate are thoroughly discussed.

•	 Multifunctional integrated applications beyond desalination are highlighted.

•	 Current challenges and future development opportunities for scalable biomass-based evaporators are outlined.

ABSTRACT  The increasing scarcity of freshwater resources has driven the rapid emer-
gence of solar-driven interfacial evaporators (SDIEs) as a sustainable approach to harvest 
fresh water by utilizing solar energy. Lignocellulosic biomass, featuring natural abundance, 
excellent renewability, unique natural structures, and superior biodegradability compared 
to the synthetic polymers, is highly attractive for constructing solar steam generators. This 
review aims to offer an innovative and in-depth insight into designing and optimizing high-
performance integrated solar interfacial evaporators derived from renewable lignocellulosic 
biomass. First, the structural characteristics of lignocellulosic biomass are briefly introduced, 
serving as photothermal layer or supporting substrates in SDIEs. Secondly, the fabrication 
methods and processing technologies of lignocellulosic biomass-based evaporators are sum-
marized from the perspective of photothermal layer and supporting substrates. Next, the most 
recent advances of regulation and optimization strategies are proposed to improve evapora-
tion efficiency. Subsequently, this review summarizes the diverse functionalities of SDIEs, including desalination, power generation, 
wastewater treatment and antimicrobial, atmospheric water harvesting, and photocatalytic hydrogen production. Finally, the challenges in 
this field and outlook on the future development are discussed, which are anticipated to provide new opportunities for the advancement 
of lignocellulosic biomass-based SDIEs.
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nonbiodegradability, and inefficient recycling. Thus, the 
growing urgency to mitigate environmental degradation and 
fossil fuel reliance is accelerating significant demand for 
renewable and sustainable bio-based alternatives to replace 
conventional photothermal materials and supporting sub-
strates for constructing SDIEs.

Lignocellulosic biomass as the largest reserves of renew-
able resources in nature attracts significant attention owing 
to its renewability, biocompatibility, and potential to address 
sustainability challenges, rendering it an ideal candidate 
for constructing SDIEs compared to the synthetic poly-
mers. Wood, a typical example of lignocellulosic biomass, 
is regarded as a sustainable structural material. Its inherent 
multilayered and porous structure reminiscent of eggshell 
membranes demonstrates superior thermal insulation and 
natural hydrophilicity, which are exceptionally well-suited 
both as a thermal insulator and water conduit in solar inter-
facial evaporators. Notably, the natural advantages of wood 
with inherent efficient water transport and heat insulation 
enable to simplify device design, reduce production costs, 
and support scalability in desalination applications [30]. Cel-
lulose and lignin, the primary structural constituents of wood, 
have been widely investigated for use in SDIEs. Cellulose 
exhibits excellent hydrophilicity, high mechanical strength, 
axial rigidity and modulus, structural stability, and chemi-
cal reactivity [31], which render cellulose-based substrates 
highly adaptable for SDIEs applications and hold significant 
promise for sustainable development. Meanwhile, lignin is 
distinguished by its highly intricate molecular architecture, 
which encompasses a diverse array of functional groups, such 
as hydroxyl, carboxyl, and epoxy moieties, thereby enabling 
a broad range of chemical modifications [32]. Notably, the 
strong polycyclic π-conjugated framework of lignin pro-
motes π–π molecular interactions, which are instrumental 
for efficient and sustainable photothermal conversion [33]. 
Figure 1 presents a chronological analysis of key develop-
ments in lignocellulosic biomass-based SDIEs, tracking the 
evolution from initial wood-structured systems to contem-
porary lignocellulosic biomass-based SDIEs. The timeline 
highlights annually emerging designs that demonstrate inno-
vative approaches to either structural engineering or func-
tional application, revealing both the dynamic progression 
and substantial future potential of this research domain.

Previous reviews of lignocellulosic biomass-based 
SDIEs have predominantly focused on cellulose- or wood-
based systems in isolation, neglecting the unique intrinsic 

1  Introduction

Water scarcity, one of the most strenuous global challenges 
today, arises from the limited availability of freshwater, 
with nearly half of the population of world facing severe 
shortages [14]. Despite water covering approximately three-
quarters of the Earth surface, only ~ 2.5% is freshwater, with 
the remaining 97.5% consisting of saline water [15]. This 
imbalance has driven increasing attention toward desalina-
tion technologies as a potential solution to alleviate freshwa-
ter shortages. To address this issue, numerous desalination 
techniques have been employed to generate clean freshwater 
from seawater [16], frequently including reverse osmosis 
[17], electrodialysis [18], freezing [19], and multi-stage flash 
[20]. While effective and reliable, these methods rely on 
auxiliary equipment and secondary energy sources, such as 
thermal or electrical energy predominantly derived from fos-
sil fuels or other nonrenewable resources. In contrast, solar 
energy has emerged as a highly attractive alternative due 
to its renewable nature and environmental sustainability, 
effectively addressing the escalating global demand for low-
carbon energy solutions [21]. Among various solar-driven 
desalination technologies, solar-driven interfacial evapora-
tors (SDIEs) have attracted particular interest for its ability 
to concentrate heat for localized evaporation of small water 
volumes, ensuring efficient utilization of solar energy.

The conventional bilayered SDIE architecture combines a 
photothermal conversion layer with a porous water transport 
substrate, simultaneously ensuring efficient solar absorption, 
continuous water supply, and thermal insulation for sus-
tained vapor production. Substantial research has advanced 
photothermal layers with broad-spectrum absorption to 
optimize conversion efficiency, alongside engineered sub-
strates that ensure effective thermal regulation and unhin-
dered water transport to enhance SDIEs performance [22]. 
However, the traditional photothermal materials, including 
noble metal nanomaterials [23], transition metal materials 
[24, 25], carbon-based nanomaterials [26], organic conju-
gated materials [27], applied in the photothermal layers of 
interfacial evaporators, are often limited by their narrow 
light absorption spectra, high costs, and poor biocompat-
ibility. With regard to supporting substrates in SDIEs, exten-
sively utilized petroleum-derived synthetic polymers, such 
as polyurethane (PU) [28], and polystyrene (PS) [29], suf-
fer from limited raw material availability, nonrenewability, 
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photothermal properties of lignin, a key biomass compo-
nent, which could be integrated as a natural photothermal 
material. Additionally, the optimization and regulation 
of biomass-based SDIEs have been absent, with limited 
attention given to their potential integration between solar 
evaporation and other applications. This review system-
atically summarizes the recent progress in design strat-
egies, optimization methodologies, and multifunctional 
integrated applications of interfacial evaporators derived 
from wood, cellulose, and lignin, as illustrated in Fig. 2. 
Through structural analysis of wood, cellulose, and lignin, 
we highlight the design strategies and management meas-
ures for SDIEs. Then, we conclude the multifunctional 
integration of lignocellulosic biomass-based SDIEs for 

engineering applications of desalination, power genera-
tion, wastewater treatment and antimicrobial, atmospheric 
water harvesting, and photocatalytic hydrogen production. 
Finally, we discuss the scientific and technological chal-
lenges and potential opportunities and provide comprehen-
sive guidance on the design, optimization, and application 
of lignocellulosic biomass-based SDIEs.

2 � Lignocellulosic Biomass

Lignocellulosic biomass, the most abundant renewable 
organic resource on Earth, is composed of cellulose, 
hemicellulose, and lignin, which collectively form the 

Fig. 1   Brief timeline of lignocellulosic biomass for SDIE. Plasmonic wood-enabled high-efficiency interfacial solar evaporation [1]. Monolithic 
3D-printed SDIE [2]. Ambient energy-enhanced SDIE [3]. A high-performance wood-based SDIE for continuous water desalination [4]. Anti-
fouling MXene-cellulose fibrous membranes for sustainable solar water purification [5]. Asymmetric functionalization drives simultaneous clean 
water and electricity generation [6]. All cellulose-based SDIE with self-powered water wave detection [7]. Asymmetrically structured evaporator 
realizes efficient concurrent water and electricity production [8]. Cellulose-based SDIE with synergetic photothermal effect for optimized elec-
tricity generation and desalination [9]. All-lignocellulose biporous hydrogel architectures for solar evaporation [10]. Salt-resistant solar desalina-
tion and mineral recovery via suspended Janus fibrous membrane evaporator [11]. Lignin-functionalized wood evaporator for high-performance 
solar-powered water purification [12]. 3D-printed cellulose nanofiber scaffolds with multi-scale porosity for sustainable atmospheric moisture 
harvesting [13]
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structural skeleton of plant cell walls [47]. From a bot-
tom-up perspective, lignin and cellulose offer distinct 
functional advantages. Specifically, the innate photother-
mal properties of lignin and the pronounced hydrophi-
licity of cellulose, render them particularly suitable for 
integration into evaporative systems. From a top-down 
perspective, natural wood provides a natural matrix of 
microchannels that facilitates efficient water transport. 
Consequently, this review systematically examines and 
summarizes the applications of wood, cellulose, and 
lignin, reflecting the current research emphases and tech-
nological pathways in the field.

2.1 � Wood

Wood, the largest renewable biomass resource, consists of 
three main components: cellulose, hemicellulose, and lignin 
(Fig. 3) [48]. Cellulose, constituting 40–50% of the wood, 
serves as the primary structural element, with its crystal-
line regions providing strength, akin to a skeletal framework 
[49]. Hemicellulose (10–30%), functioning as a filler, occu-
pies the interstitial spaces between cellulose microfibrils and 
is cohesively bound to cellulose by lignin (20–30%), which 
serves as a natural adhesive within the cell wall matrix. The 
proportions of three components vary across the wood spe-
cies, with softwood largely composed of parenchyma and 
tracheids, while hardwood exhibits a more intricate micro-
structure that includes vessels, fibrous elements, and paren-
chyma (with tracheids present in some hardwood species) 
[50, 51]. These wood cells, which differ in shape, size, and 
arrangement, are densely packed to form the unique multi-
layered porous structure of wood. Wood exhibits a hierarchi-
cal void architecture spanning three distinct size regimes: 
macrovoids, microvoids, and mesovoids. Macrovoids, which 
are visible to the naked eye, are constituted by wood cells 
(ranging from 50 to 1500 µm in width and 0.1 to 10 mm in 
length), vessels (20 to 400 µm), tracheids (15 to 40 µm), 
and intercellular spaces (50 to 300 µm) [52]. This naturally 
occurring multi-layered, porous architecture, resembling that 
of an eggshell membrane, imparts wood with remarkable 
thermal insulation properties.

Tree trunks serve as primary as conduits for the trans-
port of nutrients and water, facilitated by aligned, growth-
oriented channels within the wood. These channels, which 
contain microporous pits, enable efficient material exchange. 

The presence of these growth-aligned directional channels 
imparts wood with a range of anisotropic properties, pre-
dominantly its remarkable capacity for directional water 
transport. Notably, the anisotropic thermal conductivity of 
wood significantly enhances its thermal insulation perfor-
mance [53, 54], rendering it an effective substrate for inter-
facial solar evaporators. As a result, wood fulfills all critical 
roles in three essential components of SDIEs: photother-
mal layer, thermal insulation, and water channels. Benefit-
ted from inherent dual functionality in water transport and 
thermal insulation, wood enables to simplify equipment 
design, thereby reducing manufacturing costs, and pro-
motes and facilitates scalable implementation of desalina-
tion technologies.

2.2 � Cellulose

As the most abundant renewable biopolymer on Earth, cellu-
lose is primarily derived from plant-based sources, including 
fungi, trees, algae, annual plants, and bacteria, with plant 
fibers serving as the predominant reservoir [55]. As a fun-
damental structural component, it reinforces the mechani-
cal integrity of wood and other plant tissues. While certain 
sources, in cotton seed hairs, contain cellulose in highly 
pure forms exceeding 90 wt%, it more commonly occurs 
in a composite structure alongside lignin, hemicelluloses, 
pectin, and trace organic compounds [56]. Industrially, cel-
lulose is largely extracted from wood pulp, which remains a 
key raw material for various applications [57].

As a linear polysaccharide, cellulose is a homopolymer 
composed of thousands of β-1,4-linked d-glucose units, with 
cellobiose as its repeating dimeric unit. The degree of cel-
lulose polymerization (ranging from 300 to 16,000) exhib-
its significant variation across source materials [55, 58]. 
Interchain hydrogen bonding (denoted by red dotted lines 
in Fig. 3) induces cellulose chain stacking, generating ele-
mentary fibrils that subsequently aggregate into microfibrils. 
Concurrently, intrachain hydrogen bonds between hydroxyl 
groups and adjacent ring oxygens stabilize the molecular 
structure, preserving linear chain conformation of cellulose. 
Additionally, the van der Waals and intermolecular hydrogen 
bonding collectively drive the parallel stacking of cellulose 
chains, contributing to the formation of fibrillar structures. 
These intra- and intermolecular interactions render cellulose 
a structurally rigid and thermally stable polymer. Its linear 
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structures and extensive hydrogen bonding confer not only 
mechanical stiffness but also key properties, including bio-
compatibility, degradability, hydrophilicity, high strength, 
high thermal stability, and durability [48, 57, 58].

