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HIGHLIGHTS

® The self-assembly behavior of Y-series non-fullerene acceptors and film formation dynamics are elucidated via in situ characterization,

providing critical insights for sustainable and scalable organic solar cells (OSCs).

® A 3,5-dichloropyridine-assisted self-assembly strategy enables 20.47% efficiency for small-area OSCs and 15.79% for sustainable

organic photovoltaic modules (19.3 cm?).

e This versatile self-assembly control approach is broadly applicable to various material systems, paving the way toward the commer-
cialization of OSC.

ABSTRACT Sustainability and scalability remain critical hurdles for

the commercialization of organic solar cells (OSCs). However, address- | g I
2 E
ing both poses challenge. Herein, we introduce a simple yet effective rE, ;5 PR
strategy utilizing 3,5-dichloropyridine (PDCC) as a solid additiveto | 2.8 ' IE 0 R Jo . >
7777777777 a” e

00 02 04 05 o8
Voltage (V)

fine-tune the self-assembly behavior of Y-series non-fullerene acceptors

2 PDCC

5 0 15
Spunerlng time (s) Sputtering time (s)

Sustalnable modules

Self-assembly

(NFAs) to tackle the upscaling limitations in green-solvent-processed frasee

OSCs. PDCC predominantly interacts with Y-series NFAs, facilitat-

Current (mA)

Power (mW)

ing molecular crystallization and thereby driving the self-assembly of
3.87% map 15.79%
Module area: 19.3 cm?

Y-series NFAs during film-forming dynamics, leading to more uniform

active layers with improved molecular packing and reduced charge
recombination. As a result, PDCC-driven self-assembly strategy enables high-performance OSCs with a power conversion efficiency
(PCE) of 20.47%. When translated to sustainable fabrication, this strategy significantly boosts the PCE of large-area green-solvent-pro-
cessed OSC modules (19.3 cm?) from 13.87% to 15.79%, ranking it among the best-performing green-solvent-processed large-area OSC
modules (> 18 cm?). Beyond its impact on PCE enhancement, PDCC serves as a multifunctional additive to improve long-term stability
and exhibits strong universality across multiple material systems. This work establishes a promising approach for advancing sustainable

and scalable OSCs, paving the way for their commercialization.
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1 Introduction

Organic solar cells (OSCs) have emerged as a promising
next-generation photovoltaic technology, distinguished by
their mechanical flexibility, tunable spectral absorption,
and low environmental impact [1-14]. Recent advances
in materials design and device engineering have propelled
OSCs to power conversion efficiencies (PCEs) exceeding
20%, marking a critical transition toward commercializa-
tion [5-22]. However, researches about sustainable indus-
trial production of highly efficient large-area OSCs are
still lacking, primarily attributed to the significant chal-
lenge of maintaining uniform film-forming kinetics across
large areas. Therefore, it is urgent to develop innovative
strategies to regulate film formation processes, facilitat-
ing high-performance, stable, sustainable, and large-area
productions fabricated toward commercialization.
Controlling the self-assembly of organic photovoltaic
(OPV) materials has proven to be an effective strategy
for tailoring the film formation process toward highly
efficient and stable OSCs. Current approaches predomi-
nantly focus on molecular engineering, post-treatment
techniques, ternary, and layer-by-layer (LBL) strategies
[23-25]. For instance, Sun et al. developed three low-cost
PTQ-derivative donor polymers through synergistic ter-
nary copolymerization and side-chain engineering involv-
ing various benzothiadiazole (BT) units, enabling precise
modulation of molecular self-assembly behavior. Among
them, PTQ18, incorporating monofluorinated and mon-
oalkoxy-substituted BT moieties, demonstrated optimal
regulation of self-assembled morphology, leading to supe-
rior compatibility with Y-series non-fullerene acceptors
(NFAs). As aresult, PTQ18-based devices achieved a PCE
of 19.68%, outperforming those based on PTQ17 (17.04%)

