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HIGHLIGHTS

•	 The self-assembly behavior of Y-series non-fullerene acceptors and film formation dynamics are elucidated via in situ characterization, 
providing critical insights for sustainable and scalable organic solar cells (OSCs).

•	 A 3,5-dichloropyridine-assisted self-assembly strategy enables 20.47% efficiency for small-area OSCs and 15.79% for sustainable 
organic photovoltaic modules (19.3 cm2).

•	 This versatile self-assembly control approach is broadly applicable to various material systems, paving the way toward the commer-
cialization of OSC.

ABSTRACT  Sustainability and scalability remain critical hurdles for 
the commercialization of organic solar cells (OSCs). However, address-
ing both poses challenge. Herein, we introduce a simple yet effective 
strategy utilizing 3,5-dichloropyridine (PDCC) as a solid additive to 
fine-tune the self-assembly behavior of Y-series non-fullerene acceptors 
(NFAs) to tackle the upscaling limitations in green-solvent-processed 
OSCs. PDCC predominantly interacts with Y-series NFAs, facilitat-
ing molecular crystallization and thereby driving the self-assembly of 
Y-series NFAs during film-forming dynamics, leading to more uniform 
active layers with improved molecular packing and reduced charge 
recombination. As a result, PDCC-driven self-assembly strategy enables high-performance OSCs with a power conversion efficiency 
(PCE) of 20.47%. When translated to sustainable fabrication, this strategy significantly boosts the PCE of large-area green-solvent-pro-
cessed OSC modules (19.3 cm2) from 13.87% to 15.79%, ranking it among the best-performing green-solvent-processed large-area OSC 
modules (> 18 cm2). Beyond its impact on PCE enhancement, PDCC serves as a multifunctional additive to improve long-term stability 
and exhibits strong universality across multiple material systems. This work establishes a promising approach for advancing sustainable 
and scalable OSCs, paving the way for their commercialization.

KEYWORDS  Organic solar cells; Self-assembly control; Large-area modules

 *	 Hua Tang, hua.tang@fau.de; Duu‑Jong Lee, tuclee@cityu.edu.hk; Hsien‑Yi Hsu, sam.hyhsu@cityu.edu.hk
1	 Department of Materials Science and Engineering, School of Energy and Environment, Centre for Functional Photonics (CFP), City University 

of Hong Kong, Kowloon Tong, Hong Kong, People’s Republic of China
2	 Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, People’s Republic of China
3	 Institute of Materials for Electronics and Energy Technology (I‑MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 

91058 Erlangen, Germany
4	 Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058 Erlangen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-025-02021-7&domain=pdf


	 Nano-Micro Lett.          (2026) 18:182   182   Page 2 of 14

https://doi.org/10.1007/s40820-025-02021-7© The authors

1  Introduction

Organic solar cells (OSCs) have emerged as a promising 
next-generation photovoltaic technology, distinguished by 
their mechanical flexibility, tunable spectral absorption, 
and low environmental impact [1–14]. Recent advances 
in materials design and device engineering have propelled 
OSCs to power conversion efficiencies (PCEs) exceeding 
20%, marking a critical transition toward commercializa-
tion [5–22]. However, researches about sustainable indus-
trial production of highly efficient large-area OSCs are 
still lacking, primarily attributed to the significant chal-
lenge of maintaining uniform film-forming kinetics across 
large areas. Therefore, it is urgent to develop innovative 
strategies to regulate film formation processes, facilitat-
ing high-performance, stable, sustainable, and large-area 
productions fabricated toward commercialization.

Controlling the self-assembly of organic photovoltaic 
(OPV) materials has proven to be an effective strategy 
for tailoring the film formation process toward highly 
efficient and stable OSCs. Current approaches predomi-
nantly focus on molecular engineering, post-treatment 
techniques, ternary, and layer-by-layer (LBL) strategies 
[23–25]. For instance, Sun et al. developed three low-cost 
PTQ-derivative donor polymers through synergistic ter-
nary copolymerization and side-chain engineering involv-
ing various benzothiadiazole (BT) units, enabling precise 
modulation of molecular self-assembly behavior. Among 
them, PTQ18, incorporating monofluorinated and mon-
oalkoxy-substituted BT moieties, demonstrated optimal 
regulation of self-assembled morphology, leading to supe-
rior compatibility with Y-series non-fullerene acceptors 
(NFAs). As a result, PTQ18-based devices achieved a PCE 
of 19.68%, outperforming those based on PTQ17 (17.04%) 