2.3 � Lignin

Lignin is the most abundant aromatic biopolymers in nature 
[59–62]. In contrast to cellulose, lignin is a complex, amor-
phous three-dimensional polymer composed of oxygenated 
p-propylphenol units. It plays a crucial role in reinforcing 

Fig. 2   Schematic showing the design and application of the lignocellulosic biomass-based SDIEs. Coating [34], carbonization [35], in  situ 
polymerization [36], composite [37], surface customization [38], heat isolation [39], light absorption [40], cold evaporation [41], water transport 
[42], water state [43], 3d print [44], gel porous structure [45], nature pores [46]
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Fig. 3   Schematic illustration of hierarchical structure of lignocellulosic biomass. (Color figure online)
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structural rigidity of the plant cell wall [63], while also provid-
ing resistance to microbial attack [64]. The primary monomeric 
constituents of lignin include p-hydroxyphenyl (H), guaiacyl 
(G), and syringyl (S) [65], which are interconnected through 
diverse intricate linkages, such as β-O-4 and β-5 linkages. The 
molecular architecture of lignin is further characterized by a 
rich array of functional groups, including carboxyl, carbonyl, 
and hydroxyl moieties, which significantly contribute to its 
diverse chemical reactivity [66–68]. These structural and chem-
ical features impart a broad spectrum of remarkable properties 
to lignin, such as ultraviolet (UV) shielding [69, 70], anti-aging 
[71, 72], and excellent adsorption and dispersion capabilities 
[73]. Moreover, the number and positioning of methoxy groups 
on the phenolic rings of lignin monomers exhibit considerable 
variability, which further modulates its functional properties. 
The distribution of these monomeric units is not uniform and 
varies significantly across different plant species, a factor that 
plays a critical role in determining lignin functionality and its 
potential applications across diverse fields.

Notably, structural framework of lignin comprises multiple 
benzene rings, which facilitate electron delocalization across 
the polymer. This delocalized distribution of electrons cre-
ates an "electron cloud," endowing the benzene ring with a 
highly stable conjugated system. Strong conjugated systems 
and π–π stacking in lignin generate distinctive optical prop-
erties [74, 75]. Upon absorbing light energy, π electrons in 
lignin can transition from the valence band to the conduction 
band, resulting in the formation of excited-state electrons. 
The excited electrons undergo nonradiative relaxation to their 
ground state, with the energy released during this process 
manifested as heat [76]. Simultaneously, the hydroxyl groups 
of lignin form dynamic noncovalent bonds with water mole-
cules, modulating both aqueous phase organization and inter-
mediate water content through these interfacial interactions 
[77]. This interaction enhances the evaporation performance 
of the material, while the inherent low thermal conductivity 
of lignin provides exceptional thermal insulation to mini-
mize heat loss, collectively offering a promising prospect for 
designing sustainable SDIEs utilizing lignin [78].

3 � Construction of SDIEs

A typical SDIE comprises a photothermal layer and a support-
ing substrate with water transport channel. When exposed to 
sunlight, the photothermal layer absorbs light and converts it 

into thermal energy (heat), driving the evaporation process. The 
water transport channel allows for continuous upward water flow 
to the photothermal interface, where thermal energy converts 
liquid water to vapor phase. The supporting substrate plays a 
vital role in providing structural integrity, while its thermal con-
ductivity and mechanical strength are essential for the long-term 
stability and durability of the system. Therefore, the optimal 
design and integration of the photothermal layer, water trans-
port channel, and supporting substrate are critical to the efficient 
operation of the interface evaporator. Lignocellulosic biomass 
materials, due to their abundance and favorable physicochemical 
properties, hold significant promise for use in SDIEs. Optimiz-
ing the structure of these materials enhances their photothermal 
efficiency and water transport capabilities, thereby improving 
SDIEs performance. Additionally, their inherent sustainability 
makes them ideal for SDIEs. Figure 4 provides a comprehensive 
summary of lignocellulosic biomass in interface evaporators, 
highlighting key material properties, construction strategies, 
and optimization methods. It underscores how the selection 
and design of these materials can optimize both evaporation 
efficiency and system stability, while also elucidating the advan-
tages and challenges of their practical application. This figure 
offers critical insights for guiding the future development and 
sustainable integration of these materials into lignocellulosic 
biomass-based SDIEs.

3.1 � Photothermal Layer Construction

3.1.1 � Coating

Coating technology represents a critical technological 
foundation for the integration of photothermal conversion 
interfaces into solar-driven lignocellulosic biomass evapo-
rative systems. These coatings, composed predominantly 
of high-efficiency photothermal materials, are engineered 
to harness incident solar radiation with high efficacy and 
transduce it into localized thermal energy. Implementation 
is facilitated by versatile coating techniques, including depo-
sition [82], spray coating [83], and dip coating [84], which 
ensure scalability and compatibility with diverse substrates. 
Furthermore, such methodologies enable the realization 
of lightweight and compact evaporative systems by mini-
mizing material usage while maximizing surface-area-to-
volume ratios, thereby optimizing overall energy conver-
sion efficiency and operational performance under varied 
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environmental conditions. For instance, Wu et  al. [34] 
reported that Ag nanoparticles (NPs) were anchored onto 
lignin-derived porous carbon, which was subsequently 
deposited at the top of the surface of delignified wood for 
effective light absorption (Fig. 5A). The enhanced solar 
absorption was attributed to the nanopores within the lignin-
derived carbon acting as optical microcavities, promoting 
multiple scattering and improving the path of incident light 
[85]. Additionally, the incorporation of Ag nanoparticles 
created hot spots that enhanced light absorptivity [86]. After 
5 min of illumination under 1 sun, the surface temperature 
of the LCDW-1-Ag composite rose rapidly to 36.5 °C, while 
the measured temperatures of water, deionized water (DW), 
and LCDW-1 were recorded at 25.4, 29.2, and 35.8 °C, 
respectively (Fig. 5B). These results demonstrated that LC-
1-Ag exhibited a fast thermal response capability, highlight-
ing its promising potential for efficient solar-driven evapora-
tion application.

In another approach, Chen et al. [79] utilized a com-
mercial black aerosol spray, primarily composed of carbon 
black, which was used to spray on the surface of delignified 
longitudinal wood (D-L wood) to enhance light absorption, 
facilitate solar thermal conversion, and promote steam evap-
oration, resulting in an evaporation rate of 2.82 kg m−2 h−1 
in pure water (Fig. 5C). The surface temperature of the 
J-D-L wood can rapidly reach 45 °C within one minute and 
ultimately stabilize at approximately 51 °C under dry con-
ditions when exposed to AM 1.5 solar radiation (Fig. 5D). 
Moreover, Li et al. [80] reported the synthesis of activated 
lignin-based carbon (KLC) through KOH activation, which 
was subsequently coated onto the upper surface of commer-
cial melamine foam (MF) to fabricate a self-floating Janus 
KLC/MF evaporator (Fig. 5E). The porous architecture of 
KLC demonstrated exceptional solar energy harvesting capa-
bilities, achieving 90% broadband absorption across the full 
solar spectrum (200–2500 nm) and efficient photothermal 
conversion with equilibrium temperatures reaching 60.4 °C 

Fig. 4   Summary of the properties–construction strategies–management and optimization of lignocellulosic biomass and multifunctional appli-
cations
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under standard illumination (Fig. 5F). As a result, the Janus 
KLC/MF evaporator demonstrated a remarkable water 
evaporation rate of 1.539 kg m⁻2 h⁻1 under one solar irra-
diation. Similarly, Zou et al. [81] developed a photothermal-
enhanced arginine-doped polydopamine (APDA) (Fig. 5G). 
The APDA coating exhibits superior optical absorption and 
photothermal conversion efficiency relative to conventional 
polydopamine (PDA) coatings, a performance enhancement 
attributable to donor–acceptor pair formation in its micro-
structure. The APDA wood composite exhibited rapid ther-
mal response under 1-sun illumination, reaching an average 
surface temperature of 38 °C within just 5 min and stabi-
lizing at nearly 40 °C (Fig. 5H, I). This rapid temperature 

rise highlights the exceptional light absorption capacity and 
effective photothermal performance by coating technology.

3.1.2 � Surface Carbonization

Surface carbonization is a foundational strategy for the con-
struction of photothermal layer in lignocellulosic biomass-
based SDIEs, as it generates a graphitic photothermal conver-
sion layer that markedly improves solar absorption and thermal 
localization. This carbonization process, which transforms the 
wood surface into a porous, light-absorbing matrix, serves as 
a scalable and energy-efficient route for material function-
alization. Widely adopted techniques, such as heated plate 

Fig. 5   A Schematic illustration of the lignin carbon coating on delignification wood (LCDW)-1-Ag SDIE; B IR photographs of water, delig-
nified wood (DW), LCDW-1, and LCDW-1-Ag under 1 kW m.−2 illumination [34]. C Schematic representation of the Janus arch-structured 
SDIE. D Temporal evolution of surface temperature of Janus delignified longitudinal (J-D-L) evaporator operating in wet/dry environments 
under one sun irradiation. The inset presents infrared thermal images documenting the temperature elevation process under dry conditions [79]. 
E Schematic diagram of the potassium hydroxide-activated lignin-based carbon/melamine foam (KLC/MF) SDIE. F Surface temperatures of 
lignin-based carbon (LC)/MF and KLC/MF at varying illumination durations [80]. G Photographs of wood substrate and arginine-doped polydo-
pamine (APDA) wood. H Time-resolved infrared thermography of APDA wood, untreated wood, and water under one sun irradiation. I The plot 
displays average surface temperature profiles of APDA-functionalized wood, untreated wood, and brine under standardized solar simulation [81]
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annealing [90], controlled flame carbonization [91], and preci-
sion laser irradiation [92], enable tunable surface morphology 
and chemical composition, thereby tailoring light-to-heat con-
version kinetics. Furthermore, the inherent structural hierarchy 
of carbonized wood synergizes with these methods to enhance 
interfacial evaporation rates while maintaining mechanical 
robustness, offering a sustainable pathway for high-perfor-
mance biomass-derived evaporators. For example, He et al. 
[87] introduced a pressure-assisted carbonization method to 
create a bimodal porous wood film with a carbonized surface 
by applying pressure to wooden blocks on a hot plate at 500 °C 
(Fig. 6A). This carbonized film functions as a salt-accumu-
lation-free SDIE, enabling continuous, stable, and efficient 
desalination of high-salinity water. The stabilized temperature 
on the top surface of the SDIE increases with light intensity. 
Similarly, Chen et al. [88] adopted a comparable carbonization 
technique, in which the wood was tightly pressed on a 500 °C 
hot plate to develop a sustainable Janus wood SDIE featuring 
a carbonized surface (Fig. 6B). This evaporator achieved an 
evaporation efficiency of 82.0% for a 20% NaCl solution under 
1-sun illumination. Under identical irradiation conditions, the 
Janus wood achieved a 56.1 °C surface temperature within one 
minute—an 8.9 °C greater temperature increase than natural 
wood (47.2 °C), with both materials starting from comparable 
initial temperatures (Fig. 6C).

In a different approach, Chen et al. [35] applied a deep 
eutectic solvent (DES) to extract lignin from bulk wood under 
mild conditions, followed by treatment with a scanning flame 
to create a solar-to-thermal layer (Fig. 6D). Under simulated 
solar radiation, the surface temperature of the delignified wood 
with scanning flame treatment rapidly increased from approxi-
mately 28 to 60 °C over 13 min (Fig. 6E). Under 1 standard 
sun irradiation, the surface temperature of the DW-SSGD rose 
swiftly from about 22 to 33 °C within 4 min (Fig. 6F). Further-
more, Pang et al. [89] proposed a laser engraving-driven inte-
grated approach for carbonizing and modifying the wood sur-
face, achieving simultaneous conversion into carbon and metal 
oxides while constructing surface architectures (Fig. 6G). The 
laser engraving technique not only facilitates carbonization but 
also creates a patterned surface structure that enhances photo-
thermal conversion, water transport, and salt inhibition. The 
surface temperature of the LEC-BW can be rapidly increased 
from room temperature to approximately 39.3 °C within 1 min, 
significantly outperforming untreated wood that reaches only 
29.5 °C under the same conditions (Fig. 6H). As a result, it 
demonstrates a significantly enhanced and stabilized output, 

achieving evaporation rates of approximately 1.72 kg m–2 h–1, 
which exceeds that of pristine wood by about 100%.