and PTQ19 (18.50%) [26]. Likewise, Bo et al. has shown
that improving the intermolecular connectivity of NFAs
through molecular engineering is an effective strategy to
realize hierarchically supramolecular self-assembly of
NFAs [27]. This highlights the critical role of rational
molecular design in governing the self-assembly and ulti-
mately the performance of OSCs. Besides, device pro-
cessing optimization provides an alternative pathway for
regulating self-assembly morphology. For instance, Wang
et al. developed hybrid post-processing strategy (thermal
and solvent annealing) to achieving high-performance all-
small-molecule (ASM) OSCs via controlling self-assembly
active-layer morphology. Compared to w/o and thermal
treatment, hybrid post-processing can effectively achieve
face-on molecular orientation, resulting in more efficient
photon harvest and charge transport [28]. This approach
led to an outstanding PCE of 8.99% with enhanced fill fac-
tor (FF) from 68.62% to 72.21% [28]. Recently, Song et al.
introduced a trimer-induced pre-swelling (TIP) strategy
by synthesizing a twisted, three-dimensional star-shaped
trimer (BTT-Out) and integrating it with a LBL deposi-
tion technique. In this approach, BTT-Out is incorporated
into the buried D18 donor layer, enabling the fabrication
of thick-film OSCs. Owing to its unique molecular con-
figuration and spontaneous self-organization behavior, the
BTT-Out trimer effectively pre-swells the D18 network,
thereby promoting acceptor infiltration and accelerating
donor—acceptor (D/A) interface formation. As a result,
TIP-modified devices achieved a high PCE of 20.3% in
thin films and 18.8% in thick films, alongside enhanced
device stability, demonstrating the potential of this strat-
egy to advance the commercial scalability of OSCs [29].
Despite notable advancements in tuning the self-assem-
bly of active layers to improve device performance, most
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existing strategies remain intricate and lack compatibility
with sustainable, large-scale manufacturing processes. It
is worth mentioning that Y-series NFAs have emerged as
pivotal materials in advancing OSCs toward commerciali-
zation [30]. In our previous work, we demonstrated that
Y-series NFAs possess strong potential for regulating film-
formation dynamics, thereby enabling high-efficiency and
stable devices [31]. These findings underscore the urgent
need to develop innovative self-assembly modulation strat-
egies tailored specifically to Y-series NFAs—particularly
those that are scalable and compatible with sustainable
processing.

Herein, we report a simple yet effective strategy employ-
ing 3,5-dichloropyridine (PDCC) as a solid additive to
regulate the self-assembly of Y-series NFAs molecules
toward highly efficient, and stable OSCs. The incorpora-
tion of nitrogen atoms enables PDCC predominantly inter-
acts with acceptor molecules, assisting J-aggregation and
molecular crystallization. Under the drive of crystallization,
improving the self-assembly of Y-series NFAs during film
formation processes, result in well-define morphology and
ordered molecular packing, promoting efficient exciton dis-
sociation, charge transport, and suppressed recombination
losses. As a result, PDCC-driven self-assembly strategy
enables high-performance OSCs with a power conversion
efficiency (PCE) of 20.47%. When translated to sustainable
fabrication, this strategy significantly boosts the PCE of
large-area green-solvent-processed OSC modules (19.3 cm?)
from 13.87% to 15.79%, ranking it among the best-per-
forming green-solvent-processed large-area OSC modules
(> 18 cm?). Beyond its effectiveness in the PM6:BTP-eC9
system, PDCC-induced morphology control exhibits strong
universality across other material systems, highlighting its
broad applicability. Thus, this work establishes a promis-
ing approach for advancing industrial production of highly
efficient OSCs and sustainable, large-area modules, paving
the way for their commercialization.

2 Experimental Section
2.1 Materials
All reagents and solvents, unless otherwise specified, were

purchased from Energy Chemical, Tansoole, Suna Tech,
Aldrich, and JiangSu GE-Chem Biotech., Ltd. and were used
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without further purification. All materials are provided by
commercial suppliers: PM6, Y6, BTP-eC9, L8-BO, PNDIT-
F3N was purchased from Solarmer Energy Inc. The PDCC
was purchased from Macklin. PEDOT:PSS (Clevios P VP
Al 4083) was purchased from Xi’an Yuri Solar Co., Ltd.

