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HIGHLIGHTS

® The tautomeric UV absorbers (UV320/UV327) in perovskites reveal keto—enol tautomerism, generating extra—C=0 groups to enhance

defect passivation.

e The Cl atom in UV327 drives tautomerism, providing superior -C=0 coordination, which optimizes SnO, energy bands/charge

extraction, resulting in a dark current of 3.22x 107'% A cm™2 and a response time of 23.35/26.19 ps.

e Unencapsulated devices maintained 3900 Hz response after 300 h humidity (40 +5% RH) and 30 h UV stress, with 94.14 dB linear

dynamic range.

ABSTRACT UV-absorbing additives have recently been demonstrated to be effective ) @@@@ CsPbiBr,
interfacial modifiers that simultaneously enhance the UV stability and crystallization : o Jh ‘E,‘(,?’é’,’
of halide perovskite. However, the underlying mechanisms concerning UV absorp- — i uvor k‘. ...... sno,
tion, defect passivation, and efficacy optimization of these additives remain unresolved. XJ:I ﬂ'f 5 5{{ . 5 S

Herein, two UV tautomeric absorbers (UV320 and UV327) are selected as defect-passi- S
vators for perovskites. The keto—enol tautomeric evolution processes and corresponding . xJ:\/EN’ ’

defect passivation performance/mechanism of both the original molecules and their tau-

W

tomers are thoroughly compared and elucidated through experimental characterizations

and density functional theory calculations. The additional carbonyl (-C=0) groups generated through the keto—enol tautomeric process triggered
by the Cl atom in UV327 ultimately provide superior chemical coordination and enhanced defect-passivation capability compared to the original
counterparts. Moreover, the versatility of K-UV327 is further demonstrated by its optimization of SnO, film quality, interfacial energy band
alignment, charge extraction efficiency, and defect state suppression. The photodetector optimized by UV327’s tautomer achieves an ultralow
dark current density of 3.22x107° A cm™2, an enhanced linear dynamic range of 94.14 dB, and a fast response time of 23.35/26.19 pis. Notably,

unencapsulated devices maintain a stable response at 3900 Hz following 300 h exposure to 40% + 5% relative humidity and 30 h UV irradiation.
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1 Introduction

Due to their outstanding physical properties, all-inorganic
lead halide perovskites with the chemical formula CsPbX,
have attracted significant attention for optoelectronic appli-
cations, such as solar cells [1-7], light-emitting diodes
(LEDs) [8-10], photodetectors (PDs) [11-20], lasers, and
imaging [21, 22]. Among these, PDs, which convert light
into electrical signals, are essential for optical communi-
cation, biomedicine, space exploration, and imaging [23].
Nevertheless, due to the chemical instability of perovskites
under moisture, light, and heat exposure, solution-processed
perovskite-based PDs have not achieved the widespread
adoption initially predicted by the industry [24, 25]. One
primary source of instability stems from the presence of
numerous defects in perovskite lattices, including uncoor-
dinated Pb*™, halogen vacancies (Vy), and Pb-I antisites
(Pbl;™), which act as non-radiative recombination centers
and ionic migration pathways, ultimately degrading device
performance [2-4, 14, 26].

Leveraging Lewis acid—base interactions and hydrogen
bonding, incorporating Lewis base-functionalized electron-
donating organic molecules (e.g., —-CN, -NH,, —CI, -C=0)
into perovskite films remains an effective and widely used
approach for trap-state passivation [1-4, 24, 27-30]. These
functional groups can donate lone pair electrons to underco-
ordinated positive charge centers, such as Lewis acidic Pb*+,
forming coordinate bonds and reducing trap states. Notably,
bifunctional Lewis base/proton-donor molecules (e.g., —OH,
—NH,) exhibit strong passivation via coordinating underco-
ordinated Pb>*, forming H-bonds with I~, and passivating
the other cationic and anionic defects. Furthermore, when
engineered into a conjugated molecular framework, particu-
larly aromatic systems, this dual functionality significantly
amplifies passivation effectiveness through synergistic n-n
conjugation between carbon—carbon double bonds (-C=C)
and p-m conjugation linking —C=C to carbonyl (-C=0)
or imine (—C=N) groups. Additionally, incorporating
extended conjugated system molecular structures can also
further enhance the stability of the passivator. However,
the encapsulated devices remain susceptible to prolonged
UV exposure, which leads to perovskite decomposition and
performance degradation [31-36]. Consequently, significant
efforts focus on the strategic selection of UV-absorbing addi-
tives containing Lewis base functional groups. For instance,
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Zhao et al. [35] demonstrated that 2-hydroxy-4-methoxy-
benzophenone-5-sulfonic acid (BP-4), which serves as an
ultraviolet filter, can enhance electron transfer and passi-
vate interfacial defects, thereby improving the UV stabil-
ity of perovskite devices by suppressing perovskite degra-
dation. Similarly, by precisely tuning the concentration of
2-(2-hydroxy-5-methylphenyl)benzotriazole (UVP) additive
in perovskite precursor, Li et al. [34] achieved an improve-
ment in the overall performance of the perovskite absorption
layer, exhibiting larger grain sizes, longer carrier lifetimes,
and enhanced diffusion lengths. The current UV-absorbing
Lewis base additives, such as BP-4 and UVP, exhibit out-
standing performance in promoting defect passivation and
crystallization modulation. At the same time, they mainly act
as passive UV filters and lack intentional molecular design
to maximize dipole moments or utilize dynamic processes
like tautomerization to boost passivation efficiency. Further-
more, the physical mechanisms that govern their interaction
with perovskite interfaces remain unclear, and a compre-
hensive theoretical framework is still absent for designing
high-performance UV-absorbing passivators. On the other
hand, small organic Lewis bases with high dipole moments
are known to improve defect passivation efficacy through
stronger electrostatic interactions with charged perovskite
surfaces, which reinforce chemical coordination and pro-
mote anchoring at defect sites [37—40]. Therefore, rational
molecular design by tailoring dipole moments and introduc-
ing multifunctional anchoring sites (such as the -C=N elec-
tron-donating and proton-donating groups) can be an alter-
native strategy for maximizing defect passivation efficiency.