3.1.3 � In Situ Polymerization

In situ polymerization has emerged as a pivotal method-
ology for augmenting the photothermal efficiency of solar 
evaporators through the synergistic integration of func-
tional light-absorbing polymers, such as polypyrrole (PPy), 
polydopamine (PDA), and polyaniline (PANi). This tech-
nique facilitates covalent bonding and uniform dispersion 
of photothermal phases within polymeric matrices, thereby 
ensuring robust interfacial adhesion while simultaneously 
optimizing broad band solar absorption and heat genera-
tion—critical parameters for high-yield solar desalination. 
By enabling atomically controlled deposition of conformal 
polymer coatings, in situ polymerization enhances thermal 
conductivity, operational stability, and anti-fouling resist-
ance against salt crystallization, addressing persistent chal-
lenges in long-term evaporator durability. Moreover, the 
scalability and cost-effectiveness of this approach position it 
as a transformative pathway for engineering next-generation 
SDIEs, with implications for advancing sustainable water 
purification technologies in resource-limited settings.

For example, Shen et al. [93] demonstrated the utility of 
in situ polymerization by functionalizing wood substrates 
with a deep eutectic solvent (DES), which exposed abundant 
cellulose hydroxyl groups via selective lignin removal. This 
surface modification facilitated hydrogen-bond-mediated 
deposition of conformal PPy coatings, yielding a low-cost, 
high-efficiency solar interfacial evaporator (Fig. 7A). The 
PPy-coated wood evaporator achieved a rapid thermal equi-
librium, attaining a surface temperature of 37.8 °C within 
10  min. The DES-functionalized PPy wood (37.8  °C) 
evaporator achieved a higher equilibrium temperature than 
unmodified PPy wood (34.8 °C) (Fig. 7B). Similarly, PDA is 
a prominent photothermal material renowned for its broad-
band absorption and biocompatibility [95]. Zhang et al. [94] 
engineered a lightweight, porous LPNR@PDA foam evapo-
rator via in situ polymerization (Fig. 7C). The LPNR@PDA 
foam evaporator exhibited surface temperatures of 28.7, 
30.8, 35.1, and 43.3 °C under 1-, 2-, 3-, and 5-sun irradiance, 
respectively, within 5 min (Fig. 7D), demonstrating supe-
rior photothermal conversion kinetics across varying solar 
fluxes. These comparative studies highlight the versatility of 
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in situ polymerization in tailoring evaporator architectures 
for optimized energy harvesting, stability, and scalability in 
solar-driven desalination. PPy and PDA exhibit significant 
promise for the preparation of SDIEs, due to their intrinsic 

capacity for broadband solar absorption and efficient light-
to-heat conversion [96]. Similarly, PANi has emerged as a 
robust photothermal material, leveraging its π-conjugated 
backbone to form stable interactions with cellulose matrices 

Fig. 6   A Optical images comparing untreated balsa wood with the bimodal-structured, salt-rejecting SDIE [87]. B Schematic of a Janus wood 
SDIE. C Thermography captures the desalination module’s surface temperature evolution under concentrated solar flux (3-sun illuminations) 
over a 60-s duration [88]. D Schematic illustration of the delignified wood-based solar steam generation devices (DW-SSGD) preparation. Ther-
mal profiling of the DW-SSGD interface via E synchronized infrared thermography and F temperature measurements under standardized solar 
simulation [35]. G Schematic of the proposed concept of chelate conversion and structural design by laser engraving. H Surface temperature 
profiles of laser engraving balsa wood with chelation treatment (LEC-BW) and balsa wood (BW) specimens under 1-sun illumination with cor-
responding infrared thermograms recorded at the 1800s [89]



	 Nano-Micro Lett.          (2026) 18:174   174   Page 12 of 46

https://doi.org/10.1007/s40820-025-02000-y© The authors

[97]. Shu et al. [36] demonstrated this synergy by fabricating 
a cellulose hydrogel evaporator via in situ PANi polymeri-
zation on a cellulose network (Fig. 7E). The PANi-coated 
hydrogel achieved rapid thermal equilibration, with surface 
temperatures rising to 43.1 °C within 5 min under solar 
irradiation and stabilizing after 30 min (Fig. 7F, G). This 
accelerated thermal response underscores exceptional pho-
tothermal localization of PANi, attributed to enhanced pho-
ton capture and minimized thermal dissipation at the poly-
mer–cellulose interface.

3.1.4 � Synergistic Composites

Conventional interfacial evaporators employing singular 
photothermal materials face intrinsic limitations, such as 
narrow absorption spectra, suboptimal conversion efficien-
cies, and environmental instability, impeding their practical 
applications. The integration of heterostructured composites, 
which synergize distinct photothermal mechanisms, offers a 
transformative pathway to overcome these constraints. This 
strategy of synergistic composite design has emerged as a 
pivotal approach for constructing advanced photothermal 

Fig. 7   A Schematic illustration of polypyrrole-deep eutectic solvent (PPy-DES) wood with autonomous surface-cleaning capability. B Infrared 
thermal mapping of bulk water, untreated wood, PPy wood, and PPy-DES wood surfaces [93]. C Schematic illustration of polydopamine-func-
tionalized lignin containing pulp (LPNR@PDA) foam evaporator. D Mass changes of seawater, lignin containing pulp natural rubber (LPNR) 
foam, and LPNR@PDA foam evaporator under standard solar flux [94]. E Schematic illustration of polyaniline (PANI) @cellulose evaporator. 
F Surface thermal evolution under 1-sun irradiation, with G corresponding infrared thermography revealing spatial temperature gradients [36]
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layers, enabling enhanced performance through the combi-
nation of multiple functional materials.

For instance, Chen et al. [9] engineered a hierarchical 
photothermal interface by co-depositing PDA and Ti3C2Tx 
MX on DW via mussel-inspired polymerization (Fig. 8A). 
The unique intercalated PDA-MX structure with expanded 
layer spacing resulted in effective solar capture ability 
(Fig. 8B) and enhanced its multi-scattering effects. Under 
1-sun irradiation, the PDMX@DW evaporator attained a 
surface temperature of 42.1 °C within 5 min, which is 
17 °C higher than ambient water temperature, while main-
taining bulk water at 25.4 °C, demonstrating exceptional 
thermal localization (Fig. 8C, D). The synergistic interac-
tion between PDA and MXene exemplifies the effective-
ness of composite design in optimizing photothermal per-
formance. Complementing this, Lu et al. [37] developed 
an Ag/PPy-decorated wood evaporator (Fig. 8E), where 
plasmonic Ag nanoparticles and conjugated PPy coatings 
synergistically enhanced broadband absorption (Fig. 8F). 
The hybrid system leveraged nonradiative relaxation of 
vibrational modes [99] of PPy and the localized surface 
plasmon resonance effect [100] and plasmonic heating of 
Ag [101], achieving an evaporation rate of 2.04 kg m⁻2 h⁻1, 
higher than single-component counterparts. This design 
highlights the potential of combining plasmonic and con-
jugated polymer materials to create efficient photothermal 
layers.

While, Chen et al. [98] synthesized a chitosan-lignin/
MXene aerogel (CSLC@MXene) with dual photothermal 
pathways (Fig. 8G). Carbonized lignin particles (CL) pro-
vided molecular vibration-driven heating, while MXene 
nanosheets induced plasmonic resonance, collectively 
elevating the surface temperature to 44.0 °C under 1 sun 
(Fig. 8H). This interfacial synergy reduced heat loss com-
pared to unitary systems, underscoring the efficacy of com-
posite design in balancing efficiency and durability. The 
integration of dual photothermal mechanisms in this com-
posite material demonstrates the versatility of synergistic 
design in photothermal layer construction. These advances 
highlight the pivotal role of multi-mechanistic photothermal 
synergistic composite in advancing solar desalination tech-
nologies, bridging the gap between laboratory innovation 
and scalable, environmentally resilient systems. The strategy 
of synergistic composite design not only addresses the limi-
tations of single-material systems but also provides a robust 

framework for developing high-performance photothermal 
layers tailored for practical applications.

The establishment of a high-performance photothermal 
layer, while necessary, is an insufficient condition for achiev-
ing high-efficiency SDIEs. A further critical determinant is 
the establishment of a mechanism for the continuous and 
stable transport of water to the evaporation interface, ensur-
ing its effective coupling with the localized thermal energy. 
Within this framework, the photothermal layer functions 
to convert solar radiation into thermal energy, whereas the 
water transport channel is tasked with supplying a constant 
flux of liquid water.

3.2 � Water Transport Channel Construction

3.2.1 � Natural Pores in Wood

The hierarchical pore structures in natural wood enable 
exceptional water storage capacity (100–170%) and uni-
directional transport, driven by capillary forces within 
aligned microchannels and pit-mediated lateral path-
ways [54, 105–108]. Lower-density variants exhibit 
higher porosity, enhancing hydraulic conductivity while 
maintaining buoyancy, a critical feature for f loating 
evaporators [109]. In addition, delignification further 
optimizes this innate structure. He et al. [102] demon-
strated that lignin removal preserves vertical microchan-
nel orientation of wood (Fig. 9A) while eliminating C–H 
(2920 cm⁻1) and C=O (1739 cm⁻1) vibrational modes, as 
confirmed by FT-IR (Fig. 9B). The resulting DW sub-
strate achieved a 23% increase in evaporation efficiency 
compared to NW by reducing light-blocking aromatic 
moieties (Fig. 9C).

Structural engineering extends beyond lignin extrac-
tion. Zhang et al. [103] developed a flexible and mildew-
resistant aerogel derived from natural balsa wood to serve 
as an efficient and stable substrate for solar desalination 
applications. The balsa wood exhibits a three-dimensional 
interconnected porous network, consisting primarily 
of large vessel channels (200–300 μm) and narrow tra-
cheids (50–80 μm). These well-aligned microchannels 
facilitate rapid water transport along the direction of tree 
growth. Additionally, the vessel channel cell walls contain 
numerous micropores (1–3 μm), which facilitate lateral 
water movement (Fig. 9D). In contrast to natural wood, 
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the microstructure transitions of wood-derived aerogels 
from orderly elliptical cavities to an arch-layered lamellar 
arrangement. These lamellar layers retain open micropores 
on their surfaces (Fig. 9E), which act as channels for brine 
transport and pathways for salt diffusion. Functionaliza-
tion via photothermal material integration unlocks further 
potential. Zhu et al. [1] embedded plasmonic nanoparticles 
within mesoporous framework of wood, creating a “plas-
monic wood” evaporator with near-unity solar absorption 
(99%, 200–2500 nm) and low-tortuosity water pathways 
(Fig. 9F). Similarly, Chao et al. [104] coupled deligni-
fied wood with LCQDs, achieving a 44.0 °C surface tem-
perature under 1 sun via synergistic light trapping and 

steam-conductive channels (80–100 µm, Fig. 9G). These 
advances underscore the wood versatility as a structurally 
and functionally tunable water transport channel for high-
efficiency solar desalination.

3.2.2 � Gel Porous Structure

In addition to the utilization of the wood innate porosity, 
hydrogel offers distinct advantages for SDIEs, such as tun-
able hydration states, programmable pore architectures, 
and inherent hydrophilicity [43]. The high crystallinity of 
cellulose contributes to remarkable mechanical stability, 
while its hydroxyl-rich surface facilitates direct integration 

Fig. 8   A Schematics illustrating the cooperative photothermal coupling between PDA and MXene (MX) nanostructures under solar irradiation. 
B Absorbance profiles of diverse samples. C Visual documentation of the evaporation system and IR thermal images at different time inter-
vals (0, 10, 60 min) under 1 sun. D Temperature of various samples in pure water as a function of time [9]. E Diagram of the Ag/PPy wooden 
SDIE. F Comparative UV–Vis–NIR spectroscopy results for delignified wood (DW) and its PPy (PW) and Ag/PPy (AgPW) modified versions 
[37]. G Schematic representation of fabrication of CSL-C@MXene (chitosan/lignin (CSL) aerogel as the skeleton, loaded with light-harvesting 
carbonized lignin (CL) particles and Ti3C2TX (MXene) nanosheets. H UV–Vis–NIR absorption spectrum for CSL, CSL@MXene-20 mg, and 
CSL-C@MXene [98]
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Fig. 9   A Top-view and cross-sectional SEM images and B infrared absorption spectrum of delignified wood (DW) and nature wood (NW) sam-
ples. C Mass change during 1-sun exposure for NW, DW, MXene @DW (MDW)-1.25, MDW-2.5, and MDW-5 samples [102]. D1 Photographic 
depiction of pristine balsa wood. D2, D3 SEM characterization demonstrates balsa wood’s porous morphology, exhibiting orderly arranged 
microchannels with distinct vascular features: large vessels (200–300 μm) and narrower tracheids (50–80 μm). D4, D5 SEM characterization 
of balsa wood showing frequent pit features in its cell wall morphology. E1 Image of the aerogel material derived from wood. E2, E3 Electron 
microscopy images display the hierarchical organization of wood-derived aerogel, showing sequential arch-like lamellae. E4 SEM micrographs 
displaying porous pit features on the walls of aerogel. E5, E6 SEM images reveal sealed groove structures within the wood-based aerogel [103]. 
F1 Schematic illustration of plasmonic wood. F2 discloses the well-organized mesoporous system in plasmonic wood, comprising open, ori-
ented microchannel structures and F3 SEM image showing the microchannel walls formed by parallel-arranged cellulose nanofibrils [1]. G1 
Schematic of lignin-derived carbon quantum dots on delignified wood (LCQDs-DW) demonstrating its photothermal evaporation under sunlight, 
with the carbon hexatomic ring structure enhancing light absorption and conversion. G2–G4 Cross-sectional SEM images of wood, DW, and 
LCQDs-DW, respectively. G5–G7 SEM micrographs of longitudinal sections from wood, DW, and LCQDs-DW, respectively [104]
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of photothermal nanomaterials without complex function-
alization [1, 110]. Combined with low thermal conductiv-
ity, these properties minimize parasitic heat loss, enabling 
efficient solar-to-thermal energy confinement [50, 111]. 
Advanced ice-templating techniques, such as directional 
freezing, further refine hydrogel structures to mimic aligned 
microchannels of wood for rapid water transport [112].