and PTQ19 (18.50%) [26]. Likewise, Bo et al. has shown 
that improving the intermolecular connectivity of NFAs 
through molecular engineering is an effective strategy to 
realize hierarchically supramolecular self-assembly of 
NFAs [27]. This highlights the critical role of rational 
molecular design in governing the self-assembly and ulti-
mately the performance of OSCs. Besides, device pro-
cessing optimization provides an alternative pathway for 
regulating self-assembly morphology. For instance, Wang 
et al. developed hybrid post-processing strategy (thermal 
and solvent annealing) to achieving high-performance all-
small-molecule (ASM) OSCs via controlling self-assembly 
active-layer morphology. Compared to w/o and thermal 
treatment, hybrid post-processing can effectively achieve 
face-on molecular orientation, resulting in more efficient 
photon harvest and charge transport [28]. This approach 
led to an outstanding PCE of 8.99% with enhanced fill fac-
tor (FF) from 68.62% to 72.21% [28]. Recently, Song et al. 
introduced a trimer-induced pre-swelling (TIP) strategy 
by synthesizing a twisted, three-dimensional star-shaped 
trimer (BTT-Out) and integrating it with a LBL deposi-
tion technique. In this approach, BTT-Out is incorporated 
into the buried D18 donor layer, enabling the fabrication 
of thick-film OSCs. Owing to its unique molecular con-
figuration and spontaneous self-organization behavior, the 
BTT-Out trimer effectively pre-swells the D18 network, 
thereby promoting acceptor infiltration and accelerating 
donor–acceptor (D/A) interface formation. As a result, 
TIP-modified devices achieved a high PCE of 20.3% in 
thin films and 18.8% in thick films, alongside enhanced 
device stability, demonstrating the potential of this strat-
egy to advance the commercial scalability of OSCs [29]. 
Despite notable advancements in tuning the self-assem-
bly of active layers to improve device performance, most 
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existing strategies remain intricate and lack compatibility 
with sustainable, large-scale manufacturing processes. It 
is worth mentioning that Y-series NFAs have emerged as 
pivotal materials in advancing OSCs toward commerciali-
zation [30]. In our previous work, we demonstrated that 
Y-series NFAs possess strong potential for regulating film-
formation dynamics, thereby enabling high-efficiency and 
stable devices [31]. These findings underscore the urgent 
need to develop innovative self-assembly modulation strat-
egies tailored specifically to Y-series NFAs—particularly 
those that are scalable and compatible with sustainable 
processing.

Herein, we report a simple yet effective strategy employ-
ing 3,5-dichloropyridine (PDCC) as a solid additive to 
regulate the self-assembly of Y-series NFAs molecules 
toward highly efficient, and stable OSCs. The incorpora-
tion of nitrogen atoms enables PDCC predominantly inter-
acts with acceptor molecules, assisting J-aggregation and 
molecular crystallization. Under the drive of crystallization, 
improving the self-assembly of Y-series NFAs during film 
formation processes, result in well-define morphology and 
ordered molecular packing, promoting efficient exciton dis-
sociation, charge transport, and suppressed recombination 
losses. As a result, PDCC-driven self-assembly strategy 
enables high-performance OSCs with a power conversion 
efficiency (PCE) of 20.47%. When translated to sustainable 
fabrication, this strategy significantly boosts the PCE of 
large-area green-solvent-processed OSC modules (19.3 cm2) 
from 13.87% to 15.79%, ranking it among the best-per-
forming green-solvent-processed large-area OSC modules 
(> 18 cm2). Beyond its effectiveness in the PM6:BTP-eC9 
system, PDCC-induced morphology control exhibits strong 
universality across other material systems, highlighting its 
broad applicability. Thus, this work establishes a promis-
ing approach for advancing industrial production of highly 
efficient OSCs and sustainable, large-area modules, paving 
the way for their commercialization.