In this work, UV320 and UV327 molecules, a class of
phenol triazine-based absorbers that are distinct from previ-
ously reported ones such as benzophenone BP-4 and ben-
zotriazole UVP, are introduced to enhance the stability and
performance of perovskite photoelectronic devices. Their
unique design, incorporating an electron-withdrawing chlo-
rine atom in UV327 and proximate —C=N and —OH groups,
facilitates a keto—enol tautomerization under UV irradiation
or heating. This process, combined with the dipole-modulat-
ing effect of the substitutional chlorine atom, significantly
increases the molecular dipole moment and dynamically
enhances passivation at the perovskite/SnO, interface, rep-
resenting a mechanism previously unreported for this class
of additives. Furthermore, UV327 regulates spatial compat-
ibility through Cl-O bond interactions with perovskite lat-
tices. Consequently, UV327-treated devices achieve superior
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performance: responsivity of 0.3 A W~! and detectivity of
3% 10" Jones. Our work provides an effective approach for
developing a multifunctional UV-resistant passivator.

2 Results and Discussion

2.1 Passivation Mechanism of UV-320 and UV-327
Molecules

In the work, UV327, UV320, BP-4, and UVP share a critical
structural feature: -OH on their benzene rings that enable
ultraviolet (UV) absorption. Figure 1a schematically illus-
trates the general mechanism by which these UV absorbers
regulate perovskite properties. When incorporated into per-
ovskite precursors or electron transport layers and subjected
to heat or UV irradiation, the additives undergo excited-state
intramolecular proton transfer (ESIPT), converting to keto
forms with —C=0 groups. Density functional theory (DFT)
calculations reveal that the -C=0O groups exhibit higher
electron cloud density than their precursor —OH groups,
indicating superior defect passivation capabilities post-tau-
tomerization. To further confirm that the tautomerization-
generated —C=0 group has a stronger coordination ability
toward Pb>* than the original —OH group, Bader charge
analysis on the oxygen atoms of both functional groups
was performed after the adsorption of UV320, UV327,
K-UV320, and K-UV327 molecules onto the perovskite. As
shown in Fig. S1, the Bader charge transfer for the oxygen
atoms in the —OH groups of UV320 and UV327 is 0.86¢ and
0.80e, respectively. Upon conversion to the -C=0 group, the
charge transfer increases to 0.96e¢ and 0.98¢, respectively.
This observation is consistent with these calculations of
molecular electrostatic potential (Fig. 2a, b), which present
a higher electron density around the -C=O group than that
around the -OH group, rationalizing its stronger coordina-
tion interaction capability. Furthermore, introducing elec-
tron-withdrawing groups enhances ESIPT efficiency under
external stimuli (e.g., UV irradiation, heating), increasing
the population of high-electron-density -C=0 groups and
thereby elevating molecular dipole moments. To leverage
this effect, a chlorine atom (—Cl) was strategically intro-
duced on the opposite benzene ring side of UV327 relative
to UV320.

The nuclear magnetic resonance hydrogen (‘H NMR)
spectrometer was employed to verify the tautomerism
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process. For both UV320 and UV327 molecules, the com-
parative analysis of the "H NMR spectra (Figs. 1b, ¢ and
S2-S3) reveals a significant decrease in the signal intensity
of their -OH group after the two molecules were mixed into
the perovskite precursor and heated at 60 °C for three h,
respectively. Still, it remains detectable, showing low-field
shifts of 0.011 and 0.02 ppm, respectively. This behavior
results from the tautomerization of -OH groups to —-C=0
groups. Furthermore, the larger chemical shift seen in the
UV327 molecule indicates a stronger chemical interaction
with perovskite compared to the UV320 molecule. To eval-
uate the ultraviolet light absorption capability of the keto
forms transformed from their corresponding UV320 and
UV327 molecules and verify the reversibility of the tau-
tomerism process, the ultraviolet lights were used to irradi-
ate the thermal-treated perovskite precursor solution, and
"H NMR spectroscopy was employed to examine the —OH
hydrogen in both molecules (Figs. 1d, e and S2-S5). These
'"H NMR experiments indicate that UV320 and UV327
revert to their original phenolic forms after UV light irra-
diation. This conclusion is drawn from the quantification
of their enolic and ketonic forms (Figs. S6 and S7), with
the influence of DMSO-dg on the equilibrium process also
attached. Furthermore, the larger chemical shifts observed
in UV327 compared to UV320 suggest that the introduction
of the Cl atom promotes the ESIPT process, consistent with
the chemical shift results mentioned above.

