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HIGHLIGHTS

e TiC-SiC fibrous membrane exhibits exceptional high—temperature resistance (2000 °C) and long—term thermal stability (1800 °C for

5 h) in an inert atmosphere.

e TiC-SiC fibrous membrane demonstrates stable resistivity up to 900 °C and shows sensing stability under butane flame (~1300 °C).

ABSTRACT The demand for sensors capable of operating in
extreme environment of the fields, such as aerospace vehicles, aero-
engines and fire protection, is rapidly increasing. However, devel-
oping flexible ceramic fibrous pressure sensors that combine high
temperature stability with robust mechanical properties remains a
significant challenge. Herein, through precise multi-scale process
control, high-strength (2.1 MPa) TiC-SiC flexible fibrous mem-

brane is successfully fabricated. The membrane exhibits excep-

tional thermal resistance (2000 °C) and long—term thermal stability
(1800 °C for 5 h) in the inert atmosphere. Meanwhile, the TiC-SiC
fibrous membrane shows excellent oxidation resistance and still
achieves strength of 1.8 MPa after being oxidized at 1200 °C for 1 h

in air. Remarkably, TiC-SiC fibrous membrane withstands a load of

approximately 1400 times its own weight and the ablation of butane
flame (~ 1300 °C) for at least 1 h without breaking. Notably, after

heat treatment at 1800 °C for 5 h in an argon atmosphere, the TiC-SiC fibrous membrane even sustains pressure—sensing performance for
up to 300 cycles. The membrane exhibits stable resistivity up to 900 °C and shows sensing stability under butane flame. The results of this

work provide an effective and feasible solution to fill the research gap of flexible fibrous sensors for extreme environments.
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1 Introduction

Pressure sensors for extreme environments have significant
applications in the fields such as aerospace vehicles, aero-
engines and intelligent fire protection [1-7]. For example,
sensors for monitoring of aeroengines and aerospace devices
need to withstand dynamic deformation, oxidation, and
ultrahigh temperatures (~2000 °C) [8, 9]. However, tradi-
tional sensors are difficult to work stably for a long time in
environments of frequent deformation due to their brittle-
ness [10]. While the emerging polymer-based flexible sen-
sors suffer severe performance degradation or even com-
plete failure under high temperature environments [11, 12],
MXene-based and carbon materials have been extensively
explored as piezoresistive sensors due to their low density,
high sensitivity, fast response and superelastic properties
[13—17]. Unfortunately, the weak high temperature stabil-
ity of these sensors hinders their widespread application in
oxygen-containing environments. Thereby, there is an urgent
need for pressure sensors that can simultaneously achieve
good flexibility and excellent thermal stability in various
extreme environments [18-20]. Nevertheless, constructing
such flexible sensors remains a huge challenge [21-25].

Ceramic ultrafine fibers materials have been considered
as an ideal candidate for realizing sensing functions in harsh
environments due to their excellent thermal stability and
oxidation resistance [26-28]. Chen et al. proposed a sili-
con oxycarbide ceramic@carbon (SiOC@C) spring-based
piezoresistive sensor, realizing good temperature adapt-
ability from —196 to 500 °C [23]. Wei et al. developed a
superelastic ZrO,—SiO, nanofiber pressure sensor showing
stable operation in a wide temperature range from —196 to
800 °C [29]. Although the present ceramic fibrous pressure
sensors can defy dynamic deformation [30, 31], the limited
high temperature resistance (<800 °C) and poor mechanical
properties are still difficult to meet the actual requirement of
high temperature application scenarios [32, 33]. Therefore,
developing ceramic fibrous pressure sensors with high tem-
perature stability and good mechanical properties is still an
impending conundrum in current research [34-36].