2.2 Device Fabrication and Characterizations
2.2.1 Small-Area Device Fabrication

The device structures were ITO/PEDOT:PSS/Active layer/
PNDIT-F3N/Ag. ITO coated glass substrates were cleaned
with detergent water, deionized water, acetone, and isopropyl
alcohol in an ultrasonic bath sequentially for 15 min, and
further treated with UV exposure for 15 min in a UV-o0zone
chamber. A thin layer (ca. 30 nm) of PEDOT:PSS (Bayer
Baytron 4083) was first spin-coated on the substrates with
4000 rpm and baked at 120 °C for 10 min under ambient
conditions. The substrates were then transferred into a
nitrogen-filled glove box. The PM6:Y6, PM6:BTP-eC9,
PM6:L8-BO concentration was 16 mg mL~! with D:A ratio
of 1:1.2 (w/w) and PDCC 8 mg mL~! in chloroform (CF)
or o-xylene (0-XY) solution. The PM6:BTP-eC9 solution
needs heat stirring with 40 °C/2 h, and the substrate heat
treatment 80 °C/5 min (when 0-XY as solvent). After
spin-coating at 3000 rpm for 30s, the blend films were
thermal-annealed at 90 °C for 5 min. Then, PNDIT-F3N
as the electron transporting layer was spin-coated on the
active layer by 4000 rpm/30 s. Finally, the substrates were
transferred to a thermal evaporator, and top electrode was
evaporated at a pressure of 2x 107 Pa.

2.2.2 Large-Area Device Fabrication

The pre-deposited ITO substrate was scribed by a 1064 nm
nano-sec laser beam (2 W) to form an isolated ITO unites.
After cleaning, PEDOT:PSS layer, PM6:BTP-eC9 without
or with PDCC layer and PNDIT-F3N layer were sequentially
deposited onto ITO substrate in the same way as the small
area device. Next, the stacked layer was scribed by another
532 nm nano-sec laser beam (P2 scribing). Ag electrode
was thermally deposited under a pressure of 3.3x 10~ Pa.
P3 scribing (532 nm nano-sec laser beam) was carried out to
form a series of sub-cells. The geometric fill factor (GFF) of

@ Springer
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the module is 97.0%. The module area used to measure the
PCE was defined by the aperture mask as 19.3 cm?.

The external quantum efficiency (EQFE) was performed
using certified IPCE equipment (Enli Technology Co., Ltd.
RC-BASO04). The J-V curves were measured under AM 1.5
G (100 mW cm~2) (Enli Technology Co., Ltd. SS-X50R).
The J-V measurement signals were recorded by a Keithley
2400 source-measure unit.

3 Results and Discussion

The molecular structures of the polymer donor (PM6), non-
fullerene acceptor (BTP-eC9), solid additive (PDCC), along
with the electrostatic potential (ESP) distribution of PDCC
and binding energy (AE,) calculations, are illustrated in
Figs. la and S1. As we can see, the PDCC exhibits a nega-
tive ESP distribution attributed to the high electronegativity
of nitrogen, and BTP-eC9 with positive ESP distribution
(BTP core units). Based on the theory of opposite polarity
attraction, it is expected that there is a strong intermolecu-
lar interaction between PDCC and the BTP core units [32].
Furthermore, the AE, calculations reveal that PDCC-treated
BTP-eC9 exhibits a higher AE, than PM6, indicating that
PDCC preferentially interacts with the acceptor molecules
[33], in line with the absorption results (Figs. S2 and S3).
Generally, rational manipulation of intermolecular forces
enables orderly aggregation behaviors, yielding enhanced
crystallinity. To prove self-organization process of BTP-
eC9 incorporated PDCC, temperature-dependent absorp-
tion was performed. As seen from Fig. 1b, d, both films
show two distinct peaks: J-aggregation (0-0 peak)/mono-
mer (0-1 peak) and progressive red-shift absorption with
increasing temperature. In particular, the PDCC-processed
film demonstrates a stronger red-shift along with increased
peak intensity compared with the control, primarily attrib-
uted to the solid-to-gas phase transition of PDCC, which
provides sufficient space for acceptor self-assembly, thereby
enhancing J-aggregation of BTP-eC9. As evidenced by an
increase in the Ay—y/Ay— ratio from 1.18 to 1.42 (Fig. 1d,
e), a hallmark of efficiently self-assembly of acceptors and
improved molecular ordering [34—37]. In addition, temper-
ature-dependent photoluminescence (PL) spectra (Fig. 1f,
g) further support this hypothesis. As expected, both films
exhibit thermally responsive PL features, showing increas-
ingly aggregated states under thermal annealing from 25