To elucidate the evolution of charge distribution dur-
ing the tautomeric transformations from the keto forms of
UV320 and UV327 molecules to those of K-UV320 and
K-UV327, respectively, following their (named), the molec-
ular electrostatic potentials of each compound were calcu-
lated individually based on DFT. As shown in Figs. 2a, b and
S8, the intramolecular electron cloud (highlighted in red) in
UV320 and UV327 molecules is primarily localized around
the —C=N, —OH, and —Cl group sites. These functional
groups serve as effective Lewis bases, facilitating the dona-
tion of lone-pair electrons to undercoordinated Pb** (Vpin
perovskite [35, 36, 38, 41]. Critically, the superior perfor-
mance of UV327 over UV320 can be attributed to its unique
Cl atom. Functionally, this atom serves as a potent electron-
withdrawing group, which enhances the molecular dipole
moment, thereby facilitating more effective electrostatic
anchoring of defects. Upon the tautomerization of UV320
and UV327 molecules into their keto forms, electrons are
predominantly localized around the -C=N and -C=0

@ Springer
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Fig. 1 Passivation mechanism of UV320 and UV327 molecules. a A diagram illustrating the effect of UV320 and UV327 molecules on ultra-
violet protection for perovskite. b—¢ '"H NMR spectra of UV320 and UV327 molecules before and after being added to the perovskite upon
heating, respectively. d—e 'H NMR spectra of K-UV320 and K-UV327 molecules before and after being added to perovskite upon ultraviolet

radiation, respectively

groups, with a notably intensified coloration, indicating a
stronger electron-donating capacity of the —-C =0 group
compared to the —OH functional group. The enhanced elec-
tron-donating ability allows the —C = O group, with its high
electron cloud density, to effectively passivate undercoordi-
nated Pb*". Additionally, UV327 (n=4.84 D) and K-UV327
(1=5.39 D) exhibit greater molecular dipole moments than
UV320 (p=2.71 D) and K-UV320 (p=3.49 D), enhancing
their ability to fix positively charged ions like Pb** within
the PbX*
ing to the DFT calculations on the adjacent Pb-Pb atomic
separation in the perovskite and N-O, C1-O, and CI-N bond

lengths in the above-mentioned four molecules, as shown

~ octahedral perovskite structure [37, 42]. Accord-

© The authors

in Fig. 2c, d, and the statistical results shown in Fig. 2e, f.
Beyond its electronic effects, the Cl atom in UV327 also
exhibits the ability to further optimize the molecular spatial
configuration. The spatial distances of the CI-N bonds in
UV327 and K-UV327, along with the O-ClI bonds, exhibit
a more matched alignment with the spatial distances of the
two adjacent Pb atoms in the perovskite lattice compared
to the N-O bond length in UV320 and K-UV320, as evi-
denced by the significant increase of the comprehensive
spatial matching score from~0.7 to 0.9 [41]. This natural
merit in the molecular configuration endows UV327 and
K-UV327 with stronger passivation efficiency than UV320
and K-UV320. The Pb-Br-Pb bond angles influenced by the

https://doi.org/10.1007/s40820-025-02015-5
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Fig. 2 Calculation of UV327 and UV320 molecular electron cloud density distributions, as well as the calculation of bond lengths and bond
angles. a—b Molecular electrostatic potentials of UV320 and UV327, as well as the keto form structures. ¢ Spatial distance diagram of adjacent
Pb?" ions in perovskite. d Spatial distance diagram of N-N, N-O, and N-Cl atoms in both molecules. e Statistical chart of the spatial distance of
adjacent Pb%* jons in perovskite. f Statistical chart of the spatial distance of N-N, N-O, and N—Cl atoms in both molecules. g—i Bond angle size
of Pb-Br-Pb after adsorption of functional groups in two molecules and their keto-form molecules with perovskite
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different functional groups in the four molecules adsorbed
upon the perovskite lattice were also calculated, as shown
in Fig. 2g, i. The observed larger Pb-Br-Pb bond angles sug-
gest that the UV327 molecule and its keto-form counterpart
minimize the lattice distortion and surface stress, meanwhile
improving the structural stability [43, 44]. In summary, the
Cl atom serves a multifaceted role: It enhances the molecu-
lar dipole for electrostatic anchoring, promotes tautomerism
to activate stronger Lewis basic sites, and optimizes spatial
compatibility for reduced interfacial strain, collectively con-
tributing to superior multi-site defect passivation, improved
charge transport, and enhanced device stability.