Zhou et al. [113] engineered a bilayer cellulose aerogel 
from waste cotton fabrics, employing chitosan-assisted ice 
templating to create hierarchical pores (Fig. 10A). Pre-
cise thermal control yielded vertically aligned channels 
(40–60 µm) in the RCA, while liquid nitrogen quenching 
produced finer mesopores (5–10 µm), enhancing capillary-
driven water flux. Han et al. [45] extended this approach by 
fabricating Janus aerogels via unidirectional freeze-drying 
of CNFs and Ti3C2Tx MXenes (Fig. 10B). The MXene-
CNF crosslinked network prevented nanosheet stacking, 
yielding spindle-shaped macropores (86 × 28  µm2) and 
vertically aligned microchannels that reduced thermal con-
ductivity by 32% while maintaining 89% solar absorption. 
Zhou et al. [114] further optimized vascular-like structures 
by integrating ZIF-67 and MXene into CNFs (Fig. 10C). 
Hydrogen bonding of MXene strengthened the CNF matrix, 
forming an interlocked network with dual-scale pores 
(150–200 µm vessels; 50–100 µm veins) that achieved an 
evaporation rate of 1.85 kg m⁻2 h⁻1 under 1 sun. While pure 
lignin lacks structural coherence for standalone substrates, 
its sulfonated derivatives address limitations of cellulose in 
hypersaline environments. Hao et al. [77] incorporated SLS 
into hydrogels, leveraging sulfonate and hydroxyl groups 
to enhance hydrophilicity and intermediate water content 
(Fig. 10D). The SLS-cellulose composite reduced vaporiza-
tion enthalpy by 18% and achieved a record evaporation rate 
of 2.09 kg m⁻2 h⁻1, demonstrating lignin untapped potential 
in modulating water state dynamics.

3.2.3 � 3D Print

3D printing has revolutionized the design of cellulose-based 
solar evaporators by enabling precise control over pore archi-
tecture, spanning macroscale water channels to submicron 
voids, to optimize hydraulic and photothermal performance. 
For example, Yuan et al. [115] utilized 3D printing method 
to fabricate a carbon black-embedded cellulose hydrogel 
(CACH) with triphasic porosity (Fig. 11A). The structure 

integrates 3D-printed macropores (0.50 ± 0.05 mm) for 
vapor escape, hydrophilic mesopores (5–10 µm) for cap-
illary pumping, and nanoscale cellulose fibrils for interfa-
cial water confinement, achieving an evaporation rate of 
1.33 kg m⁻2 h⁻1 under 1 sun. Chen et al. [44] mimicked 
multiscale fluidics of wood via a tripodal cellulose compos-
ite evaporator (Fig. 11B). The 3D-printed tripodal porous 
evaporator: (1) 1 mm macrochannels for salt redissolution, 
(2) 30 µm micropores enabling convection-driven flow, 
and (3) 1 µm submicron pores sustaining capillary ascent 
in 15 wt% NaCl brine. This biomimetic design maintained 
75% evaporation efficiency over 100 h by synergizing salt 
rejection and rapid water replenishment.

4 � Management and Optimization

4.1 � Heat Management

4.1.1 � Surface Customization

Surface topography engineering has emerged as a critical 
strategy for enhancing light absorption in solar evapora-
tors by leveraging multi-scale scattering and anti-reflective 
architectures [116–118]. For example, Wei et al. [38] pio-
neered a bioinspired approach, engineering a lignin-cel-
lulose nanocrystal (CNC) aerogel with inverted pyramid 
microstructures mimicking the light-trapping morphology 
of seedless sunflowers (Fig. 12A). The topological syn-
ergy between eutectic gallium–indium (EGaIn) and lignin 
reduced reflectivity, achieving a record solar evaporation 
efficiency of 94% under 1 sun. Li et al. [7] developed an all-
cellulose-based interfacial steam generator, with template-
assisted modulation by utilizing abrasive paper to create a 
rough textured photothermal layer surface (Fig. 12B), which 
achieving an evaporation rate of 1.82 kg m⁻2 h⁻1 under ambi-
ent conditions.

Surface customization not only improves light absorp-
tion but also imparts materials with specialized functionali-
ties. Xiao et al. [6] present an asymmetric CNTs-cellulose 
paper-PDMS hybrid that simultaneously achieves water 
evaporation and power generation (Fig.  12C). To cre-
ate a controllable water flow pathway, the cellulose paper 
was asymmetrically modified with hydrophobic PDMS 
at specific locations on one side. This design generated 
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a centimeter-scale water channel that drove directional 
flow, enabling consistent power output regardless of solar 
conditions.

4.1.2 � Heat Isolation

The anisotropic thermal conductivity of natural wood, 
rooted in its hierarchical microchannel architecture, enables 

exceptional thermal insulation critical for interfacial evapo-
ration systems [119]. For example, Wu et al. [120] harnessed 
this property by coating wood with PDA, creating a pho-
tothermal interface that localized surface temperatures to 
75.7 °C while maintaining bulk water at ambient levels. This 
stark thermal gradient—absent in control systems—high-
lights the capacity of wood to confine heat at the evapo-
ration front (Fig. 13A). Fan et al. [121] further advanced 

Fig. 10   A1 Schematic illustration of the double-layered regenerated cellulose (RC)/regenerated cellulose (CS) aerogel (DLRCA). Vertical sec-
tional SEM images of A2 RC/CS aerogel frozen in liquid nitrogen (RCA-LN), A3 regenerated cellulose aerogel (RCA). Cross-sectional SEM 
images of A4 RCA [113]. B1 Schematic illustration of Janus cellulose nanofibril (CNF)/MXene composite (JCM) aerogels. B2–B4 SEM images 
of cross-section across varying magnification levels B5 SEM images of lateral surface [45]. C1 Diagrammatic overview of the experimental 
device for SDIE. Top-view SEM image of C2, C3 cellulose nanofiber with ZIF-67 and MXene (CZM3) aerogels. C4 Side-view SEM images 
[114]. D Scheme of polyvinyl alcohol (PVA)/ sodium lignosulfonate (SLS)-CNT hydrogel [77]
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this concept by embedding photocatalytic and photothermal 
agents within delignified wood, achieving rapid surface heat-
ing (35.1 °C) without thermal leakage to underlying layers 
(Fig. 13B), a testament to intrinsic insulating efficiency of 
wood. Expanding beyond natural materials, synthetic gels 
replicate and enhance these insulating traits through engi-
neered porosity [122]. Liu et al. [39] developed a robust, 
floatable MiCAE mimicking fungal and woody structures 

(Fig.  13C). By synergizing hydrophilic cellulose-PVA, 
hydrophobic silylated cellulose, and carbon nanotube coat-
ings, the MiCAE minimized radial heat dissipation, main-
taining sub-ambient bulk temperatures even under 5-sun 
irradiation (Fig. 13D). This biomimetic approach under-
scores the universality of hierarchical structuring in achiev-
ing thermal localization, bridging natural and engineered 
systems for sustainable solar-driven applications.

Fig. 11   A1 Schematic illustration of SDIE based on 3D-printed cellulose/alginate/carbon black hydrogel (CACH). SEM images of the surface 
A2, A3 of the evaporator [115]. B1 3D-printed tripodal evaporator with salt-rejecting macroporous architecture. B2–B4 Surface morphology 
characterization by SEM at varying magnifications (top-view) B5, B6 SEM images showing internal pore structure [44]
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4.1.3 � Cold Evaporation

SDIE operates through three primary energy transfer mecha-
nisms: solar energy absorption, steam generation, and ther-
mal exchange. Traditional strategies aimed at enhancing 
the evaporation efficiency have primarily focused on maxi-
mizing solar absorption while mitigating heat loss to the 
environment. However, these approaches typically elevate 
the absorber temperature above ambient levels, leading to 

inevitable thermal losses to the surroundings (Fig. 14A). 
Under these conditions, only a fraction of incident solar 
energy is converted into internal steam energy, with the 
remainder lost as thermal dissipation, thereby reducing 
the solar-to-steam energy conversion efficiency to less 
than 100%. By contrast, if the absorber temperature can be 
maintained below ambient conditions, the system may draw 
additional energy from the surrounding environment, which 

Fig. 12   A1 Schematic illustration of the surface of IP-SLC (inspired by the seedless sunflower, narrow the bandgap of gallium and indium alloy 
using stearic acid/lignin-cellulose nanocrystals) aerogel inspired by sunflower. A2 Overhead SEM micrograph. A3 High-magnification SEM 
micrograph (top-view) [38]. B Digital photograph of all cellulose-based evaporator with a rough surface [7]. C Diagram illustrating the manu-
facturing process of carbon nanotubes/polydimethylsiloxane/paper composite (CPPH) for a dual-functional evaporator with simultaneous steam 
and power production [6]
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enables to substantially increase the evaporation rate, poten-
tially surpassing the theoretical limit.

For example, Li et al. [3] utilized cotton cores as one-
dimensional water supply pathways to minimize heat conduc-
tion losses to the underlying bulk water. A hydrophilic cel-
lulose layer with hierarchical, interconnected pores facilitated 
continuous vapor release and air infiltration. Vapor genera-
tion induces heat absorption from the cotton core, cooling the 
sidewall of evaporator below ambient temperature (Fig. 14B, 
C). In this state, the evaporator sidewall absorbs environmental 
heat through convection and radiation. Consequently, the evap-
oration rate of the cotton core evaporation array under one sun 

(1.62 kg m−2 h−1) exceeded the theoretical evaporation maxi-
mum (1.47 kg m−2 h−1) for 100% photothermal conversion effi-
ciency. Similarly, Li et al. [123] fabricated an environmentally 
enhanced SDIE by processing cellulose acetate filters through 
PVA solution immersion, lyophilization, and MXene deposi-
tion (Fig. 14D). As the height of the evaporator side walls 
increases, the temperature of the side walls gradually decreases 
(Fig. 14E), which enhanced environmental energy harvesting, 
thereby boosting evaporation rates (Fig. 14F). Wu et al. [41] 
further advanced this concept by designing a heatsink-inspired 
evaporator (HSE) with radial fin arrays (Fig. 14G). The solar 
evaporation surface temperature fell below ambient levels in 