© The authors

to 100 °C. Notably, the PDCC-treated BTP-eC9 results in
more distinctly reduced intensity of PL spectrum, suggest-
ing self-assembly and ordered aggregation happened. These
results indicate that the incorporation of PDCC can enable
acceptors with efficient self-assembly for ordered molecule
stacking. Importantly, thermogravimetric analysis (TGA)
and Fourier-transform infrared spectroscopy (FTIR) results
(Figs. S4 and S5) confirm that the PDCC remain in films
during spin-coating process, proving the self-assembly
happen during thermal annealing. The synergistic effect of
the PDCC-acceptor interactions and the transient spatial
reorganization during PDCC volatilization promotes self-
organization for optimizing film formation dynamics and
molecular stacking, leading to well-structured and phase
separation and active layer morphology.

To investigate the photovoltaic performance of devices
treated with PDCC, a standard architecture of ITO/
PEDOT:PSS/active layer/PNDIT-F3N/Ag was utilized,
with detailed experimental procedures and device optimi-
zation outlined in the Supporting Information (Table S1).
The energy levels of materials used in this work present in
Fig. 2a and are well-matched across each layer. Figure 2b
depicts the current density—voltage (J—V) characteristics of
OSCs based on PM6:BTP-eC9 without and with PDCC. The
control device (PM6:BTP-eC9) achieved a PCE of 18.01%,
with a voltage (V) of 867.6 mV, a current density (Jgc)
of 28.58 mA c¢cm~2, and a FF of 72.64%. Remarkably, the
PDCC-treated device reached a higher PCE of 19.72%,
with significantly improved FF and Jg- of 78.81% and
28.96 mA cm™2 (Table 1). The same tendency exhibited in
PM6:L8-BO (18.23% vs. 20.47%) and PM6:Y6 (16.98%
vs. 18.13%) systems with remarkable improvements in FF
(Tables 1 and S2, Figs. S6 and S8), reflecting excellent uni-
versality. The external quantum efficiency (EQE) spectra of
the OSCs are illustrated in Fig. 2¢c. In the wavelength range
of 450 to 850 nm, the EQE of the PDCC-treated device
slightly surpassed that of the control device, leading to a
higher Jgc. The Jyc values derived from the EQE spectra
were 27.80/28.17 mA cm™? for the control/PDCC-treated
PM6:BTP-eC9 OSCs, respectively, consistent with the Jgc
values measured from the solar simulator (Table 1). The
same tendency is also shown in other systems (Fig. S7 and
Table S2). Device stability is as important as efficiency, to
explore the impact of the PDCC on the device stability, the
photo and thermal stability were systematically investigated.
The light stability was recorded at 100 mW cm™2 in room
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Fig. 1 a Chemical structures of PM6, BTP-eC9, PDCC, ESP distribution and lowest-energy conformations calculated binding energies. Tem-
perature-dependent UV—vis absorption of b BTP-eC9 and ¢ PDCC-treated BTP-eC9 films. UV—-vis absorption of d BTP-eC9 and e PDCC-
treated BTP-eC9. Temperature-dependent PL of f BTP-eC9 and g PDCC-treated BTP-eC9 films

temperature with N, atmosphere. As shown in Fig. 2g, the
PDCC-treated devices with better light stability, the PCE of
control devices maintained 60.2% of the initial PCE were
observed after 600 h, which is lower than that of devices pro-
cessed with PDCC (maintaining 72.9% of the initial PCE).
In addition, the PDCC-treated devices have better thermal
stability (Fig. S9). These results highlight the significant
potential of PDCC incorporation in enhancing efficiency and
stability, attributed to effectively self-assembly of acceptors.