Time-of-flight secondary ion mass spectrometry
(TOF-SIMS) was employed to determine whether CI
atoms incorporate into the perovskite surface or lattice. The
TOF-SIMS mass spectrum, depth profile, and 3D render-
ing confirm the presence of UV327 (Figs. S9 and S10). A
pronounced CI™ signal at the film surface demonstrates its
successful incorporation at the perovskite interface. In addi-
tion, the ubiquitous distribution of the Cl~ signal across the
perovskite layer indicates deep diffusion of UV327, leading
to enhanced bulk passivation. Consequently, UV327 pos-
sesses dual function: passivating surface defects and sup-
pressing deep-level traps distributed in the entire film, both
can reduce the defect density effectively.

2.2 Impact of UV-320 and UV-327 Molecules
on Crystallinity and Film Quality of Perovskite

The influence of UV320 and UV327 molecules on the crys-
tallinity of perovskite films was systematically investigated
using X-ray diffraction (XRD). As shown in Fig. 3b, c, the
modified perovskite films exhibit stronger XRD intensities
and narrower full width at half maximum (FWHM) values
compared to the control, indicating enhanced crystallinity
and improved preferred orientation [39, 45, 46]. This sug-
gests that both molecules likely facilitate a more ordered
crystal growth, probably by passivating surface defects and
reducing nucleation barriers during film formation [47, 48].
Among them, UV327 demonstrates the optimal passivation
effect. Scanning electron microscopy (SEM) images reveal
substantial morphological improvements in the treated per-
ovskite films. Relative to the control film (776 nm), the aver-
age grain size increased progressively with UV320 (930 nm)
and UV327 (1002 nm) treatments, as quantified in Fig. 3a.

© The authors

Consequently, the UV327-modified film not only possesses
the largest grains but also exhibits a superior polycrystalline
morphology characterized by fewer pinholes and a smoother
surface. These observations are further supported by atomic
force microscopy (AFM) results (Fig. S11), which show a
reduction in RMS roughness from 40.32 nm (control) to
31.00 nm (UV320-treated) and 28.66 nm (UV327-treated).
The surface smoothing can be attributed to the reduction
of the energy barrier for grain coalescence and promotion
of secondary crystallization induced by passivation effects
[37, 47].

The optical performance of the perovskite films was also
optimized upon modification. UV—visible absorption spec-
tra (Figs. 3d and S12—-S13) show that all films maintain the
same bandgap (2.07 eV). However, the UV320- and UV327-
modified samples exhibit marginally stronger absorption at
shorter wavelengths, which likely stems from enhanced
light scattering due to larger grain sizes and improved film
compactness [45]. Steady-state photoluminescence (PL)
and time-resolved photoluminescence (TRPL) spectra were
obtained to further investigate the effects of the two mol-
ecules on the quality of the perovskite film and carrier trans-
port behaviors. Compared to the PL peak (Fig. 3e) position
of the control sample at 590 nm, the PL peaks of both treated
samples undergo slight blue shifts [41]. Additionally, the
UV327-treated sample exhibits the most intense PL under
the normalized excited laser power, implying more effective
suppression of non-radiative recombination benefited from
better defect passivation at grain boundaries and interfaces
[4, 39, 41, 45]. The TRPL decay curves (Fig. 3f) were well
fitted by using a double-exponential function (Eq. S1), and
the fitted data are summarized in Table S1. The average PL
lifetime (z,,,) of pristine perovskite film is 370.76 ns, while
those of UV320 and UV327-treated samples are 460.64 and
470.71 ns, respectively. The UV327-treated sample exhibits
a 1.27-fold extension in carrier lifetime than that of the con-
trol one, suggesting a reduction in non-radiative recombina-
tion centers, which is consistent with the observed improve-
ments in crystallinity and interfacial quality [1, 39, 41]. To
quantitatively assess the defect density of states within the
UV320 or UV327-treated perovskite film, the space-charge
limited currents (SCLC) method with devices of electronic-
only and hole-only was well conducted. The trap density N,
can be given by Eq. 1 [41]:

https://doi.org/10.1007/s40820-025-02015-5
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Fig. 3 Characterization of perovskite film quality. a SEM images, b XRD patterns, ¢ FWHM values of the (100) and (200) diffraction peaks,
d UV-Vis absorption spectra, e steady-state PL spectra, and f time-resolved photoluminescence (TRPL) spectra of perovskite films with and
without UV320 or UV327 treatment. Current—voltage (I-V) characteristics of (g, i) electron-only and (h, j) hole-only devices based on pristine,
UV320-, and UV327-treated perovskite films. k Nyquist plots of the devices based on perovskite films with and without UV320 or UV327 treat-
ment

2e0e VgL where Vig, e, Ny, L, €, and g are the trap-filled limit volt-
d el 2 ( age, elementary charge, trap density, perovskite film thick-
ness, relative permittivity of the perovskite, and vacuum
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permittivity, respectively. Electron-only devices with an
FTO/PEDOT: PSS/perovskite/P3HT/Ag structure were
fabricated to measure dark current—voltage characteris-
tics. Results show that UV327-modified devices exhibit
a lower Vi, (Fig. 3g) [11, 41]. According to the calcula-
tions, the electron trap state densities of pristine and treated
devices UV320 and UV327 are 6.12x 10", 4.72x 10",
and 4.41 x 10" cm™, respectively. Similarly, the hole-only
devices with FTO/SnO,/ Perovskite/PCBM/Ag structure
were fabricated to confirm the hole trap state densities
(see Fig. 3h). The calculated N, values of the perovskite in
control and target groups are determined to be 5.52x 10",
4.35% 10", and 3.86x 10" cm™3, respectively. The decrease
behavior of trap state density, which is confirmed by the
reduced dark current as shown in Fig. 6a, results from the
effective passivation of both ionic and vacancy-related
defects at grain boundaries and within the bulk [11, 14].