2 � Experimental Section

2.1 � Materials

All reagents and solvents, unless otherwise specified, were 
purchased from Energy Chemical, Tansoole, Suna Tech, 
Aldrich, and JiangSu GE-Chem Biotech., Ltd. and were used 

without further purification. All materials are provided by 
commercial suppliers: PM6, Y6, BTP-eC9, L8-BO, PNDIT-
F3N was purchased from Solarmer Energy Inc. The PDCC 
was purchased from Macklin. PEDOT:PSS (Clevios P VP 
AI. 4083) was purchased from Xi’an Yuri Solar Co., Ltd.

2.2 � Device Fabrication and Characterizations

2.2.1 � Small‑Area Device Fabrication

The device structures were ITO/PEDOT:PSS/Active layer/
PNDIT-F3N/Ag. ITO coated glass substrates were cleaned 
with detergent water, deionized water, acetone, and isopropyl 
alcohol in an ultrasonic bath sequentially for 15 min, and 
further treated with UV exposure for 15 min in a UV-ozone 
chamber. A thin layer (ca. 30 nm) of PEDOT:PSS (Bayer 
Baytron 4083) was first spin-coated on the substrates with 
4000 rpm and baked at 120 °C for 10 min under ambient 
conditions. The substrates were then transferred into a 
nitrogen-filled glove box. The PM6:Y6, PM6:BTP-eC9, 
PM6:L8-BO concentration was 16 mg mL−1 with D:A ratio 
of 1:1.2 (w/w) and PDCC 8 mg mL−1 in chloroform (CF) 
or o-xylene (o-XY) solution. The PM6:BTP-eC9 solution 
needs heat stirring with 40 °C/2 h, and the substrate heat 
treatment 80  °C/5 min (when o-XY as solvent). After 
spin-coating at 3000 rpm for 30 s, the blend films were 
thermal-annealed at 90 °C for 5 min. Then, PNDIT-F3N 
as the electron transporting layer was spin-coated on the 
active layer by 4000 rpm/30 s. Finally, the substrates were 
transferred to a thermal evaporator, and top electrode was 
evaporated at a pressure of 2 × 10–5 Pa.

2.2.2 � Large‑Area Device Fabrication

The pre-deposited ITO substrate was scribed by a 1064 nm 
nano-sec laser beam (2 W) to form an isolated ITO unites. 
After cleaning, PEDOT:PSS layer, PM6:BTP-eC9 without 
or with PDCC layer and PNDIT-F3N layer were sequentially 
deposited onto ITO substrate in the same way as the small 
area device. Next, the stacked layer was scribed by another 
532 nm nano-sec laser beam (P2 scribing). Ag electrode 
was thermally deposited under a pressure of 3.3 × 10−4 Pa. 
P3 scribing (532 nm nano-sec laser beam) was carried out to 
form a series of sub-cells. The geometric fill factor (GFF) of 
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the module is 97.0%. The module area used to measure the 
PCE was defined by the aperture mask as 19.3 cm2.

The external quantum efficiency (EQE) was performed 
using certified IPCE equipment (Enli Technology Co., Ltd. 
RC-BAS04). The J-V curves were measured under AM 1.5 
G (100 mW cm−2) (Enli Technology Co., Ltd. SS-X50R). 
The J-V measurement signals were recorded by a Keithley 
2400 source-measure unit.

3 � Results and Discussion

The molecular structures of the polymer donor (PM6), non-
fullerene acceptor (BTP-eC9), solid additive (PDCC), along 
with the electrostatic potential (ESP) distribution of PDCC 
and binding energy (ΔEb) calculations, are illustrated in 
Figs. 1a and S1. As we can see, the PDCC exhibits a nega-
tive ESP distribution attributed to the high electronegativity 
of nitrogen, and BTP-eC9 with positive ESP distribution 
(BTP core units). Based on the theory of opposite polarity 
attraction, it is expected that there is a strong intermolecu-
lar interaction between PDCC and the BTP core units [32]. 
Furthermore, the ΔEb calculations reveal that PDCC-treated 
BTP-eC9 exhibits a higher ΔEb than PM6, indicating that 
PDCC preferentially interacts with the acceptor molecules 
[33], in line with the absorption results (Figs. S2 and S3). 
Generally, rational manipulation of intermolecular forces 
enables orderly aggregation behaviors, yielding enhanced 
crystallinity. To prove self-organization process of BTP-
eC9 incorporated PDCC, temperature-dependent absorp-
tion was performed. As seen from Fig. 1b, d, both films 
show two distinct peaks: J-aggregation (0–0 peak)/mono-
mer (0–1 peak) and progressive red-shift absorption with 
increasing temperature. In particular, the PDCC-processed 
film demonstrates a stronger red-shift along with increased 
peak intensity compared with the control, primarily attrib-
uted to the solid-to-gas phase transition of PDCC, which 
provides sufficient space for acceptor self-assembly, thereby 
enhancing J-aggregation of BTP-eC9. As evidenced by an 
increase in the A₀–₀/A₀–₁ ratio from 1.18 to 1.42 (Fig. 1d, 
e), a hallmark of efficiently self-assembly of acceptors and 
improved molecular ordering [34–37]. In addition, temper-
ature-dependent photoluminescence (PL) spectra (Fig. 1f, 
g) further support this hypothesis. As expected, both films 
exhibit thermally responsive PL features, showing increas-
ingly aggregated states under thermal annealing from 25 