Fig. 13   IR images of a water beaker A1 with or A2 without the TW-2PDA (polydopamine-coated wood) sample, taken after 10 min of 3.5-sun 
simulated sunlight irradiation. Temperatures at various positions in the beaker are labeled [120]. B Infrared thermal images (top and side views) 
of photocatalyst-integrated porous carbonized wood-based hydrogels (Hy-P-CW) acquired under one sun irradiation [121]. C Schematic diagram 
illustrating the architecture of the monolithically integrated cellulose aerogel-based evaporator (MiCAE) employed in seawater desalination. D 
IR images of cellulose − PVA aerogel evaporator (CPAE) and MiCAE-12 exposed to simulated solar light at 5-sun intensity in an aqueous envi-
ronment for 10 min [39]
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Fig. 14   A Comparison between SDIE and environmental energy-enhanced SDIE. B Surface temperature variations on the top and lateral faces 
of the environmental energy-enhanced SDIE. C IR imaging results of the environmental energy-enhanced SDIE under 100 mW cm.−2 illumina-
tion [3]. D Schematic illustration of MXene/PVA modified the cigarette filter (MPCF) SDIE. E Measured surface temperatures at the top and 
sidewalls of MPCFs with differing exposed heights under standard 1 sun. F Comparison of water evaporation rates of pure water and various 
MPCF configurations (2, 4, and 6) under 1sun exposure [123]. G Scheme of the heatsink-like (HSE). H Infrared images of the 6-fin HSE cap-
tured at the initial stage and thermal steady state following 30 min of 1-sun illumination. I Modeled temperature distribution and heat flow tra-
jectories on the evaporator during photothermal evaporation [41]. J Scheme illustrating the energy-coupling mechanisms operative in the dual-
zone photothermal sphere during solar-driven evaporation. K Time-lapsed IR imaging and side view of the photothermal sphere under standard 
solar illumination [124]
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evaporators featuring 5–7 heatsink fins (Fig. 14H, I), effec-
tively eliminating radiative, convective, and conductive losses. 
This “cold evaporation” mechanism achieved a record rate of 
4.32 kg m⁻2 h⁻1 under 1 sun. Despite these breakthroughs, salt 

accumulation on sub-ambient evaporation surfaces remains 
a critical bottleneck for sustained operation. Addressing this, 
Wu et al. [124] developed a spherical evaporator (Fig. 14J) 
featuring a photothermal core that establishes a localized cold 

Table 1   The lignocellulosic biomass materials, functions, construction strategies, light absorption, surface operating temperature, and evapora-
tion rates of lignocellulosic biomass-based SDIEs

Lignocellulosic biomass Function Construction strategy Light absorption Surface operating 
temperature (°C)

Evap. 
rate (kg 
m−2 h−1)

Refs

Wood + lignin Substrate + photothermal Coating + delignification  > 95% [300–2500 nm] 38.2 2.89 [34]
Wood Substrate Delignification  > 97.9% [300–2500 nm] 43 2.82 [79]
Lignin Photothermal Carbonization ≈90% [200–2500 nm] 60.4 1.539 [80]
Wood Substrate – ≈91.5% [200–2500 nm] 38 1.2 [81]
Wood Photothermal + substrate Pressure-assisted car-

bonization
≈97% [200–2500 nm] 32 6.4 [87]

Wood Photothermal + Sub-
strate

Pressure-assisted car-
bonization

– 44.7 1.35 [88]

Wood Photothermal + substrate Scanning flame treat-
ment

– 33 1.3 [35]

Wood Photothermal + substrate Laser engraving ≈95% [200–2500 nm] 49.4 1.72 [89]
Wood Substrate Delignification ≈90% [200–2500 nm] 37.8 1.94 [93]
Cellulose + lignin Substrate Blending  > 90% [200–2500 nm] 28.7 1.6 [94]
Cellulose Substrate Blending ≈96.8% [300–2500 nm] 43.1 3.02 [36]
Wood Substrate Delignification  > 95% [300–2500 nm] 42.1 2.08 [9]
Wood Substrate Delignification – 43.8 2.04 [37]
Lignin Photothermal Carbonization ≈95.5% [200–2500 nm] 44 2.351 [98]
Wood Substrate Delignification  > 96.85% [250–

2500 nm]
72.6 [dry] 1.927 [102]

Wood Substrate Remove lignin and 
hemicellulose

 > 95% [250–2500 nm] 44.4 1.394 [103]

Wood Substrate Delignification ≈99% [250–2500 nm] 30.6 – [1]
Wood + lignin Substrate + photothermal Delignification – 31 1.18 [104]
Cellulose Substrate Directional freezing ≈97.3% [300–2500 nm] 39.3 3.2 [113]
Cellulose Substrate Directional freezing ≈95.8% [200–2500 nm] 51.2 2.287 [45]
Cellulose Substrate Directional freezing ≈94% [200–2500 nm] 57 2.034 [114]
Lignin Tunes water state Blending ≈95% [300–2500 nm] 47.1 2.09 [77]
Cellulose Substrate 3D Print ≈97% [300–2500 nm] 41.7 1.33 [115]
Cellulose Substrate 3D Print  > 97% [250–2500 nm] 48.7 [3 sun] 0.97 [44]
Cellulose + lignin Substrate Directional freezing ≈91% [250–2500 nm] – 1.29 [38]
Cellulose Substrate Freeze-drying ≈95% [250–2500 nm] 38 1.82 [7]
Cellulose Substrate Blending ≈93.7% [200–2500 nm] 31 1.15 [6]
Wood Substrate – – 75.7 [3.5 sun] 1.38 [120]
Wood Substrate Gelation ≈90.81% [300–

2500 nm]
35.1 1.92 [121]

Cellulose Substrate Freeze-drying ≈93.72% [200–
2500 nm]

35 1.9 [39]

Cellulose Substrate – ≈96% [200–1100 nm] 26.6 1.62 [3]
Cellulose Substrate Blending ≈95% [250–2250 nm] 31.2 3.38 [123]
Cellulose Substrate Freeze-drying  > 95% [250–800 nm] 22.7 4.1 [41]
Cellulose Substrate Blending  > 95% [250–800 nm] 50 [dry] 2.6 [124]
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evaporation zone (Fig. 14K), coupled with self-rotation driven 
by asymmetric mass distribution. This dual-function design 
enabled continuous salt rejection via dynamic re-dissolution, 
maintaining a high evaporation rate of 2.06 kg m⁻2 h⁻1 over 
8 h in 20 wt% NaCl solution. A comprehensive summary and 
comparative analysis of the reported works have been meticu-
lously conducted (as shown in Table 1).

4.2 � Light Absorption

The UV absorption of lignin capacity derives from its 
abundant UV absorbing chromophore groups, including 
conjugated phenols, ketones, quinone structures, and intra-
molecular hydrogen bonds [127]. Therefore, lignin mainly 
absorbs ultraviolet light. Researchers confirm that lignin 

aggregation induces the formation of aromatic stacking 
and π–π conjugated systems [128]. These results estab-
lish the photothermal conversion capability of lignin [75], 
supporting its potential for solar energy applications. This 
chapter summarizes the methods—increasing π–π conjuga-
tion, increasing π–π stacking, and physical processing—for 
improving the light absorption capacity of lignin. The pho-
tothermal conversion efficiency of lignin can be significantly 
enhanced by increasing π-orbital conjugation or hypercon-
jugation. This modification reduces the electronic bandgap, 
promoting more efficient light absorption, particularly in the 
infrared region. Nonradiative decay minimizes energy losses 
via fluorescence or phosphorescence and maximizes heat 
generation. Chemical functionalization approaches, such as 
phenolation and acetylation, offer a robust route to enhance 

Fig. 15   A Illustrative schematic of the modification process of lignin. B Infrared thermal images of alkali lignin (L), phenolated lignin (PL), and 
aminated phenolated lignin (APL) under 1-sun irradiation [125]. C Schematic representation of the structural changes and associated changes in 
conjugated interactions of lignin particles before and after dissolution [12]. D The enhanced photothermal effect of lignin. E Ultraviolet spectra 
(solid lines) and corresponding light absorption profiles (dashed lines) of different lignin samples [40]. F Representation of the light trapping 
efficiency and reflective responses in coatings with varying surface textures, composed of lignin nanospheres (n–LMNSs), microspheres (m–
LMNSs), and dual-sized micro-nanospheres (m@n–LMNSs) [126]
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π–π conjugation within lignin. Yue et al. [125] enhanced 
the photothermal conversion efficiency of lignin by graft-
ing additional benzene rings through an acid-catalyzed 
condensation reaction with phenol at 110 °C (Fig. 15A). 
Under acidic conditions, protonation-induced carbocation 
formation on the lignin side chain facilitated C–C bond for-
mation with phenol, leading to the development of stable 
polycyclic π-conjugated systems [129]. This modification 
disrupted weak chemical bonds within lignin, such as ether 
linkages, generating new active sites and further enhanc-
ing phenolization [130]. PL and APL attain surface tem-
peratures of approximately 60 °C, significantly higher than 
that of unmodified lignin, indicating enhanced photother-
mal conversion efficiency through modification (Fig. 15B). 
Lei et al. [131] demonstrate that acetyl functionalization of 
lignin induces the formation of robust electron donor–accep-
tor (D-A) conjugated systems, reducing the bandgap and 
enhancing light absorption. Under 808-nm laser irradiation 
(0.51 W cm⁻2), the acetylated lignin exhibits exceptional 
photothermal performance, reaching a maximum surface 
temperature of ≈175 °C with a photothermal conversion effi-
ciency of 73.2%. A comparable donor–acceptor architecture 
can be referenced in studies pertaining to melanin [132].

Carbonization and solvent dissolution are two effective 
strategies for modulating π–π conjugation in materials such 
as lignin. Lin et al. [10] subjected lignin to carbonization 
to obtain lignin-derived carbon. The presence of the pore-
forming agent (KOH) facilitates the formation of numerous 
pores induced by erosion. Its porous structure and high sur-
face area prompt 98% full-spectrum solar absorption [133]. 
Another innovative strategy to promote π–π conjugation 
and enhance photothermal conversion involves dissolving 
lignin in specific solvents, such as 1,4-dioxane. Gu et al. [12] 
proposed a mechanism explaining the changes in conjugate 
intensity before and after lignin dissolution (Fig. 15C). The 
dissolution process in 1,4-dioxane significantly enhanced 
the light absorption of lignin by disrupting hydrogen bonds, 
leading to a more ordered structure and increased exposure 
of conjugated structures. This reduced structural obstruc-
tions and allowed more photons to be absorbed, improving 
energy capture. As a result, the dissolved lignin exhibited 
significantly higher absorption in the 500–2000 nm range 
compared to solid lignin powder.

Optimizing π–π stacking interactions in lignin architec-
tures significantly enhances photothermal conversion ability. 

This approach leverages the inherent aromaticity of lignin, 
quenching aggregation-induced luminescence and promot-
ing nonradiative relaxation, which leads to more efficient 
heat generation [131, 134]. Given the substantial methoxy 
group content in lignin, particularly in hardwoods, demeth-
ylation has emerged as an effective strategy to enhance the 
phenolic hydroxyl content. This modification reduces steric 
hindrance, thereby promoting intermolecular interactions. In 
addition to facilitating π–π stacking, demethylation strength-
ens hydrogen bonding and van der Waals forces, leading 
to significant improvements in both photothermal conver-
sion efficiency and thermal response. For example, Shao 
et al. [40] demonstrated that the activation of lignin using 
iodocyclohexane (ICH) disrupts its molecular structure and 
reduces the methoxy content, thereby enhancing intermolec-
ular bonding. Phenolic hydroxyl hydrogen bonding enhances 
π–π stacking interactions among benzene rings (Fig. 15D). 
UV–Vis–NIR spectroscopy reveals enhanced light absorp-
tion across the spectrum for modified versus unmodified 
lignin samples (dashed line) (Fig. 15E). And, Zhao et al. 
[135] removed the methyl groups from lignin (D-Lig) and 
subsequently coordinated the resulting D-Lig with Fe3⁺ to 
generate D-Lig-Fe, which exhibited further enhanced pho-
tothermal conversion. Liu et al. [136] also demonstrated 
that copper-ion coordination with alkali lignin induces 
high broadband absorption across the solar spectrum.This 
approach aligns with the established utility of metal-catechol 
coordination for crafting functional materials, a strategy 
gaining increasing traction [137].

Beyond increasing π–π conjugation and increasing π–π 
stacking, nanoscale processing and preparation of compos-
ite materials serve as critical physical strategies to enhance 
lignin photothermal performance. The conversion of lignin 
into nanoparticles through nanotechnology significantly 
enhances its specific surface area, thereby improving pho-
tothermal conversion efficiency. Ma et al. [126] fabricated 
a photothermal superhydrophobic coating using dual-scale 
lignin micro-nanospheres (micro-LMNSs and nano-LMNSs) 
(Fig. 15F). Upon laser irradiation, the photothermal effect 
led to a rapid surface temperature increase from approxi-
mately 13 to 112 °C within 60 s, indicating excellent photo-
thermal responsiveness. Furthermore, combining lignin with 
materials such as graphene, porous carbon, and metals facili-
tates the creation of composite photothermal materials. Shao 
et al. [138] prepared a lignin-guided solution containing 
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copper sulfide (CuS) nanoparticles, and the polyvinyl alco-
hol (PVA) photothermal film fabricated from this lignin-sta-
bilized CuS solution exhibited remarkable solar absorption 
(≈ 95%) and uniform dispersion of CuS nanoparticles. This 
film demonstrated a photothermal conversion efficiency of 
approximately 49.43%, presenting a novel strategy for the 
synthesis of metal nanoparticles stabilized by lignin.