In addition, PDCC-driven self-assembly strategy also has
great potential in fabricating green-solvent-processed OSCs
and large-area modules. Figure 2d shows the J-V curves
and PCE distribution of control and PDCC-treated devices
processed with 0-XY solvent. The PDCC-treated device
significantly enhances the PCE from 17.14% to 18.52%,
with improved FF (72.55% vs. 77.49%) and Jg (27.76 vs.
28.21 mA cm™?) (Table 2), the optimization process listed
in Table S3. Similarly, the PDCC incorporated has excellent
universality in other systems prepared with o-XY solvent
(Table S4). Scaling up active layer fabrication presents a
major morphological control challenge, due to CF with high

SHANGHAI JIAO TONG UNIVERSITY PRESS

volatility. Thus, we employed a higher-boiling and green
solvent (0-XY) to fabricate large-scale OPV modules, which
can shorten progress in industrial scalability. As shown in
Fig. 2h, a well-optimized PDCC-treated module comprises
seven sub-cells in series with an active area of 19.3 cm? and
a geometric fill factor (GFF) of 97.0%. The encapsulated
large-area module is presented in Fig. 2i, optimization pro-
cess is presented in Tables S5 and S6. Interestingly, a higher
PCE of 15.79% was achieved, induced with PDCC in 0-XY
solvent, compared with control (13.87%) and CF as solvent
(15.56%), shown in Figs. 2g, h and S14. Primarily incorpo-
rating PDCC can enhance the J-aggregation of acceptors,
resulting in efficient self-assembly during the preparation of
large-area modules, which is conducive to obtaining high-
quality active layers. Particularly for high-boiling-point
solvents, the regulation of molecular self-assembly proves
more effective in large-scale fabrication processes. Figure 2f
summarizes the PCE of OSCs modules based on CF and
0-XY as solvents with an area over 18 cm? [38-57]. It is
worth noting that the PDCC-treated large-area modules have

@ Springer
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high efficiency, which confirm great potential of PDCC solid
additive for fabricating large-area modules.

To further gain insight into the effect of PDCC on the
self-assembly behavior of Y-series NFAs molecules, the
in situ absorption spectroscopy was employed to monitor

the film formation process from solution to thin film state
under PDCC treatment, corresponding 2D mapping images
shown in Fig. 3a, b. By tracking the evolution of peak
absorption wavelengths during spin-coating (Fig. 3c) can
provide insights into molecular aggregation dynamics

Table 1 Summary of photovoltaic performance of control and PDCC-treated OSCs under simulated AM 1.5G illumination (100 mW cm™2)

Condition Voc (mV) FF (%) Jsc (MA cm™) DL YPCE (%)

(mA cm™?)
PM6:BTP-eC9 867.6 (863.8+3.7)  72.64 (71.58+0.54) 28.58 (28.09+0.35) 27.80 18.01 (17.85+0.14)
PM6:BTP-eC9 (PDCC) 864.1 (861.5+2.4)  78.81(77.65+0.92) 28.96 (28.61 +0.26) 28.17 19.72 (19.56+0.16)
PM6:L8-BO 912.8 (911.3+1.0)  73.25(72.23+0.84) 27.26 (27.01+0.17) 26.29 18.23 (18.01+0.14)
PM6:L8-BO (PDCC) 906.8 (905.3+1.0) 82.16 (81.68+0.38) 27.48 (27.37+0.13) 26.55 20.47 (20.24+0.11)