to 100 °C. Notably, the PDCC-treated BTP-eC9 results in 
more distinctly reduced intensity of PL spectrum, suggest-
ing self-assembly and ordered aggregation happened. These 
results indicate that the incorporation of PDCC can enable 
acceptors with efficient self-assembly for ordered molecule 
stacking. Importantly, thermogravimetric analysis (TGA) 
and Fourier-transform infrared spectroscopy (FTIR) results 
(Figs. S4 and S5) confirm that the PDCC remain in films 
during spin-coating process, proving the self-assembly 
happen during thermal annealing. The synergistic effect of 
the PDCC–acceptor interactions and the transient spatial 
reorganization during PDCC volatilization promotes self-
organization for optimizing film formation dynamics and 
molecular stacking, leading to well-structured and phase 
separation and active layer morphology.

To investigate the photovoltaic performance of devices 
treated with PDCC, a standard architecture of ITO/
PEDOT:PSS/active layer/PNDIT-F3N/Ag was utilized, 
with detailed experimental procedures and device optimi-
zation outlined in the Supporting Information (Table S1). 
The energy levels of materials used in this work present in 
Fig. 2a and are well-matched across each layer. Figure 2b 
depicts the current density–voltage (J–V) characteristics of 
OSCs based on PM6:BTP-eC9 without and with PDCC. The 
control device (PM6:BTP-eC9) achieved a PCE of 18.01%, 
with a voltage (VOC) of 867.6 mV, a current density (JSC) 
of 28.58 mA cm−2, and a FF of 72.64%. Remarkably, the 
PDCC-treated device reached a higher PCE of 19.72%, 
with significantly improved FF and JSC of 78.81% and 
28.96 mA cm−2 (Table 1). The same tendency exhibited in 
PM6:L8-BO (18.23% vs. 20.47%) and PM6:Y6 (16.98% 
vs. 18.13%) systems with remarkable improvements in FF 
(Tables 1 and S2, Figs. S6 and S8), reflecting excellent uni-
versality. The external quantum efficiency (EQE) spectra of 
the OSCs are illustrated in Fig. 2c. In the wavelength range 
of 450 to 850 nm, the EQE of the PDCC-treated device 
slightly surpassed that of the control device, leading to a 
higher JSC. The JSC values derived from the EQE spectra 
were 27.80/28.17 mA cm−2 for the control/PDCC-treated 
PM6:BTP-eC9 OSCs, respectively, consistent with the JSC 
values measured from the solar simulator (Table 1). The 
same tendency is also shown in other systems (Fig. S7 and 
Table S2). Device stability is as important as efficiency, to 
explore the impact of the PDCC on the device stability, the 
photo and thermal stability were systematically investigated. 
The light stability was recorded at 100 mW cm−2 in room 
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temperature with N2 atmosphere. As shown in Fig. 2g, the 
PDCC-treated devices with better light stability, the PCE of 
control devices maintained 60.2% of the initial PCE were 
observed after 600 h, which is lower than that of devices pro-
cessed with PDCC (maintaining 72.9% of the initial PCE). 
In addition, the PDCC-treated devices have better thermal 
stability (Fig. S9). These results highlight the significant 
potential of PDCC incorporation in enhancing efficiency and 
stability, attributed to effectively self-assembly of acceptors.