While substantial progress has been made in improving 
the photothermal conversion efficiency of lignin, the influ-
ence of its structural and compositional characteristics—
such as the nature and concentration of functional groups, 
lignin subclass, aromaticity index, and molecular weight—
on conjugation effects, π–π stacking, and overall photother-
mal properties remains inadequately understood. Therefore, 
further detailed investigations are required to fully elucidate 
the relationship between these structural factors and the pho-
tothermal behavior of lignin. Moreover, the use of lignin as a 
photothermal material in solar-driven interface evaporators 
remains underexplored.

4.3 � Water Management

4.3.1 � Water Transport

Efficient water transport pathways are essential for ensuring 
the continuity of the photothermal evaporation process in 
SDIEs. According to existing studies, transport channels in 
these systems are classified by their dimensionality, includ-
ing 1D, 2D, or 3D (Fig. 16A–C), and different dimensional 
structures are used to control water transport speed and tune 
water content. 1D water pathways are primarily designed 
to minimize heat loss by directing water through a narrow, 
singular channel, thereby enhancing the efficient utilization 
of thermal energy (Fig. 16A). Li et al. [139] employed a 
cotton tube as a 1D water path, effectively reducing heat 
losses through convection, conduction, and radiation. How-
ever, the low rate of water transport may not be sufficient to 
match the evaporation rate in cases where the evaporation 
area is large, potentially constraining purified water yield 
per unit of time. In contrast, 2D water paths adopt physical 
isolation between thermal insulation and hydraulic con-
duits to mitigate conductive heat loss (Fig. 16B). Typically, 
water is restricted to the sides of the insulation layer. For 

Fig. 16   A1–C1 1D, 2D and 3D waterway design [42], and corresponding examples A2) [139] B2) [140] C2) [141]
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instance, Hu et al. [140] utilized a hydrophobic cellulose/
TiN aerogel photothermal layer paired with a dual-channel 
air-laid paper for hydraulic mediation. The water transport 
rate is enhanced with an increase in the capillary strength 
of the side-wrapping material.

To further enhance evaporation performance, 3D SDIEs 
with interconnected porous structures have been developed 
(Fig. 16C). However, the extensive heat exchange between 
water and air at high porosities can lead to significant heat 
loss. Therefore, it is essential to optimize porosity and 
channel configuration of water transport materials when 
designing SDIEs to ensure an efficient balance between 
evaporation energy and water flux. To address this chal-
lenge, Li et al. [141] developed a 3D bilayer evaporator by 
incorporating a superabsorbent polymer, polyvinyl alcohol 
phosphate ester (PVAP), into a CNF aerogel matrix, with 
CNTs serving as the light-absorbing layer. This design 
not only facilitates efficient solar absorption but also 
harnesses environmental energy through convective and 
radiative heat transfer, enhancing the overall evaporation 
rate. Moreover, the nanoscale dimensions and polar sur-
face groups of CNFs confer high hydrophilicity and tai-
lored porous architecture, facilitating efficient water trans-
port. The interplay between polymer crosslinking density, 
pore size, and water transport remains contentious. While 
crosslinking typically governs mechanical robustness, its 
role in hydraulic dynamics is less clear [142]. For instance, 
Li et al. [143] observed that narrower channels, compared 
to larger pores, exhibit stronger capillary action. In con-
trast, Mao et al. [144] observed accelerated transport in 
macroporous frozen gels relative to dense hydrogels. This 
inconsistency highlights a knowledge gap regarding the 
potential effects of crosslinking density and pore size on 
water transport kinetics in SDIEs.

4.3.2 � Regulation of Water Sate

The hydration state of water in SDIE systems is gov-
erned by distinct hydrogen-bonding regimes: bound water 
(BW), intermediate water (IW), and free water (FW), cat-
egorized by their molecular interactions (Fig. 17A). FW 
(light blue), located distal to hydrophilic matrices, exhib-
its bulk-like behavior with four hydrogen bonds per mol-
ecule, necessitating significant energy for evaporation. 
BW (dark blue), tightly bound to polar polymer chains 

via strong hydrogen bonds, demands the highest evapo-
ration enthalpy. IW (yellow), situated between BW and 
FW, forms weaker hydrogen bonds with fewer than four 
neighbors, enabling lower-energy evaporation. Modulat-
ing these hydration states, particularly enhancing IW, 
can reduce the overall enthalpy of evaporation, a criti-
cal lever for optimizing SDIE efficiency. Experimental 
validation of IW relies on differential scanning calorim-
etry (DSC) and Raman spectroscopy. Raman spectra of 
hydrated systems reveal hydrogen-bonding states: Peaks 
at 3233 and 3401 cm⁻1 correspond to tetrahedrally coor-
dinated FW, while 3514 and 3630 cm⁻1 reflect weakly 
bonded IW (Fig. 17B). DSC thermograms further distin-
guish nonfreezable BW (no phase-change signal) from 
freezable IW and FW. Fully hydrated systems exhibit 
dual endothermic peaks at 0 °C (IW melting) and ~ 5 °C 
(FW melting), whereas dried samples lack these signals 
(Fig. 17C). Critically, IW generation depends on hydrat-
able polymer networks, independent of total water content 
(purple curve), highlighting the role of matrix chemistry 
in hydration dynamics.

Strategies to amplify IW focus on tuning polymer–water 
interactions. For example, Zang et al. [145] reported that 
graphene oxide (GO)-enhanced hydrogels introduce oxy-
genated functional groups, forming weak hydrogen bonds 
that preferentially stabilize IW (Fig. 17D). Similarly, Li 
et al. [146] demonstrated that increasing the hydrophilic 
group density results in a considerable rise in the IW con-
tent (Fig. 17E). However, excessive hydrophilicity risks 
BW accumulation due to strong polar interactions, high-
lighting a trade-off between IW promotion and energy-
intensive BW formation. To mitigate this, recent work 
explores inhomogeneous wettability—heterogeneous 
surface chemistry engineered via doping or polymeriza-
tion. Sun et al. [147] embedded hydrophobic SiO2 spheres 
into cellulose aerogels, creating localized hydrophobic 
domains that weaken cellulose–water interactions while 
retaining IW-rich regions (Fig. 17F). The aerogel design 
achieved a thermal conductivity of 0.1008 W m−1 K−1 
in the wet state while maintaining heterogeneous wet-
tability, which reduced cellulose–water interactions and 
increased the depinning force at the evaporative contact 
line. A persistent challenge remains salt deposition during 
high-rate evaporation. As shown in Fig. 17G, Lei et al. 
[148] harnessed the anti-polyelectrolyte effect to engi-
neer a class of polyzwitterionic hydrogels (PZHs) with 
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enhanced SDIEs performance in high-salinity brines. 
PZHs contain oppositely charged cationic and anionic 
groups distributed along their polymer backbones [149]. 
Brine ions attenuate interchain electrostatic attraction, 

inducing polymer chain expansion and increased water 
absorption—the anti-polyelectrolyte effect [150]. The 
resulting hydrated polymer network exhibits increased 
IW content, enhancing evaporative performance.

Fig. 17   A Schematic illustration of water distribution within the hydratable polymer network, showing water/polymer bonding, weakened 
water/water bonding, and normal water/water bonding. B Raman spectra illustrating the fitting peaks representing intermediate water (IW) and 
free water (FW). C Differential scanning calorimetry (DSC) curves of the hydratable light-absorbing hydrogel (h-LAH) with varying hydra-
tion levels [43]. D Schematic illustration of the interfacial evaporation of water from the hybrid nanofibrous hydrogel-reduced graphene oxide 
(NHrG) membrane [145]. E Schematics of mechanisms about enhanced SDIE performance [146]. F Graphical and SEM representations of a 
cellulose evaporator with a gradient in wettability properties [147]. G Schematic representation of solar steam generation based on a hydrogel 
composed of salt-tolerant anion polyelectrolytes [148]. (Color figure online)
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5 � Multifunctional Integrated Applications 
of SDIEs

5.1 � Desalination

Salt crystallization at the evaporation interface poses a 
critical challenge for solar-driven desalination systems, 

where rapid water vaporization concentrates solutes, lead-
ing to surface salt deposition that obstructs light absorp-
tion, blocks water channels, and degrades long-term 
performance [151, 152]. To address this, recent innova-
tions focus on structural and material engineering to redi-
rect or dissolve salts, including asymmetric wettability 

Fig. 18   A Illustrative diagram depicting the mechanisms of suspended-type evaporators (STEs). B Salt crystallization phenomena observed on 
the photothermal layer of the control group and STEs [11]. C Schematic of the 3D evaporators for solar desalination. D Schematic of the direc-
tional salt crystallization [153]. E Cyclical self-flipping processes [155]. F Diagram illustrating the role of porosity in modulating salt accumula-
tion. G Conceptual illustration showing the relationship between pore size and salt accumulation. H Time-dependent changes in the crystalliza-
tion of salt on evaporators with distinct pore sizes [154]
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engineering [11], dynamic crystallization control [153], 
and pore architecture optimization [154].

A prominent approach involves designing evaporators 
with asymmetric wettability to spatially separate salt crys-
tallization zones from active evaporation interfaces. For 
instance, Dong et al. [11] introduced a suspended-type 
evaporator (STE) constructed from Janus fibrous mats 
(Fig. 18A). The fibrous structure efficiently wicks brine 
into the evaporation layer, where salt is retained until 
crystallization. The suspended design ensures zero liquid 
discharge. This design confines salt crystallization to the 
hydrophilic underside while maintaining a hydrophobic 
photothermal interface, achieving a sustained evaporation 
rate of 1.94 kg m⁻2 h⁻1 and enabling full mineral recov-
ery (Fig. 18B). Similarly, Wang et al. [153] reported a 
metal–phenolic network (MPN)-engineered 3D evapora-
tor with alternating superhydrophilic/superhydrophobic 
sponges coated in metal–phenolic networks (MPNs) and 
side-twining hydrophilic threads (Fig. 18C). The threads 
directed salt ions toward designated crystallization sites, 
preventing surface fouling while maintaining a high desal-
ination rate of ≈ 2.3 kg m⁻2 h⁻1 in 20 wt% brine under 
1-sun irradiation (Fig. 18D).

In addition to promoting the directional crystallization 
of salts, the structural design of the evaporator enables 
the self-cleaning of salt deposits through the crystalliza-
tion process. This approach not only enhances the opera-
tional efficiency of the system but also reduces the need 
for manual intervention, thereby improving the long-term 
sustainability of the evaporator. Chen et al. [155] reported 
a Janus-structured seesaw evaporator that utilizes scaling 
for autonomous descaling. The evaporators are fabricated 
through a two-step process: delignification of balsa wood 
followed by single-sided application of soot and PDMS 
coatings. The unique Janus architecture ensures continu-
ous solution supply during evaporation while maintaining 
buoyancy on saline water. Evaporation induces directional 
salt ion transport to the elevated evaporator terminus, ena-
bling localized scaling. Once the accumulated salt reaches 
a critical mass, the seesaw mechanism triggers a flip, caus-
ing the salt to dissolve back into the solution (Fig. 18E). 
Under 8 wt% saline conditions, the system demonstrates a 
water evaporation rate of 2.65 kg m−2 h−1.

Concurrently, internal pore structure optimization offers 
a complementary strategy to mitigate salt accumulation. 
Huang et  al. [154] fabricated a porous evaporator with 

bimodal pore sizes (150–300 μm macropores and < 10 μm 
micropores) and 70.4% porosity. The macroporous network 
reduced hydraulic tortuosity by 62%, shortening salt ion 
back-diffusion paths, while micropores enhanced capillary 
pumping (Fig. 18F, G). This architecture enabled continu-
ous salt rejection in 15% NaCl brine, maintaining a stable 
rate of 1.90 kg m⁻2 h⁻1 under 1.5-sun irradiation (Fig. 18H). 
Quantitative analysis revealed a 78% reduction in surface 
salt coverage compared to low-porosity (45%) counterparts, 
directly linking pore geometry to anti-fouling performance.

5.2 � Energy Generation

The integration of multifunctional components into SDIE 
systems has expanded their applications, particularly in 
concurrent power generation, a synergy aligning with the 
core principles of energy conservation and environmental 
sustainability. These hybrid systems leverage environmental 
energy gradients to enhance overall efficiency while address-
ing broader decarbonization goals. Current power generation 
strategies in SDIEs primarily exploit two energy sources: (1) 
process-inherent energy (thermal or salinity gradients gen-
erated during evaporation) and (2) ambient environmental 
energy (e.g., wave, wind) [157, 158].