Additionally, increased electron and hole mobilities
(Fig. 31, j) [11, 49] and enhanced recombination resist-
ance derived from Nyquist plots (Fig. 3k) [37, 40] collec-
tively confirm that both UV320 and UV327 contribute to
improved charge transport and reduced defect-mediated
recombination, with UV327 exhibiting superior passiva-
tion performance.

2.3 Impact of UV-320 and UV-327 Molecules
on the Morphology and Band Structure
of Perovskite

An important aspect of our study is the investigation into
the effects of UV320 and UV327 molecules on the SnO,
electron transport layer (ETL), beyond their interaction with
the perovskite. AFM characterization shows that the RMS
roughness of SnO, films decreases from 33.01 nm (control)
to 32.40 nm (with UV320) and 31.30 nm (with UV327)
(Figs. 4a and S14). The passivation of undercoordinated Sn
sites by the Lewis basic groups (e.g., C=0) of the UV320
and V327 molecules results in this smoothing process occur-
ring on the SnO, ETL surface. This coordination reduces
surface energy heterogeneity and nanoscale irregularities,
thereby promoting a more uniform substrate for subsequent
perovskite deposition [50, 51]. Furthermore, Kelvin probe
force microscopy (KPFM) was employed to investigate
the influence of UV320 and UV327 on the surface contact
potential difference (Vpp). Figures 4b and S15 show that the
average Vpp, of pristine SnO, films increased from 92.5 mV
to 170.9 and 173.9 mV after treatment with UV320 and

© The authors

UV327, respectively. The observed Vpp increase suggests a
shift in surface potential, likely induced by molecular dipole
moments of UV320/UV327, which modify the local elec-
tronic environment of SnO,. As reported in previous studies,
an elevated Vpp, leads to an upward shift of the conduc-
tion band minimum (CBM) of SnO, [51]. This realignment
reduces the energy barrier at the SnO,/perovskite interface,
thereby promoting electron injection and suppressing non-
radiative recombination [51, 52].

To verify the above conclusion, ultraviolet photoelectron
spectroscopy (UPS) was employed to determine the valence
band maximum (VBM) of the SnO, and perovskite films,
as shown in Figs. 4c—e and S17, as well as a corresponding
energy level diagram illustrated in Fig. 4f. The CBM/VBM
of the pristine perovskite is located at—3.78 and —5.85 eV,
respectively. Upon modification with UV320 and UV327,
the corresponding values shift to—3.81 and —5.88 eV,
respectively, and to—3.84 and — 5.91 eV, respectively. Con-
currently, the SnO, ETL modified with UV320 and UV327
exhibits CBM values of —3.93 and —3.91 eV, respectively,
compared to—3.94 eV for the pristine one. This collective
band realignment results in a more favorable energy level
matching at the interface, effectively reducing the electron
injection barrier. The observed shifts in the SnO, CBM
are primarily attributed to adsorbate passivation of surface
defects. In the case of UV327, the electronegative chlorine
atom also contributes to its overall passivation effect, since
Cl atoms can interact with under-coordinated Sn atoms and
oxygen vacancies. Therefore, the combined effect of these
factors modifies the surface electronic state and grain bound-
ary potential without changing the crystal sizes of the SnO,
film. This modification subsequently facilitates carrier trans-
port and extraction within the corresponding PDs. This pas-
sivation effect is corroborated by the suppressed PL intensity
(Fig. 4e) and reduced carrier lifetime (Fig. 4f, Table S2),
confirming the suppression of non-radiative recombina-
tion and the consequent facilitation of carrier transport and
extraction in the corresponding devices.

2.4 Interaction between UV-320 and UV-327 Molecules
and Perovskite

The interfacial interaction mechanisms between the modi-

fied molecule and perovskite or SnO, were also investigated
based on X-ray photoelectron spectroscopy (XPS) analysis.