“The Jy calculated from the integrated EQE spectra. ? Statistical data obtained from at least 15 devices
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in blend processed with PDCC. As shown in Fig. 3c, the
absorption of blend treated with PDCC initially increases
and subsequently decreases (0.2-0.4 s), attributing to facili-
tated molecular self-assembly treated with PDCC, which is
benefit to achieve ordered aggregation. In addition, a pro-
nounced redshift was observed in both blends (Fig. 3d, e),
which can be attributed to molecular stacking resulting from
the phase transition from solution to solid state. Notably,
the PDCC-treated blend demonstrated prolonged evolu-
tion toward absorption saturation (Fig. 3e), indicative of an
extended and controlled self-assembly process. Furthermore,
the in situ glow discharge optical emission spectroscopy
(GD-OES) is employed to track the positional changes of
Sulfur (S) upon thermal annealing [58]. Since both of donor
and acceptor contain S element, the initial S distribution
reflects the vertical arrangement of blend film. Moreover,
the donor-rich bottom interface exhibits substantially higher
S content than the acceptor-dominated top interface, this
observation reflects the initial aggregation state of donor and
acceptor molecules during the early stages of film formation.
As shown in 2D mapping images (Fig. 3f, g), the amount of
S element in the PDCC-treated blend is apparently less than
that of control at the beginning annealing of 0-1 s. With the
annealing time increasing, the distribution of S elements in
PDCC-treated film changes slowly (Fig. 31), while the con-
trol film changes abruptly (Fig. 3h), indicating slower film
growth and improved donor/acceptor self-assembly. These
results indicate that the PDCC-treated blend film can achieve
ordered molecular stacking under thermal annealing, owing
to the self-assembly behavior of molecules. These in situ
results demonstrate that the incorporation of PDCC pro-
motes molecular self-assembly, facilitating the formation of

well-ordered molecular packing. The relevant film-forming
mechanism diagram is shown in Fig. 3i.

The active layer morphology, donor/acceptor phase
separation, and molecular aggregation optimized through
PDCC-driven self-assembly strategy were examined using
atomic force microscopy (AFM). As shown in AFM images
(Fig. 4a—d), the PDCC-treated blend film exhibited a higher
root mean square roughness (Rq) of 1.37 nm than the con-
trol (Rq=1.31 nm), indicating that PDCC incorporation
can finely adjust molecular aggregation. Furthermore, the
PDCC-induced blend film displayed more distinct fiber and
phase separation than the control film (Fig. 4c, d), facilitat-
ing efficient charge transport. The crystalline and molecular
packing of the PDCC-treated films, assessed by Grazing-
incidence wide-angle X-ray scattering (GIWAXS), are sum-
marized in Fig. 4e, f and Table S7. Both blends showed
similar molecular orientations, but the PDCC-treated films
exhibited more pronounced diffraction peaks than the con-
trol films. The n-x stacking peak (010) at 1.773 A~'in the
q, direction for the PDCC-treated PM6:BTP-eC9 was more
prominent than in the control blend, suggesting that PDCC
promotes ordered molecular stacking. Additionally, the
PDCC incorporation resulted in a larger coherence length
(CCL) of 20.74 A and smaller d-spacing (3.54 A) compared
to the control sample with a CCL of 18.83 A and d-spacing
of 3.55 A, indicating improved molecular crystallinity and
stacking. Enhanced crystallinity and more ordered stack-
ing contribute to long-term device stability and efficiently
charge transport in PDCC-treated blends.

Grazing incident small angle X-ray scattering (GISAXS)
was used to assess D/A phase separation. The corresponding
IP intensity plots and fitting results based on the Debye-
Anderson-Brumberger (DAB) model and fractal-like

Table 2 Summary of photovoltaic performance of green-solvent-processed control and PDCC-treated PM6:BTP-eC9 OSCs under simulated

AM 1.5G illumination (100 mW c¢m™2)

Condition Vo (mV) FF (%) Jsc (MA cm™?) VI (mA  YPCE (%)
cm™?)
Control (0.1 cm?) 851.0 (849.8 +1.1) 72.55 (71.67 +0.74) 27.76 (27.18 +0.69) 27.18 17.14 (17.00+0.12)
PDCC (0.1 cm?) 846.9 (845.3+1.2) 77.49 (76.77 +0.63) 28.21 (27.61+0.59) 27.67 18.52(18.31+0.18)
Condition Voc (V) FF (%) Isc (MA) J5c™ (mA YPCE (%)
-2
cm™?)