Thermoelectric conversion capitalizes on temperature dif-
ferentials between evaporative interfaces and bulk water. For 
example, the STA-EGaIn cellulose aerogel was developed by 
Wei and colleagues [38] that attained a surface temperature 
of 56.2 °C under 1-sun illumination, demonstrating efficient 
photothermal conversion. This significant temperature dif-
ferential between the high-temperature evaporation surface 
and the low-temperature bulk water enabled the generation 
of electricity via the Seebeck effect (Fig. 19A, B). Coupled 
with p-type thermoelectric (PTE) modules, this configura-
tion generated 74.43 mV open-circuit voltage and 5.77 mA 
short-circuit current. However, thermoelectric power gen-
eration necessitates maintaining the evaporator surface at 
an elevated temperature, which presents notable challenges. 
High surface temperatures can result in increased thermal 
radiation and convection, leading to inefficiencies through 
unnecessary heat loss from the evaporation system. Further-
more, under realistic conditions, few photothermal materials 
are capable of sustaining long-term thermal stability that is 
a critical bottleneck for scalability.
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The salinity gradient between seawater and freshwater 
holds a significant energy potential [159]. This blue energy 
(renewable energy) potential exists within all evaporative 
systems. To maximize charge separation from salinity gra-
dients and optimize blue energy harvesting, researchers have 
developed specialized structures including directional water 
transport systems [160] and unilateral salinity accumulation 

Nafion membrane structure [161]. Peng and co-workers 
[156] developed an MXene-cotton evaporator with diago-
nal nanosheet deposition (Fig.  19C), creating spatially 
segregated cation (H3O+/Na+) and anion (OH−/Cl−) zones 
(Fig. 19D). This asymmetry established electric double lay-
ers (EDLs) at wetting interfaces, yielding 363 mV voltage 
output from 3.5 wt% brine under 1 sun (Fig. 19E). Similarly, 

Fig. 19   A Diagram of photo-thermal-electro (PTE) generator. B Infrared images illustrating the surface temperature of the bare generator, PTE 
generator under 1 sun, and the bare generator under 2 sun at specific time points (0, 15, and 35 min) [38]. C Schematic depiction of a plant-
inspired asymmetric nanofluidic photothermal system for the dual purposes of solar desalination and electrokinetic power generation. D Pho-
tograph of the MXene/cotton textile. E Schematic illustration of the potential difference observed between the dense core and regions with low 
MXene concentration under the drenching state [156]. F A schematic demo of self-powering sensor [6]. G Illustrative diagram and a digital 
photograph of integrated SDIE and triboelectric nanogenerator (TENG). H Operational principle of TENG [7]
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Xiao et al. [6] achieved unidirectional proton transport via 
plasma-treated CNT membranes on asymmetric cellulose 
paper (Fig. 19F), attaining 2.1 μW power output through 
evaporation-enhanced water potential gradients. While 
effective, such designs introduce mechanical fragility, the 
added functional layers reduce evaporator tensile strength 
by 40–60% compared to monolithic structures, posing dura-
bility trade-offs. Environmental energy harvesting further 

diversifies functionality. Li et al. [7] integrated triboelectric 
nanogenerators (TENGs) onto cellulose aerogel sidewalls 
(Fig. 19G), converting omnipresent wave energy into electri-
cal signals for real-time water quality monitoring (Fig. 19H). 
This dual-function system maintained 4.32 kg m⁻2 h⁻1 evap-
oration rates while generating actionable environmental 
data, a paradigm for smart water management.

Fig. 20   A Graphical representation of dye removal via the polydopamine-enriched cellulose aerogel (PDA-CA) through physical adsorption. B, 
C Kinetic adsorption characteristics of PDA-CA were analyzed using pseudo-first-order (red dotted line) and pseudo-second-order (blue dotted 
line) models for curve fitting. The inset demonstrates the dye removal capacity of PDA-CA [162]. D Schematic diagram of the corncob pith/
carbon nanotubes (CP/CNTs) evaporator. E Microemulsion oily water before and after purification. F Photographs of bacterial colonies, cultured 
alone and co-cultured with CP/CNTs or cellulose hydrogel/carbon nanotubes (CH/CNTs), under a single exposure to sunlight for 0, 1.5, and 
12 min [163]. G SEM images of the different membrane surfaces with adhered bacteria. H Digital images of E. coli and S. aureus in contact 
with cellulose, rGO/cellulose, and MXene/cellulose membranes for a 24-h period, respectively. I UV–Vis absorbance measurements of E. coli 
and S. aureus suspensions, taken before and after purification. The corresponding digital images show the surfaces of solid nutrient agar plates, 
with E. coli suspension on the left and S. aureus suspension on the right [5]. (Color figure online)
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Despite progress, critical challenges persist: 1) Energy-
form competition: Maximizing one energy output (e.g., 
electricity) often compromises another (e.g., evaporation 
rate); 2) Material compatibility: Heterogeneous component 
integration risks interfacial delamination under cyclic ther-
mal/hydraulic stresses; 3) Scalability: Laboratory-scale ion 
gradient amplification (e.g., unilateral Nafion membranes) 
struggles to translate to meter-sized systems. Future designs 
must adopt holistic optimization frameworks, balancing 
multi-energy output ratios with structural robustness across 
varying operational scales.

5.3 � Wastewater Treatment and Anti‑microbial

SDIEs also exhibit significant application potential in the 
field of wastewater treatment. Dye adsorption has been 
engineered through molecular interaction tailoring. Zou 
et al. [162] designed polydopamine-filled cellulose aerogel 
(PDACA) featuring synergistic binding sites (Fig. 20A). 
The catechol/quinone groups in polydopamine (PDA) form 
hydrogen bonds with amine/sulfonic moieties in dyes, while 
π–π stacking between aromatic systems and electrostatic 
attraction further enhances capture [164, 165]. This multi-
modal adsorption achieved excellent removal efficiency for 
methylene blue (11.5 mg g−1) within 60 min (Fig. 20B, C).

However, in the context of sewage treatment, the pres-
ence of bacteria is inevitable due to environmental fac-
tors. Incorporating antibacterial properties is essential to 
mitigate potential health risks, such as challenges posed 
by bacterial contamination in SDIEs. Wang et al. [163] 
engineered an interconnected porous cellulose hydrogel 
through crosslinking hydroxypropyl cellulose with hydrox-
ylated CNTs coatings (Fig. 20D). The evaporators demon-
strate excellent purification performance (Fig. 20E) while 
exhibiting effective biofouling resistance under illumina-
tion (Fig. 20F). Under both dark and illuminated condi-
tions, the antibacterial efficiency of CP/CNTs was found 
to be 55.1% ± 21.3% and 100%, respectively, with the 
enhanced antibacterial activity under light irradiation can 
be attributed to the combined effect of the intrinsic anti-
bacterial properties of CP/CNTs and the light irradiation 
[31, 166]. The CH/CNTs exhibit consistent antibacterial 
activity regardless of illumination conditions, potentially 
attributable to residual chemical agents from the cellulose 
hydrogel synthesis process.

Zha et al. [5] reported a MXene-functionalized cellulose 
fibrous membrane with inherent anti-biofouling properties 
for high-performance solar desalination. The MXene/cellu-
lose membrane exhibits 99.9% bacterial inhibition, attribut-
able to the bacteriostatic properties of the MXene coating 
(Fig. 20G). After 24 h, bacterial colonization on the MXene/
cellulose membrane surfaces is markedly lower than on cel-
lulose and rGO/cellulose membranes (Fig. 20H). The con-
densed water from both bacterial suspensions remains trans-
parent following photothermal purification, indicating no 
detectable bacterial colonies on nutrient agar plates. Water 
quality analysis confirms compliance with the standard of 
Chinese national drinking water (Fig. 20I), demonstrating 
the MXene/cellulose membrane’s effective purification 
capacity and broad-spectrum antimicrobial activity against 
both Gram-positive and Gram-negative bacteria. These sys-
tems exemplify two antibacterial paradigms: (1) active pho-
tothermal disinfection (CNT-induced hyperthermia) and (2) 
passive contact biocidal action (MXene nanoblades). While 
photothermal approaches demand light exposure, MXene 
membranes function continuously, albeit with higher mate-
rial costs. Future designs must balance operational energy 
inputs, material sustainability, and lifecycle costs for scal-
able deployment.

5.4 � Atmospheric Water Harvesting

Moisture in the atmosphere has been considered a rich 
resource for alleviating water scarcity, prompting advance-
ments in atmospheric water harvesting (AWH) technolo-
gies (AWH) [167, 168]. A typical AWH cycle involves the 
absorption of vapor by hygroscopic materials (i.e., desic-
cants), followed by solar-driven desorption and condensation 
of the released vapor. Integrating these systems with interfa-
cial evaporation techniques offers a synergistic approach to 
enhance freshwater production efficiency [169, 170].

Recent innovations in hygroscopic material design high-
light the potential of bio-derived architectures. Deng et al. 
[171] engineered a photothermal wood-based enhancer 
through partial delignification and unilateral low-temper-
ature carbonization (Fig. 21A). The LiCl/TEG desiccant 
mixture reduces the saturated vapor pressure of the solu-
tion through strong water–molecule interactions. Mois-
ture absorption is enhanced by increasing the gas–liquid 
interfacial area through capillary-driven transport and 
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spreading of the liquid desiccant on the enhancer surface 
[172]. The enhanced system achieved a moisture absorp-
tion rate of 0.137 g g−1 in 2 h at 60% relative humidity, 
exceeding that of the nonenhanced sample by more than a 
factor of two (Fig. 21B). Solar-driven desorption yielded 
a rate of 1.190 kg m⁻2 h⁻1, doubling the efficiency of con-
ventional setups (Fig. 21C).

Similarly, Zhu et al. [13] engineered a bilayer scaf-
fold via 3D printing, incorporating CNF, LiCl, and CNTs 
into an integrated structure (Fig. 21D). The 3D-printed 
and freeze-dried multiscale porous base layer, assisted 
by LiCl, enables atmospheric water vapor capture. Sub-
sequent water diffusion into the CNF scaffold’s internal 
structure facilitates storage within its hydrophilic network 

(Fig. 21E). The CNF/CNT top layer efficiently converts 
solar energy to thermal energy for water evaporation. 
Hydrophilic CNF networks facilitated internal water stor-
age, maintaining 80–90% evaporation efficiency over 10 
cycles with minimal structural degradation (< 30% shrink-
age) (Fig. 21F).

While most AWH devices rely on single-compartment 
designs for sequential adsorption–desorption cycles, which 
are optimal for materials with high capacity but slow kinet-
ics. However, Zhou et al. [173] reported a bio-based gel 
(CAL gel) with a rapid adsorption–desorption rate. The 
moisture adsorption mechanism of CAL gel includes several 
stages: (1) During adsorption, LiCl—uniformly distributed 
on the surface and within voids of the CAL gel—captures 

Fig. 21   A Diagram illustrating the configuration of a solar-driven atmospheric water harvesting (AWH) device enhanced by a wood-based 
material. B Water absorption capacity of the sample, with and without wood-based enhancers, over a 16 h period. C Comparison of desorption 
efficiency in the desiccant, in the presence and absence of wood enhancers [171]. D Schematic diagrams illustrating the architecture and working 
mechanism of the bilayer scaffold sorbents fabricated through 3D printing. E Illustrative schematic showing the CNF scaffold functioning as a 
water reservoir for storing absorbed water. F The performance of bilayer scaffold-1.5 in terms of water uptake, volume retention, and evapora-
tion efficiency was measured during cyclic testing. D-F) [13]. G Cellulose/alginate/lignin (CAL) gel design concept includes moisture adsorp-
tion and desorption, at low and high temperature, respectively. H Schematic of a solar-driven and drum-type harvester that operate continuously 
with multiple adsorption–desorption cycles [173]
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Fig. 22   A Fabrication procedure for the wood/photocatalyst architecture, which both generates water steam and catalyzes its splitting to drive 
hydrogen evolution, is schematically depicted [174]. B Schematic of the preparation and application scenario of the active multifunctional mate-
rial (AMM) [175]. C–E Schematics of the mechanism of photothermal water evaporation (PWE) and photocatalytic hydrogen evolution (PHE) 
in the interfacial evaporation system [176]
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water molecules by forming crystalline water compounds, 
followed by diffusion into the polymer network (SA/HPC), 
where hydroxyl groups mediate efficient water transport. (2) 
The gel achieves desorption easily through sunlight-induced 
evaporation. (3) During the desorption phase, when the tem-
perature exceeds the LCST, the HPC component undergoes 
a transition from hydrophilic to hydrophobic, causing hydro-
gen bonds in HPC to dissociate and form hydrophobic –CH3 
groups, further facilitating water desorption (Fig. 21G). On 
the basis of the merits of CAL gel designed a solar-driven, 
drum-type, tunable, and portable harvester that can harvest 
atmospheric water within a brief time (Fig. 21H). The device 
features dual chambers: a lower compartment for ambient 
moisture adsorption (enhanced by an integrated fan) and 
an upper sealed chamber for solar-driven desorption. A 
180° rotation repositions the CAL gel between chambers, 
enabling continuous cyclic operation with minimal energy 
input.