In this work, guided by molecular structure design, Ti
element was successfully introduced into the precursor
of polytitanocarbosilane. Subsequently, TiC was in situ
generated through multi-step preparation method, and
finally TiC-reinforced SiC (TiC-SiC) fibrous membrane
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was fabricated. As the second crystalline phase, TiC was
randomly distributed in the SiC fibers, which was benefi-
cial for inducing the deflection of cracks, hindering the
unstable propagation of cracks, as well as increasing entan-
glement of filaments, thereby increasing the strength of
fibrous membrane up to 2.1 MPa. More importantly, TiC
effectively inhibited the abnormal grain growth of SiC in
ultrahigh temperature environments, thus improving the
thermal stability of the TiC-SiC fibrous membrane up to
2000 °C. Extraordinarily, after being treated at 1800 °C
for 5 h in an argon atmosphere, TiC-SiC fibrous membrane
still showed good strength and flexibility. Such a long—time
high—temperature resistance has not yet been reported
for other ultrafine fibers in literature. The membrane can
withstand a weight of approximately 1400 times its own
weight and remained intact for at least 1 h when being
continuously ablated by the butane flame. Notably, the
membrane even sustained pressure-sensing performance
for up to 300 cycles after heat treatment at 1800 °C for 5 h
in an argon atmosphere. Most importantly, the TiC-SiC
fibrous membrane exhibited stable resistivity up to 900 °C
and showed sensing stability under butane flame. These
outstanding performances demonstrated that we had suc-
cessfully developed a type of novel material that combines
long-time ultrahigh-temperature resistance, good mechani-
cal properties as well as high-temperature pressure sensing
capabilities, filling the research gap of flexible fibrous sen-
sors for extreme environments.

2 Experimental Section
2.1 Materials

Polytitanocarbosilane (PTCS) was synthesized by follow-
ing the procedure reported in our previous work [37]. By
using low-softening-point polycarbosilane (LPCS) and
tetrabutyl titanate (Ti(OBu),) in different ratios (50:1,
50:3, and 50:5, respectively), the obtained precursor was
named as PTCS-1, PTCS-2, and PTCS-3, respectively.
Polyvinylpyrrolidone (PVP) was purchased from Alad-
din (Shanghai) Co., Ltd. Trichloromethane (CH;Cl) was
purchased from Sinopharm Chemical Reagent Co., Ltd.
It should be noted that all the mentioned chemicals were
used as-received without any further purification.

https://doi.org/10.1007/s40820-025-02019-1
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2.2 Fabrication of the TiC-SiC Fibrous Membrane

The spinning solution was prepared by dissolving 1.8 g of
PTCS and 0.5 g of PVP in the 10 mL of CH;Cl solution,
followed by magnetic stirring for approximately 6 h. The
obtained homogeneous and clear solution were transferred
to syringe pump for electrospinning. The air humidity was
20%. The optimal liquid propulsion speed was 2.0 mL h~!,
and the optimal spinning voltage was 24 kV. The obtained
fibrous membrane was dried in oven at 60 °C for 5 h to
remove the excess organic solvent. The obtained PTCS
fibrous membrane was cured in air (AC-PTCS) and then
pyrolyzed at 1300 °C for 1 h in a nitrogen atmosphere
to obtain amorphous Si-Ti-C-O fibrous membrane. The
TiC-SiC fibrous membranes were finally obtained after
sintering of the Si-Ti-C-O fibrous membrane at 1800 °C
for 1 h in an argon atmosphere. As different PTCS-1,
PTCS-2, and PTCS-3 polymers were used, the obtained
intermediate samples and final product were named as X-1,
X-2, and X-3, respectively, where X represented PTCS,
AC-PTCS, Si-Ti-C-O and TiC-SiC fibrous membrane,
respectively.