https://doi.org/10.1007/s40820-025-02015-5
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As shown in Fig. 5a, all samples exhibit similar charac-  peaks shift to lower binding energies by 0.01, 0.07, 0.03,
teristic peaks of Pb 4f XPS spectra. After modification by  and 0.08 eV, respectively. However, a similar phenomenon
UV320 and UV327, the Pb 4f;,, and Pb 4f,, characteristic  is also observed in the I 3d XPS (Fig. 5b) and Cs 3d and Br
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3d characteristic peaks (Fig. S17); the characteristic peaks
of I 3d;,, and I 3ds,, shift to lower binding energies by 0.03,
0.21, 0.03, and 0.14 eV, respectively. The decreasing binding
energies of the I 3d and Pb 4f orbitals in the perovskite films
suggest that the functional groups —-C=0, -C=N, and —CI
atoms in the UV320 and UV327 molecules effectively coor-
dinate with free I~ and uncoordinated Pb>* [53]. Therein,
the UV327 molecule exhibits a more significant effect in
curing defects related to perovskite, including reducing the
hysteresis and I migration and oxidation, thereby enhanc-
ing the stability of the PDs [11, 53]. As shown in Fig. 5c,
the Sn 3d;;, and Sn 3ds,, shift to higher binding energies
by 0.07, 0.12, 0.08, and 0.10 eV after the SnO, film was
treated by UV320 and UV327, respectively. The increas-
ing binding energy of Sn 3d indicates an interaction and
strong electron transfer between SnO, and the UV320 and
UV327 molecules interlayer, which reduces the electron
cloud density of Sn [54]. This conclusion is further sub-
stantiated by the increased lattice oxygen ratio in the SnO,
film (Fig. S18) and the distinct chemical shifts in Sn 3d
XPS spectra. The Sn 3d binding energy shift for UV320 is
primarily attributed to coordination from its —-C=0 group
(Fig. S19c¢). In contrast, UV327 induces a more pronounced
shift due to the synergistic coordination of its multiple func-
tional groups (-C=N, —C=0, and the electron-withdrawing
—ClI atom), as evidenced in Figs. S19a, b and S19d, e. More
importantly, the Cl atom plays a pivotal role in promoting
keto—enol tautomerism and enhancing the Lewis basicity of
the O and N coordinating atoms. This electronic enhance-
ment enables UV327 to provide superior defect passivation
over UV320, effectively suppressing non-radiative recom-
bination and improving device stability. Fourier transform
infrared spectroscopy (FTIR) was further employed to probe
the interactions among the additive molecules, perovskite,
and SnQO,. The stretching vibrations of the -C=N and -C=0
functional groups in UV327, which are observed at 1599.0
and 1631.4 cm™! after heating, exhibit noticeable shifts (Fig.
S20). These shifts occurred in UV327, which are more pro-
nounced than those observed in UV320 and are similar to
the behavior in UVP molecules, indicating stronger chemical
coordination between the -C=0 group of UV327 and the
perovskite/SnO, interface [4].

To understand the effects of functional molecules UV320
and UV327 and their tautomer on the defect passivation of
perovskite, the DFT approach was employed to calculate the
chemical interactions between the functional groups within

© The authors

these two molecules and the CsPbIBr, perovskite with the
V; defect-terminated. Therein, the corresponding adsorp-
tion models and statistical results of adsorption energy are
presented in Fig. 5d. For the UV320 and UV327 molecules
that have not undergone tautomerism, the adsorption energy
(E,) of the -OH and Cl atoms in UV327 for Pb** is —0.29
and — 0.88 eV, respectively, and their synergistic passiva-
tion effect is stronger than that of the -OH functional group
in UV320 (E,;=—0.95 eV). After the tautomerism from
their primitive structures to keto counterparts, the E_, of
the —-C =0 coupling with Pb>* in both molecules is higher
than that of the original -OH groups; this calculated result is
well in agreement with the previous ESP and dipole moment
results [4]. The relatively lower E; value of the -C=0 in
UV320 probably can be ascribed to the strong electron-with-
drawing effect of the —CI atom, with which some electrons
confined in the —C=0 group are expropriated, and did not
consider the functional group with a high electron density of
the —-C=N. However, the overall synergistic effect of defect
passivation by UV327 is superior to that of UV320.

The charge density difference (CDD) between the two
molecules and the defective perovskite was calculated,
respectively, to further investigate the charge transfer at
the SnO,/perovskite interface. The adsorption models of
CDD and the corresponding extracted values of interfacial
charge densities along the z-axis, which is perpendicular to
the SnO,/perovskite interface, are illustrated in Fig. Se and
5f-h, respectively. During the formation of chemical bonds,
charge rearrangement occurred in adjacent regions, accom-
panied by strong charge transfer, thereby substantiating the
interaction of both molecules with the perovskite surface
[11, 55]. Notably, both the keto-form structures of UV320
and UV327 exhibit distinct charge transfer properties on
the SnO,/perovskite interface, which is quite different from
their parent structure’s isomerization. Furthermore, the Cl
atom introduced into the UV327 molecule exhibits a similar
behavior at the perovskite contact interface (Fig. Sh). There-
fore, the keto-form structures of both UV320 and UV327
also have superior effectiveness in passivating perovskite
film defects and suppressing ion migration. Furthermore,
the strategic introduction of electron-withdrawing groups
to the aromatic ring can significantly enhance these pas-
sivation effects. While a slightly stronger charge transfer is
demonstrated between K-UV320 and perovskite than that
between K-UV327 and perovskite, since the electron-with-
drawing chlorine atom in the UV327 molecule triggers the