5.5 � Collaborative Photocatalytic Hydrogen Production

Photocatalytic water splitting for hydrogen production pio-
neers a promising approach for converting solar energy into 

green energy. However, the wide bandgap of conventional 
photocatalysts and the limited presence of UV photons in 
solar radiation result in the majority of low-energy visible 
and near-infrared light being absorbed and converted into 
heat. Integrating SDIE with photocatalysis offers a syner-
gistic solution, coupling thermal energy generation with 
hydrogen production.

Recent breakthroughs in hybrid systems underscore 
this potential. Guo et  al. [174] developed an efficient 
photo-thermal catalytic system that utilizes charred wood 
substrates to convert liquid water into steam and pro-
duce hydrogen under solar illumination without auxiliary 
energy (Fig. 22A). This system enhances hydrogen trans-
port kinetics while lowering interfacial energy barriers for 
water adsorption, achieving a remarkable hydrogen evolu-
tion rate of 220.74 μmol h⁻1 cm⁻2. In parallel, Fang et al. 
[175] synthesized an amorphous mineral matrix (AMM) 
by integrating whewellite with lignin and cellulose, 
derived from red maple leaves (Fig. 22B). The heterostruc-
ture of this composite facilitates broadband solar absorp-
tion and efficient charge separation, yielding dual func-
tionality in solar evaporation and photocatalytic hydrogen 
generation. In addition, Zhou et al. [176] simultaneously 

Fig. 23   Challenge and outlook of lignocellulosic biomass-based materials for SDIEs
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achieved green energy generation and freshwater supply 
by developing a dual-functional 2D layered membrane 
(2DLM) composed of BiOCl nanosheets, CNFs, and CNTs 
(Fig. 22C). The 2DLM harnesses localized photother-
mal heating to drive water evaporation (2.05 kg m⁻2 h⁻1) 
while leveraging CNTs as conductive pathways to enhance 
charge separation. This dual mechanism reduces interfacial 
resistance and carrier recombination, achieving a hydro-
gen production rate of 22.64 μmol g⁻1 h⁻1. Such systems 
exemplify the synergy between photothermal activation 
and photocatalytic efficiency, where electron-lattice col-
lisions elevate local temperatures to activate reactants, 
amplifying catalytic performance (Fig. 22D, E).

6 � Conclusion and Perspective

Solar energy stands as a pivotal renewable resource in 
addressing the dual challenges of global energy security and 
freshwater scarcity. SDIEs have emerged as a sustainable 
solution, utilizing solar radiation to passively generate clean 
water through an environmentally benign process. Lignocel-
lulosic biomass, with its natural renewability and unique 
physicochemical properties, offers a versatile and sustain-
able platform for advancing next-generation SDIEs technol-
ogies. In this review, we examine the relationship between 
lignocellulosic biomass and SDIEs, highlighting key design 
strategies for optimizing their performance. We further dis-
cuss advanced hydro-thermal management approaches to 
enhance evaporation efficiency, enabling scalable and sus-
tainable clean water production. Additionally, we explore the 
potential for multifunctional integration, providing a road-
map for future innovations in lignocellulosic biomass-based 
SDIEs. While the advantages of these materials have been 
extensively demonstrated, several key challenges must still 
be addressed before they can be widely adopted in practical 
applications (Fig. 23).

First, lignocellulosic biomass-based SDIEs exhibit lim-
ited evaporation rates under practical operational conditions. 
This limitation stems from two fundamental challenges: 
insufficient reduction of the evaporation enthalpy of water 
and substantial thermal losses through conduction and con-
vection. These inefficiencies are intrinsically linked to the 
hierarchical microstructure of lignocellulosic biomass-based 
materials, characterized by anisotropic pore distributions, 
heterogeneous porosity, and high tortuosity—features that 

simultaneously mediate water transport and thermal regula-
tion. While structural modifications and advanced material 
designs show promise for performance enhancement, the 
fundamental mechanisms governing heat and mass trans-
fer in these complex natural systems remain incompletely 
understood.

Second, conventional production methods, including 
high-temperature carbonization and freeze-drying, demand 
substantial energy inputs. While these processes enhance 
material properties critical for solar desalination perfor-
mance, their reliance on energy-intensive technologies 
undermines the overall sustainability of SDIEs by increas-
ing carbon footprints and manufacturing costs. This trade-off 
between performance enhancement and energy consumption 
creates a critical barrier to scaling economically viable and 
environmentally sustainable solar desalination technologies.

The third layer of complexity arises during the modi-
fication and functionalization of lignocellulosic biomass 
composites. Chemical treatments and synthetic additives, 
though effective in tailoring material properties, introduce 
environmental risks across the material lifecycle. Toxic resi-
dues from chemical processes may persist during produc-
tion, use, and eventual degradation, while the energy and 
resource demands of these modifications further erode the 
inherent sustainability advantages of biomass-derived mate-
rials. Consequently, the central challenge lies in reconciling 
performance optimization with environmental stewardship: 
How can we engineer high-efficiency biomass composites 
without perpetuating energy-intensive practices or introduc-
ing hazardous substances.

Addressing these interconnected issues necessitates a par-
adigm shift toward green chemistry principles. Low-energy 
modification techniques and nontoxic additives must replace 
conventional high-impact methods. Simultaneously, process 
innovation—such as one-step conversion for the economical 
and green preparation of graphene oxide on a gram scale 
from biomass at room temperature under atmospheric pres-
sure—could mitigate energy and resource burdens [177]. 
By prioritizing such strategies, the field can advance SDIEs 
that fulfill both technical and sustainability criteria, ensuring 
their viability as scalable solutions for global water scarcity 
challenges.

Fourth, outdoor durability is compromised by microbial 
degradation and environmental exposure. Lignocellulosic 
biomass based can serve as a carbon source for a variety 
of microorganisms, including fungi, bacteria, and protozoa, 
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which contribute to its degradation when exposed to aquatic 
environments. This microbial activity accelerates the dete-
rioration of the material, ultimately compromising the effi-
ciency of the evaporation process. To address these chal-
lenges, a multifaceted approach is required. Optimization 
of the production processes to reduce energy consumption 
is one avenue, while the application of protective coatings 
or treatments may enhance the resistance of materials to 
microbial degradation. Additionally, the development of 
alternative, more durable materials or hybrid systems could 
further improve the longevity and performance of SDIEs, 
ensuring their viability as a sustainable solution for water 
purification in the long term.

Fifth, lignin exhibits inherent photothermal conversion 
capabilities, yet its application in SDIEs has been limited by 
its relatively low light absorption efficiency. This issue has 
prompted a concerted effort among researchers to enhance 
light absorption properties of lignin, thereby unlocking its 
potential as a viable photothermal material in solar-driven 
systems. Lignin structure contains abundant UV-absorbing 
chromophores, such as conjugated phenols, ketones, qui-
nones, and intramolecular hydrogen bonds, which facilitate 
its absorption of ultraviolet light. However, this narrow 
absorption spectrum constrains its broader application in 
photothermal systems. Recent advancements suggest that 
photothermal performance of lignin can be significantly 
improved through structural modifications that increase its 
π–π conjugation and stacking, as well as through physical 
processing techniques. While these advancements mark sig-
nificant progress in enhancing photothermal properties of 
lignin, the relationship between structural characteristics of 
lignin—such as the nature and concentration of functional 
groups, molecular weight, and lignin subclass—and its pho-
tothermal behavior remains inadequately understood. Fur-
ther investigations into these structural factors, as well as 
more comprehensive studies on the use of lignin in SDIEs, 
are necessary to fully harness its potential as a sustainable 
photothermal material. In the field of interfacial evaporators, 
lignin holds promise to become a “photothermal nova” in 
the future.

Although these challenges present significant barriers to 
practical implementation, they also reveal critical opportuni-
ties for advancing next-generation lignocellulosic biomass-
based SDIEs. In recent years, lignocellulosic biomass-based 
SDIEs have undergone significant advancements, broaden-
ing their applications far beyond the traditional scope of 

seawater desalination. A notable trend in this evolution is 
the shift toward multifunctionality, where modern lignocel-
lulosic biomass-based SDIE designs increasingly incorpo-
rate a variety of additional capabilities. These include salt 
recovery, wastewater treatment, antibacterial properties, 
catalysis, and energy generation. The integration of such 
functionalities has not only enhanced the versatility of lig-
nocellulosic biomass-based SDIEs but also expanded their 
potential applications into diverse fields, including energy 
and environmental management. For instance, Su et al. 
achieved concurrent seawater desalination, radiative cool-
ing, and uranium extraction [178]. Li et al. and Zhu et al. 
demonstrated systems for simultaneous freshwater and criti-
cal element recovery, such as boron [179] or cesium [180], 
respectively. Furthermore, Lin et al. created an innovative 
self-rotating evaporator capable of treating challenging oily 
saline wastewater [181]. This multifaceted design opens new 
avenues for lignocellulosic biomass-based SDIEs in indus-
trial and technological domains, positioning them as essen-
tial components in addressing global challenges in water, 
energy, and environmental sustainability.

Building on this trend, recent innovations in SDIE design 
have focused on integrating renewable environmental 
energy sources, further enhancing their multifunctionality. 
Among the most promising developments is the utiliza-
tion of ambient energy, which has emerged as a key area 
of exploration. For instance, interfacial evaporators mod-
eled after waterwheels capture tidal energy [182], while 
those inspired by windmills harness wind energy [183]. 
These pioneering approaches not only expand the range of 
renewable energy applications but also hold great potential 
for sustainable water desalination and other industrial pro-
cesses. As research in this domain progresses, the integra-
tion of energy-harvesting technologies into lignocellulosic 
biomass-based SDIEs is poised to further optimize their effi-
ciency and sustainability, potentially reshaping the future of 
resource-efficient evaporation systems.

At the core of SDIE operation is the efficient collection 
of freshwater through evaporation. However, evaporation 
performance alone does not fully capture desalination 
efficiency, as the incorporation of a condenser into the 
system can significantly reduce the evaporation rate. The 
condensation process, whereby water droplets accumulate 
on the surface of condenser, leads to light reflection and 
scattering, which further impairs evaporation efficiency. 
While many existing lignocellulosic biomass-based SDIEs 
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achieve high evaporation rates, relatively few have incor-
porated innovative condensation systems designed to 
enhance freshwater collection without compromising evap-
oration performance. Therefore, future research should 
focus on integrating advanced condensation mechanisms 
into lignocellulosic biomass-based SDIEs to enable rapid 
freshwater collection while maintaining high evaporation 
efficiency. A prominent solution is the inverted-structured 
system, which ingeniously channels vapor downward to 
exploit the thermal gradient between generated steam and 
cooler feed water or ambient conditions. This configura-
tion has demonstrated remarkable performance, achieving 
a daily freshwater yield of 13.68 kg m−2 under natural 
sunlight—an efficiency improvement of 119% over tradi-
tional designs [184, 185]. Parallelly, the multi-stage solar 
still concept achieves thermodynamic superiority through 
latent heat recycling, where vapor condensation energy 
is repurposed to drive subsequent evaporation stages. 
Empirical studies validate the scalability of this approach, 
showing evaporation rates rising from 0.74 kg m−2 h−1 in 
single-stage systems to 1.84 kg m−2 h−1 in six-stage con-
figurations [186]. These complementary strategies repre-
sent transformative advances in solar-driven desalination, 
establishing new paradigms for high-yield freshwater 
production.

The translation of lignocellulosic biomass-based SDIEs 
from promising laboratory prototypes to mass production 
presents a critical yet achievable frontier. While challenges 
in scaling remain, the intrinsic advantages of these materi-
als—including their environmental sustainability and natural 
abundance—provide a compelling foundation for develop-
ment. To scale lignocellulosic biomass-based SDIEs from 
laboratory settings to industrialization scale, a concerted 
focus on several key areas is imperative. First, the stand-
ardization and green pretreatment of feedstocks are essen-
tial to ensure consistent performance and cost-effectiveness. 
Second, manufacturing must evolve from batch processes 
to continuous, low-energy workflows to enable large-scale 
production. From a design perspective, integrating long-term 
stability, anti-fouling properties, and modular architectures 
is crucial for reliable system integration and field mainte-
nance. Ultimately, the technology viability as a freshwater 
solution must be validated through comprehensive cost and 
life-cycle assessments, confirming its economic competitive-
ness and net environmental benefit. Therefore, continued 
research and exploration are indispensable, not only to refine 

the material and structural design of SDIEs but also to sys-
tematically address these fundamentals, thereby overcoming 
the barriers to their large-scale deployment.
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