2.3 Characterization

The micromorphological analysis was conducted using
scanning electron microscopy (SEM, TESCAN MIRA3,
Czech Republic) and transmission electron microscopy
(TEM, Tecnai F20, USA). The diameter distribution of
fibers was quantified by analyzing more than 200 indi-
vidual fibers according to their SEM images using ImagelJ
software (Media Cybernetics, USA). Analysis of surface
structure and roughness was conducted by using atomic
force microscopy (AFM, Bruker Dimension Icon, Ger-
many). Fourier transform infrared spectroscopy (FTIR)
was carried out using an infrared spectrometer (Frontier,
PerkinElmer, USA). X-ray diffraction (XRD) patterns
were recorded on a Bruker AXS D8 Advance diffractom-
eter (Bruker, Germany) equipped with Cu Ka radiation
(A=1.54178 A), with 26 ranging from 10° to 90° at a scan-
ning rate of 10°min!. X-ray photoelectron spectroscopy
(XPS) analysis was performed using an Escalab 250Xi
spectrometer (Thermo Fisher, USA) with an Al Ka exci-
tation source (1487.6 eV). The specific surface area and
pore volume were measured by automatic specific surface
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area and pore volume analyzer (Micromeritics ASAP
2460, USA). Thermal conductivity was measured from the
ambient temperature to 1400 °C in an argon atmosphere
by the laser thermal conductivity tester (NETZSCH LFA
467, Germany). The density was calculated based on the
measured mass and geometric dimensions. The changes
of resistance signal and sensing response feature of the
fibrous membrane pressure sensor were measured by the
flexible electronic array testing system at the ambient tem-
perature (FE-60PT, China). The resistivity of the TiC-SiC
fibrous membrane in the temperature range of 25-900 °C
was test by variable-temperature resistance testing system
(RMS-1200, China). The high-resolution micron-level
X-ray computed tomography (X-CT) was used to ana-
lyze 3D morphology (EasyTom 160 Micro, France). The
mechanical properties of the TiC-SiC fibrous membrane
were quantified by Testometric Micro 350 tensile tester.
The gauge length and width of the membrane specimens
were 25 and 3 mm, respectively. The loading rate was
1 mm min~'. The thickness was tested by using a digital
fabric thickness gauge (YG141D, China). The stress (o)
was calculated by the following equation: 6 =F/(W X D),
where the F, W and D are the load, width and thickness of
the fibrous membrane, respectively.

3 Results and Discussion

3.1 Fabrication of the Flexible TiC-SiC Fibrous
Membrane

As shown by the schematic of the fabrication process
(Fig. 1a), PTCS was synthesized firstly by "one—pot" method
[37], which was named as PTCS-1, PTCS-2, and PTCS-3,
respectively (Figs. S1-S3). Titanium (Ti) contents in these
precursors varied from 0.32 to 1.40 wt% (Table S1). The
whole fabrication process of the TiC-SiC fibrous mem-
brane involved formation of polymer fibrous membrane,
curing, organic—inorganic transformation through pyroly-
sis and the high—temperature sintering, accompanied by
the color changes (Fig. S4). Firstly, by optimizing param-
eters such as spinning voltage, liquid propulsion speed
and spinning humidity, PTCS fibrous membranes formed
by fibers with good morphology were prepared by elec-
trospinning method (Figs. S5-S9). Furthermore, air-cured
PTCS (AC-PTCS) fibrous membranes were obtained after
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Fig. 1 Fabrication of the flexible TiC-SiC fibrous membrane. a Schematic of the fabrication process for the TiC-SiC fibrous membrane. b XPS
spectra and ¢ Ti 2p spectra of the TiC-SiC fibrous membrane. d XRD pattern of the TiC-SiC and Si-Ti-C-O fibrous membranes. e TEM and
HRTEM images of the TiC-SiC fibrous membrane. f Elemental mapping images of the TiC-SiC fiber in the membrane. g Optical image of the
TiC-SiC fibrous membrane standing on the tip of a flower. h Photographs of the TiC-SiC fibrous membrane during the twisting test. i Photo-
graphs of the TiC-SiC fibrous membrane folded into ceramic aircraft. j Three-dimensional (3D) CT image reconstruction of the TiC-SiC fibrous
membrane (with different colors indicating the orientation of the fibers). The above demonstrations were all exemplified by the TiC-SiC-3 mem-
brane
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crosslinking the Si—H bonds of the PTCS green fibers by
oxygen in the air (Figs. S10-S11). Subsequently, inorganic
Si-Ti-C-O fibrous membranes were fabricated after the AC-
PTCS fibrous membranes being pyrolyzed at 1300 °C in a
nitrogen atmosphere (Figs. S12-S16 and Table S2). As the
high oxygen content (>2.93 wt%) of the Si-Ti-C-O fibrous
membrane was detrimental to their high temperature stabil-
ity (Table S3), sintering of the membranes at 1800 °C was
implemented to eliminate oxygen and obtain the final TiC-
SiC fibrous membranes (Figs. S17-S20).