In addition, PDCC-driven self-assembly strategy also has 
great potential in fabricating green-solvent-processed OSCs 
and large-area modules. Figure 2d shows the J-V curves 
and PCE distribution of control and PDCC-treated devices 
processed with o-XY solvent. The PDCC-treated device 
significantly enhances the PCE from 17.14% to 18.52%, 
with improved FF (72.55% vs. 77.49%) and JSC (27.76 vs. 
28.21 mA cm−2) (Table 2), the optimization process listed 
in Table S3. Similarly, the PDCC incorporated has excellent 
universality in other systems prepared with o-XY solvent 
(Table S4). Scaling up active layer fabrication presents a 
major morphological control challenge, due to CF with high 

volatility. Thus, we employed a higher-boiling and green 
solvent (o-XY) to fabricate large-scale OPV modules, which 
can shorten progress in industrial scalability. As shown in 
Fig. 2h, a well-optimized PDCC-treated module comprises 
seven sub-cells in series with an active area of 19.3 cm2 and 
a geometric fill factor (GFF) of 97.0%. The encapsulated 
large-area module is presented in Fig. 2i, optimization pro-
cess is presented in Tables S5 and S6. Interestingly, a higher 
PCE of 15.79% was achieved, induced with PDCC in o-XY 
solvent, compared with control (13.87%) and CF as solvent 
(15.56%), shown in Figs. 2g, h and S14. Primarily incorpo-
rating PDCC can enhance the J-aggregation of acceptors, 
resulting in efficient self-assembly during the preparation of 
large-area modules, which is conducive to obtaining high-
quality active layers. Particularly for high-boiling-point 
solvents, the regulation of molecular self-assembly proves 
more effective in large-scale fabrication processes. Figure 2f 
summarizes the PCE of OSCs modules based on CF and 
o-XY as solvents with an area over 18 cm2 [38–57]. It is 
worth noting that the PDCC-treated large-area modules have 

Fig. 1   a Chemical structures of PM6, BTP-eC9, PDCC, ESP distribution and lowest-energy conformations calculated binding energies. Tem-
perature-dependent UV–vis absorption of b BTP-eC9 and c PDCC-treated BTP-eC9 films. UV–vis absorption of d BTP-eC9 and e PDCC-
treated BTP-eC9. Temperature-dependent PL of f BTP-eC9 and g PDCC-treated BTP-eC9 films
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high efficiency, which confirm great potential of PDCC solid 
additive for fabricating large-area modules.

To further gain insight into the effect of PDCC on the 
self-assembly behavior of Y-series NFAs molecules, the 
in situ absorption spectroscopy was employed to monitor 

the film formation process from solution to thin film state 
under PDCC treatment, corresponding 2D mapping images 
shown in Fig.  3a, b. By tracking the evolution of peak 
absorption wavelengths during spin-coating (Fig. 3c) can 
provide insights into molecular aggregation dynamics 

Fig. 2   a Energy level of materials used in this work. b J-V, c EQE of control and PDCC-treated based PM6:BTP-eC9 OSCs processed with CF. 
d J-V curves of control and PDCC-treated devices processed with o-XY. b Device structure diagram and photograph of the large-area modules 
used in this work. f Photograph of the encapsulated large-area module. I-V and P–V curves of the large-area module processed with PDCC in g 
CF and h o-XY solvent. i The development of PCEs with CF and o-XY solvent for module area over 18 cm2 [38–57]. j Light stability of control 
and PDCC-induced devices

Table 1   Summary of photovoltaic performance of control and PDCC-treated OSCs under simulated AM 1.5G illumination (100 mW cm−2)

a) The JSC calculated from the integrated EQE spectra. b) Statistical data obtained from at least 15 devices

Condition VOC (mV) FF (%) JSC (mA cm-2) a)JSC
Cal 

(mA cm−2)
b)PCE (%)