Control (19.3 cm?)
PDCC (19.3 cm?)

6.12 (6.06+0.05)
6.04 (5.93+0.08)

68.04 (66.17 +1.63)
72.20 (70.34+1.70)

64.53 (62.31+2.12)
70.26 (68.20+2.07)

13.87 (13.58+0.16)
15.79 (15.56+0.19)

@ The Jg calculated from the integrated EQE spectra. ¥ Statistical data obtained from at least 15 devices
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Fig. 3 aand b In situ UV-Vis absorption line-cut color images. ¢ Function of spin-coating time. d Line-cut profiles of the corresponding in situ
UV-Vis absorption 2D data. e and f In situ GD-OES of sulfur element distribution upon thermal annealing color images. g and h Line-cut pro-
files of the corresponding in situ GD-OES 2D data of control and PDCC-treated blend films. i Schematic diagram of the film-formation mecha-

nism of Y-series NFAs self-assembly induced by PDCC

network are shown in Fig. 4 g, h. X}, refers to the inter-
mixing D/A domain size, and 2R, represents the average
pure domain size of the acceptor phase for the control and
PDCC-treated PM6:BTP-eC9 samples. The calculated
results for Xp,p and 2R, are summarized in Table S5. The
Xpag and 2R, of PDCC-treated blend films are 39 nm and
11 nm, larger than the control blend film (Xp,p ~ 31 nm and
2R, ~ 9 nm), indicating improved D/A phase separation.
These results are consistent with the AFM and GIWAXS
study, which is benefit to charge transport for reaching a
highly efficient device.

The exciton dynamics of blend films without and with
PDCC were measured using time-resolved photolumines-
cence (TRPL) under pulsed photoexcitation at 720 nm. The
PL quenching efficiency (PLQE) was evaluated. The cor-
responding normalized TRPL of the neat and blend films
are shown in Fig. 5a. The PDCC incorporation reduced the

© The authors

PL lifetime of blend films from 46.4 to 37.2 ps, resulting in
enhanced PL quenching efficiency (PLQE) from 85.0% to
91.8%. Here, PLQE is calculated as (1-7,je,q/Tpea), Where
Tpiend a0d T ., are the lifetimes of the blend and neat mate-
rials [31, 59]. These results align with the improved Jg,
indicating PDCC’s positive impact on exciton dissocia-
tion. Subsequently, the carrier mobilities were extracted
from the photo-induced charge-carrier extraction in lin-
early increasing voltage (photo-CELIV) measurements
(Fig. 5b). The control and PDCC-treated devices exhibited
the carrier mobilities of 7.32 and 9.58 x 10™* cm? V! s~
respectively. In addition, charge carrier transport prop-
erties were investigated using the space charge limited
current (SCLC) method, with results shown in Figs. S10
and S11. The PDCC-treated samples demonstrated higher
electron (6.06 x 107 cm* V™! s™!) and hole (2.05x 10~
cm? V~! s71) mobilities compared to the control device

https://doi.org/10.1007/s40820-025-02021-7
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with electron mobility of 4.41 x 10~ cm? V~! s~! and hole
mobility of 1.68 x 1073 ¢cm? V™! 7!, Moreover, the hole/
electron mobility ratio of the PDCC-induced sample is
3.38, closer to 1 compared to the control (3.81). Larger
and more balanced mobilities in PDCC-treated devices
result in higher FF.

Transient photovoltage/photovoltaic (TPV/TPC) meas-
urements were employed to analysis charge recombination
dynamics and carrier extraction across active layers. As
seen from the TPC (Fig. 5¢), the charge extraction times for
control and PDCC-treated devices are 0.217 and 0.166 ps,
respectively, indicating more efficient charge extraction in
PDCC-treated devices. Carrier lifetimes (t) under open-
circuit conditions (Fig. 5d) were extracted from TPV decay
dynamics using simple mono-exponential fits. The device
with PDCC exhibits a longer t value of 0.683 ps compared
to the control device (t=0.244 ps), resulting in less recom-
bination in PDCC-treated devices. Femtosecond transient

4.0nm

RMS: 1:37:nm° = = &

Height Sensor

Control With PDCC

0 0.5 1
a, A"

1.5 2
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With PDCC

Intensity (a.u.)