It could be seen from Table S4 that the sintering
process effectively reduced the oxygen content to less
than 0.39 wt%. Furthermore, Ti contents of the final TiC-
SiC fibrous membranes were regulated from 0.50 wt% for
TiC-SiC-1 to 1.95 wt% for TiC-SiC-3. This was further
confirmed by the results of XPS, which indicated that the
main constituent elements were silicon, carbon, oxygen, and
titanium. However, the intensity of the O 1s peak locating
at~532.7 eV descended noticeably for the TiC-SiC fibrous
membrane, comparing with that of the Si-Ti-C-O fibrous
membrane (Fig. 1b). For the Ti 2p spectrum of the TiC-SiC
fibrous membrane, two obvious peaks at 461.3 and 455.5 eV
were observed ascribing to the Ti—C bonds, and another two
peaks at 456.6 and 462.5 eV were assigned to the satellite
peaks of Ti—C bonds (Fig. 1c) [38—41]. Moreover, the C 1s
spectrum further verified the existence of TiC in the fibers
(Fig. S21). The patterns of XRD revealed that there appeared
five diffraction peaks at 35.4°, 41.3°, 59.8°, 71.5°, and 75.2°
for the TiC-SiC fibrous membrane, corresponding to the
(111), (200), (220), (311), and (222) crystal faces of f/—SiC,
respectively (Fig. 1d). Notably, the two diffraction peaks at
20=41.6° and 60.5° could be attributed to the (200) and
(220) crystal faces of TiC, respectively, which are consistent
with the results of XPS analysis. Furthermore, differing from
amorphous state of the Si-Ti-C-O fibrous membrane, the
narrower width and higher intensity of the peaks for TiC-
SiC fibrous membrane could be observed, indicating hugely
increasing crystallization of the fiber structure. TEM results
further revealed the microstructure of the TiC-SiC fibrous
membrane. The single fiber of the membrane was composed
of both SiC and TiC grains (Figs. le and S22). Meanwhile,
the EDS results revealed that the Ti element was randomly
distributed inside the fiber (Fig. 1f).

The TiC-SiC fibrous membrane exhibited light weight
characteristics (~ 15 mg cm™) and excellent flexibility. As
shown from Fig. 1g, the TiC-SiC fibrous membrane with
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a thickness of 1 cm could stand on the petals. Especially,
after being twisted for 360 degrees, the membrane could still
return to the original appearance (Fig. 1h and Movie S1).
Ceramic aircraft was also folded easily, and TiC-SiC fibrous
membrane reverted to their original state after removal of
the external force (Fig. 11). The outstanding flexibility of
the TiC-SiC fibrous membrane could be ascribed to two
reasons. One is the deformation of individual fibers in the
membrane. The appearance of the single fiber remained
intact after being bended without any obvious cracks (Fig.
S23). The other is the special 3D architecture composed of
individual fibers. The X—CT reconstructed images of the 3D
architecture (Figs. 1j and S24) showed that the membrane
was actually constituted by layers of randomly distributed
curly TiC-SiC fibers. Both the deformation of individual
fibers and the slippage between adjacent layers could result
in additional degree of freedom, guaranteeing the flexibility
of the whole membrane.

3.2 Mechanical Properties

The mechanical performance of the TiC-SiC fibrous mem-
brane was studied in detail, which is essential for its actual
application. The TiC-SiC fibrous membrane sample with
a width of 1.5 cm, a length of 3 cm and a mass of only
8.8 mg could bear a weight of 50 g (Fig. 2a), indicating
excellent load-bearing capacity (more than 5600 times its
own weight). The mechanical performance was also tested
quantitatively, as shown in Figs. 2b and S25. The maximum
tensile strength of the TiC-SiC fibrous membrane was high
up to 2.1 MPa (Fig. 2¢). For comparison, pure SiC fibrous
membrane without titanium element was also prepared
(Figs. S26-S28). It is worth noting that the average strength
(1.66 MPa) of the TiC-SiC-3 fibrous membrane was the
highest among all the membranes (TiC-SiC-1, TiC-SiC-2,
and pure SiC fibrous membranes) (Figs. S29-S30).
Although the influencing factors of the strength were
complicated, the reasons for such high strength of the
TiC-SiC-3 fibrous membrane could be explicated by its
distinctive structures in different scale (Fig. 2d). Firstly, the
interior nanodefects determine the strength of single fiber,
which further affect the strength of the whole membrane.
As the sintering step during fabrication process required
heterogeneous elements (Ti) as sintering aid to achieve
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Fig. 2 Mechanical properties of the TiC-SiC fibrous membrane. a Photograph of the TiC-SiC fibrous membrane bearing a weight of 50 g. b
Optical photos of mechanical property tests. ¢ The stress—strain curve of the TiC-SiC ultrafine fibrous membrane. d Schematic diagram of the
mechanism of enhanced mechanical properties. e The SEM image of the TiC-SiC fibrous membrane. f TEM image of the TiC-SiC fiber in the
membrane. g Finite element analysis of the TiC-SiC fiber. h Molecular dynamics simulation during the stretching process. i The AFM image of