PM6:BTP-eC9 867.6 (863.8 ± 3.7) 72.64 (71.58 ± 0.54) 28.58 (28.09 ± 0.35) 27.80 18.01 (17.85 ± 0.14)
PM6:BTP-eC9 (PDCC) 864.1 (861.5 ± 2.4) 78.81 (77.65 ± 0.92) 28.96 (28.61 ± 0.26) 28.17 19.72 (19.56 ± 0.16)
PM6:L8-BO 912.8 (911.3 ± 1.0) 73.25 (72.23 ± 0.84) 27.26 (27.01 ± 0.17) 26.29 18.23 (18.01 ± 0.14)
PM6:L8-BO (PDCC) 906.8 (905.3 ± 1.0) 82.16 (81.68 ± 0.38) 27.48 (27.37 ± 0.13) 26.55 20.47 (20.24 ± 0.11)
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in blend processed with PDCC. As shown in Fig. 3c, the 
absorption of blend treated with PDCC initially increases 
and subsequently decreases (0.2–0.4 s), attributing to facili-
tated molecular self-assembly treated with PDCC, which is 
benefit to achieve ordered aggregation. In addition, a pro-
nounced redshift was observed in both blends (Fig. 3d, e), 
which can be attributed to molecular stacking resulting from 
the phase transition from solution to solid state. Notably, 
the PDCC-treated blend demonstrated prolonged evolu-
tion toward absorption saturation (Fig. 3e), indicative of an 
extended and controlled self-assembly process. Furthermore, 
the in situ glow discharge optical emission spectroscopy 
(GD-OES) is employed to track the positional changes of 
Sulfur (S) upon thermal annealing [58]. Since both of donor 
and acceptor contain S element, the initial S distribution 
reflects the vertical arrangement of blend film. Moreover, 
the donor-rich bottom interface exhibits substantially higher 
S content than the acceptor-dominated top interface, this 
observation reflects the initial aggregation state of donor and 
acceptor molecules during the early stages of film formation. 
As shown in 2D mapping images (Fig. 3f, g), the amount of 
S element in the PDCC-treated blend is apparently less than 
that of control at the beginning annealing of 0–1 s. With the 
annealing time increasing, the distribution of S elements in 
PDCC-treated film changes slowly (Fig. 3i), while the con-
trol film changes abruptly (Fig. 3h), indicating slower film 
growth and improved donor/acceptor self-assembly. These 
results indicate that the PDCC-treated blend film can achieve 
ordered molecular stacking under thermal annealing, owing 
to the self-assembly behavior of molecules. These in situ 
results demonstrate that the incorporation of PDCC pro-
motes molecular self-assembly, facilitating the formation of 

well-ordered molecular packing. The relevant film-forming 
mechanism diagram is shown in Fig. 3i.

The active layer morphology, donor/acceptor phase 
separation, and molecular aggregation optimized through 
PDCC-driven self-assembly strategy were examined using 
atomic force microscopy (AFM). As shown in AFM images 
(Fig. 4a–d), the PDCC-treated blend film exhibited a higher 
root mean square roughness (Rq) of 1.37 nm than the con-
trol (Rq = 1.31 nm), indicating that PDCC incorporation 
can finely adjust molecular aggregation. Furthermore, the 
PDCC-induced blend film displayed more distinct fiber and 
phase separation than the control film (Fig. 4c, d), facilitat-
ing efficient charge transport. The crystalline and molecular 
packing of the PDCC-treated films, assessed by Grazing-
incidence wide-angle X-ray scattering (GIWAXS), are sum-
marized in Fig. 4e, f and Table S7. Both blends showed 
similar molecular orientations, but the PDCC-treated films 
exhibited more pronounced diffraction peaks than the con-
trol films. The π-π stacking peak (010) at 1.773 Å−1 in the 
qz direction for the PDCC-treated PM6:BTP-eC9 was more 
prominent than in the control blend, suggesting that PDCC 
promotes ordered molecular stacking. Additionally, the 
PDCC incorporation resulted in a larger coherence length 
(CCL) of 20.74 Å and smaller d-spacing (3.54 Å) compared 
to the control sample with a CCL of 18.83 Å and d-spacing 
of 3.55 Å, indicating improved molecular crystallinity and 
stacking. Enhanced crystallinity and more ordered stack-
ing contribute to long-term device stability and efficiently 
charge transport in PDCC-treated blends.