https://doi.org/10.1007/s40820-025-02015-5
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Fig. 5 XPS spectra of a Pb 4f and b I 3d for PVK, UV320-PVK, and UV320-PVK films; ¢ Sn 3d for SnO,, UV320-Sn0O,, and UV327-Sn0, films. d Adsorp-
tion models of different functional groups in UV320 and UV327 with perovskite, along with the statistical results of the adsorption energy (Note: The adsorption
strength increases with the magnitude of the negative value). e Charge density difference of K-UV320 and K-UV327 after adsorption of the perovskite. The charge
displacement profiles of f -C=0 groups in UV320 and K-UV320, g -C=0 groups in UV327 and K-UV327, and h Cl atom in UV327-CI and K-UV327-Cl, with
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delocalization of electron density into the carbonyl group.
This charge transfer mechanism precisely explains why the
adsorption energy between the —-C=0 group in K-UV320
and perovskite is slightly lower than that in K-UV327.
Notably, while the chlorine atom incorporated in K-UV327
marginally reduces the adsorption capability of the -C=0
group, this process remarkably optimizes the interfacial
geometry of perovskite. Specifically, K-UV327 possesses
more favorable intermolecular spacing and optimized bond-
ing angles, which synergistically contribute to its superior
defect passivation and interface modification performance
compared to K-UV320. These conclusions are further cor-
roborated by electron localization function (ELF) analysis
(Fig. 5i-k), which shows more pronounced interfacial elec-
tron density redistribution in K-UV327 [56]. This enhanced
charge delocalization facilitates the formation of robust
Pb-O bonds on the perovskite surface.

2.5 Influence of UV-320 and UV-327 Molecules
on Device Performance

The photosensitive properties of the perovskite photodetec-
tor (PPD) devices with the structure FTO/SnO, (UV320 or
UV327)/perovskite/P3HT/Ag were investigated. For clar-
ity in subsequent discussions, the devices were designated
as (unmodified), PD320 (UV320-modified), and PD327
(UV327-modified). In Fig. 6a, PD327 exhibits a dark current
density (I) of 3.22x 107'° A cm~2, which is approximately
2.6 times lower than that of PD320 (8.50x 107" A cm™)
and about 5 times lower than that of PDO (1.69x 10™° A
cm™2). The significant reduction of I, indicates markedly
suppressed leakage current, which originates from two key
modifications induced by UV327. Firstly, the improved
morphology of the SnO, film eliminates pinholes in ETL,
blocking a major physical shunt pathway; meanwhile, the
optimized energy level alignment raises the electron injec-
tion barrier under reverse bias, effectively suppressing the
injected current density. Secondly, within the perovskite
layer, the effective passivation of bulk and interface by
UV327 significantly decreases the density of trap states
[15, 19], which are the primary sources for the trap-assisted
generation current (Shockley—Read—Hall recombination).
This comprehensive suppression of leakage pathways
is consistent with the large XPS spectral shift, enhanced
charge transfer resistance (Fig. 3k), and lower noise current

© The authors

(Fig. 6b) observed in PD327. External quantum efficiency
(EQE) is a crucial performance metric for photodetectors,
defined as the ratio of the number of electrons collected by
the photodetector to the total number of incident photons.
The EQE response across the wavelength range of 300 to
600 nm is shown in Fig. 6c. The maximum EQFE values
for PDO, PD320, and PD327 are 85.14, 89.71, and 89.75%,
respectively. The responsivity (R) is defined as the ratio of

the output photocurrent to the incident optical power and
EQEJq
e

wavelength, g denotes the elementary charge, 4 signifies the

can be expressed as [16]: R = where A represents the
reduced Planck constant, and c is the speed of light in a
vacuum. Since the EQFE of PD327 surpasses that of PD0O
and PD320, the R-value of PD327 (0.301 A W) is conse-
quently greater than that of PDO (0.280 A W~!) and PD320
(0.300 A W), as shown in Fig. 6¢—d. The detectivity (D*)
indicates the capability of photodetectors (PDs) to detect
weak signals. When the noise in the PDs primarily arises
from grain noise, D* can be expressed as [14, 16]: D*=R
\/Weld) , where e is the elementary charge and I, is the
dark current. As shown in Fig. 6e, the D* of PD327 is con-
sistently greater than that of PDO and PD320, with a peak
value of 2.96 x 10" Jones, compared to 1.20 x 10'3 Jones for
PDO and 1.82 % 10'3 Jones for PD320 (1 Jones=1 cm Hz'?
W~1). The enhanced D* primarily results from improved
responsivity and reduced dark current density, making them
highly competitive among the recently reported all-inorganic
PPDs (Table S3). In addition, PD327 and PD320 show 8.50
and 5.84 times higher on/off ratios (Fig. 6f) than those of
PDO, respectively. This result can be attributed to more effi-
cient charge extraction and reduced current leakage, mainly
due to effective passivation of defects in CsPblBr, by both
molecules [19, 57].