1:2
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4.0nm

-4.0 nm

absorption (fs-TA) spectroscopy further probed charge trans-
fer in control and PDCC-treated blend films, and the TA
spectra were measured with pump at 780 nm. The 2D spec-
trum and TAS profiles at indicated delay times are shown
in Fig. S13. As we can see, the ground-state bleach (GSB)
signals of BTP-eC9 appear at~820 nm, while the excited-
state absorption (ESA) features are observed near 920 nm
in the decay traces. It is noting that with the decay of BTP-
eC9 bleach peak (820 nm), the PM6 GSB peak at around
580 nm rises, suggesting the hole-transfer process from
BTP-eC9 to PM6 (Fig. Se-h). The fast/slow components
(t, and 7,) were extracted by fitting a double exponential
function to the kinetic signals around 580 nm. The result-
ing t,/7, values for control and PDCC-treated blends were
fitted to be 0.64/14.01 and 0.49/11.19 ps, shown in Fig. 5i.
The reduced 7, with the incorporation of PDCC indicates
enhanced donor—acceptor interactions, thus facilitating
efficient exciton dissociation and consequently enabling a
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Fig. 4 a-d AFM height and phase images of control and PDCC-treated samples. e and f 2D GIWAXS, g and h 2D GISAXS images of control
and PDCC-treated blend films. i Line-cut profiles of the corresponding two-dimensional GIWAXS data, j GISAXS intensity profiles (symbols)
and the best fitting (solid lines) along the in-plane direction of control and PDCC-treated blend films
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higher Jgc in the PDCC-treated devices [60—63]. The shorter
T, upon enhanced crystallization indicates higher diffusion
constants, linked to better molecular stacking in line with
GIWAXS results. These findings demonstrate that the incor-
poration of PDCC facilitates both exciton dissociation and
diffusion processes, thereby accounting for enhanced Jg
and FF.

4 Conclusions

In summary, we have successfully demonstrated a PDCC-
driven self-assembly strategy that effectively regulates the
self-assembly of Y-series NFAs during solvent evaporation

and film formation process. This approach significantly
enhances the performance and stability of OSCs, increas-
ing the PCE of PM6:BTP-eC9 devices from 18.01% to
19.72% and PM6:L8-BO devices from 18.23% to 20.47%,
while simultaneously improving light and thermal stabil-
ity. Notably, when translated to sustainable fabrication,
this strategy significantly boosts the PCE of large-area
green-solvent-processed OSC modules (19.3 ¢cm?) from
13.87% to 15.79%, ranking it among the best-perform-
ing green-solvent-processed large-area OSC modules
(> 18 cm?). PDCC serves as a multifunctional additive
in optimizing both efficiency and stability through three
key mechanisms: (i) stronger intermolecular interactions

a C e
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Fig. 5 a TRPL kinetics of BTP-eC9 neat and blend films of control and PDCC-treated samples tracked at the peak position of the PL, and fits to
the experimental data using a bi-exponential decay (solid line). b photo-CELIV curves, ¢ TPC and d TPV, e and f 2D TA spectra, g and h decay
dynamics probed at different wavelengths, i decay fitting time of control and PDCC-treated blends

© The authors
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between PDCC and NFAs, promoting J-aggregation of the
acceptor phase during film formation, thereby enhancing
Jgcs (ii) more ordered molecule packing and improved
phase-separation, leading to enhanced charge transport,
suppressed recombination and improved FF; (iii) enhanced
crystallinity and a more uniform self-assembly process,
resulting in a stable phase-separation morphology, cru-
cial for long-term device stability. This work establishes a
promising strategy for advancing the industrial production
of high-efficiency and stable OSCs, paving the way for
their commercialization on a larger scale.
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