Grazing incident small angle X-ray scattering (GISAXS) 
was used to assess D/A phase separation. The corresponding 
IP intensity plots and fitting results based on the Debye-
Anderson-Brumberger (DAB) model and fractal-like 

Table 2   Summary of photovoltaic performance of green-solvent-processed control and PDCC-treated PM6:BTP-eC9 OSCs under simulated 
AM 1.5G illumination (100 mW cm−2)

a)  The JSC calculated from the integrated EQE spectra. b) Statistical data obtained from at least 15 devices

Condition VOC (mV) FF (%) JSC (mA cm−2) a)JSC
Cal (mA 

cm−2)
b)PCE (%)

Control (0.1 cm2) 851.0 (849.8 ± 1.1) 72.55 (71.67 ± 0.74) 27.76 (27.18 ± 0.69) 27.18 17.14 (17.00 ± 0.12)
PDCC (0.1 cm2) 846.9 (845.3 ± 1.2) 77.49 (76.77 ± 0.63) 28.21 (27.61 ± 0.59) 27.67 18.52 (18.31 ± 0.18)

Condition VOC (V) FF (%) ISC (mA) JSC
Cal (mA 

cm−2)
b)PCE (%)

Control (19.3 cm2) 6.12 (6.06 ± 0.05) 68.04 (66.17 ± 1.63) 64.53 (62.31 ± 2.12) - 13.87 (13.58 ± 0.16)
PDCC (19.3 cm2) 6.04 (5.93 ± 0.08) 72.20 (70.34 ± 1.70) 70.26 (68.20 ± 2.07) - 15.79 (15.56 ± 0.19)
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network are shown in Fig. 4 g, h. XDAB refers to the inter-
mixing D/A domain size, and 2Rg represents the average 
pure domain size of the acceptor phase for the control and 
PDCC-treated PM6:BTP-eC9 samples. The calculated 
results for XDAB and 2Rg are summarized in Table S5. The 
XDAB and 2Rg of PDCC-treated blend films are 39 nm and 
11 nm, larger than the control blend film (XDAB ≈ 31 nm and 
2Rg ≈ 9 nm), indicating improved D/A phase separation. 
These results are consistent with the AFM and GIWAXS 
study, which is benefit to charge transport for reaching a 
highly efficient device.

The exciton dynamics of blend films without and with 
PDCC were measured using time-resolved photolumines-
cence (TRPL) under pulsed photoexcitation at 720 nm. The 
PL quenching efficiency (PLQE) was evaluated. The cor-
responding normalized TRPL of the neat and blend films 
are shown in Fig. 5a. The PDCC incorporation reduced the 

PL lifetime of blend films from 46.4 to 37.2 ps, resulting in 
enhanced PL quenching efficiency (PLQE) from 85.0% to 
91.8%. Here, PLQE is calculated as (1-τblend/τneat), where 
τblend and τneat are the lifetimes of the blend and neat mate-
rials [31, 59]. These results align with the improved JSC, 
indicating PDCC’s positive impact on exciton dissocia-
tion. Subsequently, the carrier mobilities were extracted 
from the photo-induced charge-carrier extraction in lin-
early increasing voltage (photo-CELIV) measurements 
(Fig. 5b). The control and PDCC-treated devices exhibited 
the carrier mobilities of 7.32 and 9.58 × 10−4 cm2 V−1 s−1, 
respectively. In addition, charge carrier transport prop-
erties were investigated using the space charge limited 
current (SCLC) method, with results shown in Figs. S10 
and S11. The PDCC-treated samples demonstrated higher 
electron (6.06 × 10−4 cm2 V−1 s−1) and hole (2.05 × 10−3 
cm2 V−1 s−1) mobilities compared to the control device 

Fig. 3   a and b In situ UV–Vis absorption line-cut color images. c Function of spin-coating time. d Line-cut profiles of the corresponding in situ 
UV–Vis absorption 2D data. e and f In situ GD-OES of sulfur element distribution upon thermal annealing color images. g and h Line-cut pro-
files of the corresponding in situ GD-OES 2D data of control and PDCC-treated blend films. i Schematic diagram of the film-formation mecha-
nism of Y-series NFAs self-assembly induced by PDCC
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with electron mobility of 4.41 × 10−4 cm2 V−1 s−1 and hole 
mobility of 1.68 × 10−3 cm2 V−1 s−1. Moreover, the hole/
electron mobility ratio of the PDCC-induced sample is 
3.38, closer to 1 compared to the control (3.81). Larger 
and more balanced mobilities in PDCC-treated devices 
result in higher FF.