the surface of the TiC-SiC fibrous membrane. j The SEM image of the TiC-SiC ultrafine fibers in the membrane. k The fiber diameter distribu-
tion of the TiC-SiC fibrous membrane
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the densification of the fiber [42], there were many pores
observed for the pure SiC fiber, as well as the TiC-SiC-1 and
TiC-SiC-2 fibers due to inadequate sintering aids (Fig. S31).
More densified morphology with reduced internal pores was
observed for the TiC-SiC-3 fiber (Fig. 2e and Table S5).
TiC grains were also favorable to enhance the mechanical
property of the single fiber through mechanisms such as
resisting crack propagation and bridging [43]. Based on the
"pinning effect" of TiC nanoparticles on cracks, the cracks
could be deflected, and the propagation of microcracks could
be hindered during the crack propagation process (Figs. 2f
and S32). Based on finite element simulation analysis, the
fracture of a single fiber was concentrated at the SiC grains
rather than TiC, effectively demonstrating the strengthening
effect of TiC (Figs. 2g and S33-S35). Furthermore, the
results of molecular dynamics simulation also showed that
TiC played a patching role. The Ti—C bonds were tightly
bonded, and the fracture started from the Si—C bonds,
proving that the presence of TiC was conducive to strength
improvement of the ceramics (Figs. 2h and S36). In addition,
a well-bonded interface will also form between TiC and SiC.
This strong interfacial cohesion typically enhances stress
tolerance, minimizes interfacial defects, and improves the
overall mechanical properties [44, 45]. Secondly, surface
roughness of the TiC-SiC-3 fibrous membrane increased
significantly (Fig. 2i), comparing with that of pure SiC
fibrous membrane (Fig. S37) [46]. The high surface
roughness is beneficial to increase friction between adjacent
fibers and counteract external tensile force. Additionally, the
strength of the TiC-SiC fibrous membrane is also closely
related to the distribution state of individual fibers. The
TiC-SiC-3 individual fibers are tightly entangled with the
smallest diameter reaching approximately 600 nm (Figs. 2j,
k and S38-S39), which is advantageous to improvement
of the tensile strength of the whole membrane. Based on
superior mechanical properties of the TiC-SiC-3 fibrous
membrane, it was selected for subsequent investigation of
other properties.

3.3 High Temperature Stability

Evaluating the thermal stability is of great significance for
the application of high temperature sensors. In this work, the
TiC-SiC fibrous membranes were tested at 1800-2000 °C
for different times in an argon atmosphere. Surprisingly, the
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fibrous membranes exhibited excellent stability after being
treated at temperature high up to 2000 °C, showing no obvi-
ous changes in morphologies of the fiber surface and cross
section (Figs. 3a and S40-S45). Especially, the stability of
this membrane to withstand high temperature of 1800 °C
for the long duration of 5 h is far superior to other fibrous
membrane reported in the literature. Furthermore, the XRD
patterns confirmed the thermal stability of the crystalline
phase of the TiC-SiC fibrous membrane, implying its robust-
ness in ultrahigh temperature environments (Fig. 3b). The
weight change of the TiC-SiC fibrous membrane was also
recorded (Fig. 3c). It could be seen that after being heated
at 1900 °C for 1 h, the weight loss was only 1.8%. Notably,
the maximum strength of the TiC-SiC fibrous membrane
still remained 1.1 MPa after being treated at 1900 °C for 1 h,
demonstrating excellent high temperature resistance of the
TiC-SiC fibrous membrane (Fig. 3d). It is noteworthy that all
the heat-treated TiC-SiC fibrous membranes also exhibited
good flexibility (Figs. 3e and S46-S49), which is favorable
to their application in ultrahigh temperature environment.
Consequently, TiC-SiC fibrous membrane possesses con-
siderable mechanical strength and the highest working tem-
perature comparing with other ceramic membranes reported
in literature (Fig. 3f and Table S6).