The linear dynamic range (LDR) indicates the range of
light intensities within which the PD maintains constant
responsivity, defined as: LDR = 20log;”pi, where I .. and

lower upper
I ,wer T€present the upper and lower limit of the light inten-
sity maintaining linear photoresponse, respectively. As
shown in Fig. 6g—i, all devices exhibit a linear response
under 405 nm wavelength light. Through data fitting, the
LDR of PDO is 74.45 dB, while the LDR of PD320 and
PD327 is 87.10 and 94.14 dB, respectively. This indicates
that PD327 is more suitable for operation over a wider range
of light intensities [19]. A critical parameter for photodetec-

tors is the rise and fall times of the transient photocurrent.

https://doi.org/10.1007/s40820-025-02015-5
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Fig. 6 Photoelectronic performance of PPD devices modified with UV320 and UV327. a Dark J-V curves of PPDs. b Noise current of PPD
devices with and without UV320 and UV327 treatment. ¢ EQE curves. d Responsivity (R). e Detectivity (D*). f On/off ratios under various opti-
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The rise time (7

ise) refers to the time required for the pho-  the photocurrent to decrease from 90% to 10% of its maxi-

tocurrent to increase from 10% to 90% of its maximum  mum value [58]. As for the transient photocurrent, the sig-
value, while the fall time (7%,;) refers to the time required for ~ nificantly faster photocurrent response of PD327
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(Tyise/ Tiay = 23.35/26.19 ps) compared to PDO
(47.63/67.82 ps) and PD320 (23.82/30.47 ps) (Fig. 6j-1) can
be attributed to several synergistic factors rooted in the effec-
tive passivation and interface modulation induced by
UV327. First, the reduced defect density and suppressed
trap-assisted recombination, which result from the strong
coordination of the -C=N, —-C=0, and —Cl groups with
undercoordinated Pb>* and halide vacancies, facilitate

quicker carrier transport and reduce trapping/detrapping
dynamics. Second, the improved interfacial contact at the
perovskite/SnO, heterojunction and the optimized energy
level alignment lower the energy barrier for charge injection,
resulting in the improvement of carrier extraction efficiency.
Together, these effects contribute to the enhanced response
speed observed in PD327.
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2.6 Influence of UV-320 and UV-327 Molecules
on the Stability of Perovskite Devices

The unencapsulated devices were exposed to an environ-
ment with a humidity of 40% + 5% for 300 h to test their
stability (Fig. 7a, b). The I-T cyclic curve of PD327 and
PD320 was measured under 0 V bias voltage for 600 s
with a light intensity of 500 mW cm™2, and they main-
tained 99.70% and 96.17% of their initial photocurrent,
respectively, compared with 79.29% for PD0. Addition-
ally, three types of bare perovskite films were exposed
to air for 15 days and then subjected to 30 h of UV irra-
diation at 365 nm. The decrease in peak intensity in the
XRD patterns for the UV-320 and UV-327 modified films
is significantly slower than that observed in the control
group (Fig. 7c—e), robustly demonstrating the enhanced
resistance to the erosion of humidity and UV light. Fur-
thermore, the exceptional stability achieved by molecular
modification suggests a high potential for improving ther-
mal stability. This anticipated resilience stems from two
key factors: (1) the intrinsic thermal robustness of the ben-
zotriazole core, and (2) the effective suppression of ionic
defects (particularly I~ vacancies and uncoordinated Pb>*)
throughout the perovskite bulk, as confirmed by XPS and
PL, TRPL and the dark current date which is expected
to mitigate the ion migration that predominantly drives
thermal degradation at elevated temperatures. Finally, the
unencapsulated three devices were placed in the air for
300 h, and their I-T cyclic curve at 3907 Hz was subse-
quently measured, as shown in Figs. 7f, g and S21. PD327
exhibits better high-frequency response than the PD320
and PDO devices, demonstrating superior signal response
at relatively high frequencies.

In perspective, UV320 and UV327 constitute promising
candidate additives for scaling perovskite photovoltaics.
Their commercial availability, direct process compatibil-
ity with large-area coating techniques, and low required
dosage result in negligible cost addition. This material
cost is decisively offset by the concurrent improvement
in device stability and efficiency, paving the way for the
application of the two promising UV molecules in devel-
oping cost-effective and durable perovskite optoelectronic
devices.

| SHANGHAI JIAO TONG UNIVERSITY PRESS

3 Conclusions

In this work, two ultraviolet absorbers (UV320 and UV327)
were chosen elaborately as the effective phenolic passiva-
tors of solution-treated halide perovskites. It is found that
thermal-induced excited-state proton transfer can trigger
the tautomerization of the two molecules from their intrin-
sic forms to their keto counterparts, i.e., K-UV320 and
K-UV327, accompanied by the increasing quantity of -C=0
groups in the tautomers. Moreover, the Cl- ion substituting
—H bond site can further increase the dipole moment of the
K-UV327 molecule and provide a more compatible spatial
arrangement matched with the perovskite lattice, exhibit-
ing stronger efficacy of chemical coordination, defect pas-
sivation, and trap-state elimination for perovskite and SnO,
layers than that of UV320. Furthermore, this modification
strategy promotes the crystallization of perovskite and SnO,
films and then enhances the electron extraction capability in
the multilayer film system. These optimizations achieved on
materials create the superior performance of self-powered
PPD: a peak EQEF of 89.75% in the 300-600 nm range, a low
dark current density of 3.22x 107! A cm™2, a high respon-
sivity of 0.301 A W~!, and a maximum specific detectivity
of 2.96 x 10" Jones. Furthermore, the devices modified by
UV327 also exhibit an LDR of 94.14 dB, rapid response
time, and excellent stability exposed to ambient air and
365 nm UV irradiation for a long time. Our work provides a
deeper understanding and theoretical guidance for design-
ing efficient Lewis base passivators for UV protection in
perovskite optoelectronic devices.
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