Transient photovoltage/photovoltaic (TPV/TPC) meas-
urements were employed to analysis charge recombination 
dynamics and carrier extraction across active layers. As 
seen from the TPC (Fig. 5c), the charge extraction times for 
control and PDCC-treated devices are 0.217 and 0.166 μs, 
respectively, indicating more efficient charge extraction in 
PDCC-treated devices. Carrier lifetimes (τ) under open-
circuit conditions (Fig. 5d) were extracted from TPV decay 
dynamics using simple mono-exponential fits. The device 
with PDCC exhibits a longer τ value of 0.683 μs compared 
to the control device (τ = 0.244 μs), resulting in less recom-
bination in PDCC-treated devices. Femtosecond transient 

absorption (fs-TA) spectroscopy further probed charge trans-
fer in control and PDCC-treated blend films, and the TA 
spectra were measured with pump at 780 nm. The 2D spec-
trum and TAS profiles at indicated delay times are shown 
in Fig. S13. As we can see, the ground-state bleach (GSB) 
signals of BTP-eC9 appear at ~ 820 nm, while the excited-
state absorption (ESA) features are observed near 920 nm 
in the decay traces. It is noting that with the decay of BTP-
eC9 bleach peak (820 nm), the PM6 GSB peak at around 
580 nm rises, suggesting the hole-transfer process from 
BTP-eC9 to PM6 (Fig. 5e–h). The fast/slow components 
(τ1 and τ2) were extracted by fitting a double exponential 
function to the kinetic signals around 580 nm. The result-
ing τ1/τ2 values for control and PDCC-treated blends were 
fitted to be 0.64/14.01 and 0.49/11.19 ps, shown in Fig. 5i. 
The reduced τ1 with the incorporation of PDCC indicates 
enhanced donor–acceptor interactions, thus facilitating 
efficient exciton dissociation and consequently enabling a 

Fig. 4   a–d AFM height and phase images of control and PDCC-treated samples. e and f 2D GIWAXS, g and h 2D GISAXS images of control 
and PDCC-treated blend films. i Line-cut profiles of the corresponding two-dimensional GIWAXS data, j GISAXS intensity profiles (symbols) 
and the best fitting (solid lines) along the in-plane direction of control and PDCC-treated blend films
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higher JSC in the PDCC-treated devices [60–63]. The shorter 
τ2 upon enhanced crystallization indicates higher diffusion 
constants, linked to better molecular stacking in line with 
GIWAXS results. These findings demonstrate that the incor-
poration of PDCC facilitates both exciton dissociation and 
diffusion processes, thereby accounting for enhanced JSC 
and FF.

4 � Conclusions

In summary, we have successfully demonstrated a PDCC-
driven self-assembly strategy that effectively regulates the 
self-assembly of Y-series NFAs during solvent evaporation 

and film formation process. This approach significantly 
enhances the performance and stability of OSCs, increas-
ing the PCE of PM6:BTP-eC9 devices from 18.01% to 
19.72% and PM6:L8-BO devices from 18.23% to 20.47%, 
while simultaneously improving light and thermal stabil-
ity. Notably, when translated to sustainable fabrication, 
this strategy significantly boosts the PCE of large-area 
green-solvent-processed OSC modules (19.3 cm2) from 
13.87% to 15.79%, ranking it among the best-perform-
ing green-solvent-processed large-area OSC modules 
(> 18 cm2). PDCC serves as a multifunctional additive 
in optimizing both efficiency and stability through three 
key mechanisms: (i) stronger intermolecular interactions 

Fig. 5   a TRPL kinetics of BTP-eC9 neat and blend films of control and PDCC-treated samples tracked at the peak position of the PL, and fits to 
the experimental data using a bi-exponential decay (solid line). b photo-CELIV curves, c TPC and d TPV, e and f 2D TA spectra, g and h decay 
dynamics probed at different wavelengths, i decay fitting time of control and PDCC-treated blends
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between PDCC and NFAs, promoting J-aggregation of the 
acceptor phase during film formation, thereby enhancing 
JSC; (ii) more ordered molecule packing and improved 
phase-separation, leading to enhanced charge transport, 
suppressed recombination and improved FF; (iii) enhanced 
crystallinity and a more uniform self-assembly process, 
resulting in a stable phase-separation morphology, cru-
cial for long-term device stability. This work establishes a 
promising strategy for advancing the industrial production 
of high-efficiency and stable OSCs, paving the way for 
their commercialization on a larger scale.
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