The schematic of the high-temperature-resistance mecha-
nism is shown in Fig. 3g. There are multiple factors influenc-
ing thermal resistance of the TiC-SiC fibrous membrane.
Firstly, when there is a large amount of oxygen in the fibers
of the membrane, the resulted amorphous SiC,0, phase is
unstable, so decomposition reactions as shown in Eqgs. (1)
and (2) will occur at high temperature [47-49]. This is an
important factor causing the abnormal growth of SiC grains
during the heat treatment process, ultimately resulting in
the collapse of the fiber structure. In this work, the decom-
position of the SiC,0, phase is regulated in advance dur-
ing the preparation process, accompanied by elimination
of oxygen (from 2.93 to 0.39 wt%). Specifically, the SiC
grains can grow to a large size without the pulverization of
the fiber structure during the sintering process at 1800 °C.
Therefore, for the subsequent heat-treatment process, the
thermal driving force is insufficient to cause the secondary
growth of the large SiC grains in the fibers of the membrane,
which enables the membrane to maintain its original appear-
ance. Furthermore, TiC as ultrahigh temperature phase with
a melting point as high as 3000 °C [50] also inhibits the
growth of SiC grains during the long—time high—temperature
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heat treatment and plays a role in stabilizing the SiC matrix
(Fig. 2f). Therefore, the unique composition and structure
of the fiber membrane endow it with excellent high—tem-
perature resistance.

SiC,0,(s) = SiC(s) + C(s) + SiO(g) + CO(g) )

SiO(g) + 2C(s) — SiC(s) + CO(g) 2

3.4 Properties under Integrated Extreme Conditions

To ensure reliable service performance, the TiC-SiC fibrous
membrane also needs to possess sufficient stability under
integrated extreme conditions. Thereby, the oxidation
resistance of the TiC-SiC fibrous membrane was investi-
gated firstly at high temperature in an air atmosphere. XRD
pattern shows that after being oxidized at 1200 °C for 1 h,
Si0, and TiO, phases appeared in the fiber, while -SiC
was still the main component (Fig. 4a). The strength of oxi-
dized TiC-SiC fibrous membrane could still reach 1.8 MPa
(Fig. 4b). As shown in Figs. 4c and S50, the fibers of the
fibrous membrane were connected at the lap joints due to
the formation of the oxide layer on the fiber surface, benefit-
ing for maintaining strength of the membrane. Importantly,
after oxidation at 1200 °C for 2 h or at 1400 °C for 1 h, the
fibrous membrane still exhibited good mechanical properties
(Figs. S51-S56). As the thermal conductivity of the TiC-
SiC fibrous membrane was relatively low (0.42 W m~! K~!
at 1400 °C) (Fig. 4d), it also exhibited thermal insulation
performance at high temperature in air atmosphere, which
was demonstrated by heat treatment on the hand using
butane flame (~ 1300 °C) (Movie S1). Furthermore, after
being heated for 600 s under butane flame, the cold end
temperature was less than 63 °C, proving quantitatively the
good thermal insulation performance of the TiC-SiC fibrous
membrane (Figs. 4e and S57; Movie S1).

Additionally, after being bent under the butane flame, the
membranes could still restore its original shape, indicating
excellent flexibility (Fig. 4f). Comprehensively, we designed
a simple device to demonstrate the mechanical properties
of the TiC-SiC fibrous membrane in integrated extreme
environment. The TiC-SiC ultrafine fibrous membrane
(length: 3 cm, width: 1.5 cm, and weight: 0.0140 g) could
remain unbroken for 6000 s pulled by a weight of 20 g
(~ 1428 times its own weight) under continuous heating by
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butane flame, as shown in Figs. 4g and S58; and Movie S1.
This further confirmed its outstanding potential to cope with
complex conditions in extreme environment.

3.5 Pressure-Sensing Performance

Based on the good flexibility and mechanical properties
of the TiC-SiC fibrous membrane, the pressure—sensing
properties of the fibrous membrane were also investigated.
As shown in Fig. S59 and Movie S1, the strain of TiC-SiC
fibrous membrane was 50%, and the bending angle was
approximately 180°. After 600 cycles, the fibers maintained
stable electric resistance change (Figs. S60 and S61). In
addition, by stacking these fibrous membranes, as shown in
Fig. S62 and Movie S1, they could still return to the original
shape after release of the compression. The TiC-SiC fibrous
membrane exhibited good resistance response signals within
the strain range of 10-90% (Fig. 5a). The sensitivity of the
TiC-SiC fibrous membrane in the four pressure ranges of
0-0.43, 0.43-14.03, 14.03-76.38, and 76.38-240.25 kPa
was 7.23, 0.85, 0.11, and 0.05 kPa™", respectively (Fig. 5b).
When the external pressure was 0.11 kPa, the response time
of the TiC-SiC fibrous membrane was 523 ms, and the recov-
ery time was 440 ms (Fig. 5¢). And after 600 cycles, TiC-
SiC fibrous membrane maintained excellent pressure sens-
ing performance, which benefited from the layered stacking
structure of the membranes (Figs. 5d and S63). Importantly,
TiC-SiC fiber membrane still exhibited excellent resistance
response signals after heat treatment at 1800 °C for 5 h in
an argon atmosphere, closely related to the high-temperature
stability (Fig. 5e). Furthermore, after being heated by the
butane flame for 60 s, it still exhibited good compression
sensing performance (Fig. S64 and Movie S1).

To evaluate the practical sensing performance of
the TiC-SiC fibrous membrane, a TiC-SiC fibrous
membrane-based high temperature sensor was assembled
(Fig. S65). By using two pieces of two—dimensional
woven cloth of conventional SiC fibers as the upper and
lower surfaces, the fibrous membrane was sandwiched
in the middle with copper wire connecting to a digital
multimeter. With continuous ablation by the butane flame,
the electric resistance of the sensor changed evidently
with compression (Fig. 5f and Movie S1). However,
it could return to the original value after release of the
compression. This could be ascribed to the unchanged
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resistivity with temperature (25-900 °C) (Fig. 5g). By
comparing with the comprehensive performance of the
fibrous membrane reported in relevant literature (Fig. 5h
and Table S7), it could be seen that the TiC-SiC fibrous
membrane in this work has broken the working limits of
current fibrous membrane-based pressure sensors. More
importantly, unlike other sensors, the TiC-SiC fibrous
membrane does not require any substrate for encapsulation,
which ensures its excellent pressure-sensing performance
without sacrificing the high temperature resistance,
making it appealing as a new type of structure—function
integrated material.

4 Conclusions

In summary, the TiC-SiC fibrous membrane was
successfully fabricated based on the molecular design and
multi-step preparation. TiC was pinned into the SiC matrix,
enhancing the strength of the TiC-SiC fibrous membrane
(up to 2.1 MPa). In addition, as an ultra—high temperature
phase, TiC could inhibit the abnormal growth of SiC
grains under high temperature for a long time. Meanwhile,
owing to the extremely low oxygen content (0.39 wt%),
the membrane exhibited exceptional thermal resistance
(2000 °C) and long—term thermal stability (1800 °C for
5 h) in the inert atmosphere. Importantly, the TiC-SiC
fibrous membrane could bear a load of approximately
1400 times its own weight and remained intact after
being ablated by the butane flame (~ 1300 °C) for 1 h.
Notably, the membrane even sustained pressure—sensing
performance for up to 300 cycles after heat treatment at
1800 °C for 5 h in an argon atmosphere. Most importantly,
the TiC-SiC fibrous membrane exhibited stable resistivity
up to 900 °C and showed sensing stability under butane
flame. Thereby, these comprehensive characteristics
firmly establish the TiC-SiC fibrous membrane as a
transformative solution of high-temperature pressure
sensing for extreme environments.
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