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HIGHLIGHTS
e Covalent organic framework nanofibers (CNFs) with biomimetic scale-like architecture, record-high aspect ratio (L/D=103.05), and

superior flexibility were directly synthesized via defect engineering.

Self-standing membranes and nanofibrous aerogels (CNF-As) with designable micro-topological structures were fabricated with 100%
CNFs.

CNF-As perform photo-induced uranium extraction with an adsorption capacity and adsorption rate of 920.12 mg g~! and 89.9%,

respectively.

e CNF-As exhibit superior underwater stability (> 180 days) and superelasticity (~0% deformation after 500 compression cycles),

making them promising for practical application in marine systems.

ABSTRACT The lack of macro-continuity and mechan-
ical strength of covalent organic frameworks (COFs) has
significantly limited their practical applications. Here, we
propose an “alcohol-triggered defect cleavage” strategy

to precisely regulate the growth and stacking of COF

grains through a moderate reversed Schiff base reaction, Seaiellite

realizing the direct synthesis of COF nanofibers (CNFs) ~  Directsynthesisroute \ ;%EE architectyre =

\\\

with high aspect ratio (L/D =103.05) and long length

(>20 pm). An individual CNF exhibits a biomimetic scale-like architecture, achieving superior flexibility and fatigue resistance under
dynamic bending via a multiscale stress dissipation mechanism. Taking advantages of these structural features, we engineer CNF aerogels
(CNF-As) with programmable porous structures (e.g., honeycomb, lamellar, isotropic) via directional ice-template methodology. CNF-As
demonstrate 100% COF content, high specific surface area (396.15 m? g~!) and superelasticity (~0% elastic deformation after 500 com-
pression cycles at 50% strain), outperforming most COF-based counterparts. Compared with the conventional COF aerogels, the unique
structural features of CNF-A enable it to perform outstandingly in uranium extraction, with an 11.72-fold increment in adsorption capacity
(920.12 mg g™") and adsorption rate (89.9%), and a 2.48-fold improvement in selectivity (U/V=2.31). This study provides a direct strategy

for the development of next-generation COF materials with outstanding functionality and structural robustness.
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1 Introduction

Covalent organic frameworks (COFs) have emerged as a
novel class of crystalline porous polymers for advanced
molecular technologies due to high specific surface area
(SSA), abundant micro/mesopores, and designable func-
tionalities. However, their transition from particulate pow-
ders to macroscopic functional materials remains impeded
by intrinsic brittleness and structural discontinuity [1-5].
While composite engineering through substrate hybridiza-
tion offers partial solutions, compromised active site acces-
sibility and interfacial stress concentration fundamentally
limit their practical performances [6—10]. Moreover, achiev-
ing stable and massive integration with the supporting sub-
strate in the composites necessitates precise control of COF
particle sizes at the nanoscale with high uniformity, which
is a persistent challenge in solvothermal synthesis. Thus,
attempts have been made to increase the COF dimensions
and to directly shape them into macro-continuous materi-
als such as self-standing films and monoliths. Although
interfacial synthesis enables the fabrication of COF films,
their structural integrity critically depends on the chemical
composition of the COF and synthetic parameters, devia-
tions from optimal conditions usually result in crack for-
mation [11-13]. The dense packing of COF grains in the
vertical direction (Z-axis) in the film inherently limits their
application performances. Keeping this challenge in mind,
COF aerogels with 3D porous architecture have been engi-
neered through a sol—gel strategy coupled with supercritical
CO, drying [14-16]. Nevertheless, these aerogels possess
irregular porous structures that resist precise manipulation or
pre-fabrication design. More critically, most reported COF
aerogels demonstrate insufficient elasticity and restricted
structural adaptability, which are fundamental drawbacks
impeding practical application.

Fibers, with their high aspect ratio (L/D) and capabil-
ity for textile design, represent a unique material form that
combines structural adaptability and multifunctional syn-
ergy. Crystalline materials exhibit exceptional mechanical
robustness and physiochemical properties due to ordered
lattice arrangements, but their inherent brittleness con-
strains their utility in flexible devices. Emerging strategies
to circumvent these limitations focus on engineering crys-
talline materials into fibrous morphologies by controlling
crystallization dynamics and microstructural topology. The
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one-dimensional continuity of fibers enables precise regula-
tion of stress distribution via lattice orientation and defect
engineering. A notable example includes the puzzle-like
polycrystalline stacking in oxide ceramic crystal nanofib-
ers, which balances strength and flexibility through grain
boundary sliding and localized energy dissipation under
strain [17]. Recent advances have extended this strategy to
COFs, with scientists developing methods to shape COFs
into a fibrous architecture. For instance, Ma et al. [18]
designed a solvent-mediated approach to promote the growth
of COF along the (001) crystal plane to form crystalline
nanowires with lengths greater than 2 pm and L/D ranging
from 10to 40. Pan et al. [19] regulated the interfacial inter-
actions between COF sheets, resulting in the disintegration
of COF from lamellar structures into fibrous morphologies,
whose lengths and L/D ranged from 3~5 pm and 15~ 25,
respectively. In addition, Wang et al. [20] achieved the trans-
formation of COF particles to nanofibers by regulating the
reversible condensation-termination reaction in COF syn-
thesis, thus achieving nanofibers with lengths of >20 pm
and L/D ranged from 30.8to 66.7. However, the insufficient
L/D value (< 100) of such COFs makes them possess weak
mechanical strength and interfiber entanglement, posing dif-
ficulties in direct fabrication of macro-continuous materi-
als. Currently, the interdisciplinary integration between COF
chemistry and fiber science remains insufficient, resulting
in inadequate attention to purposely regulate the COF mor-
phology into fibers with high aspect ratio. Mechanisms gov-
erning morphological evolution of COFs into fibers remain
unclear, thereby limiting the production of COFs with suf-
ficient aspect ratio and length for macro-continuous material
fabrication.

Scale architectures represent remarkable biomechani-
cal advantages evolved to reconcile structural rigidity with
dynamic flexibility, which could be commonly observed in
organisms such as snakes and pangolin in nature, and loong
in traditional Chinese mythology. In pangolins, for instance,
keratinous scales are arranged in imbricated patterns across
the dermal surface, with specialized micro-hinge joints
connecting adjacent scales. The scale-hinge architecture
dissipates external mechanical energy by coordinating
microstructural deformation, i.e., scale sliding and rota-
tional freedom at hinge junctions during flexion, to achieve
local stress redistribution across multilayered assemblies,
thereby enabling fracture resistance and macroscopic flexi-
bility simultaneously. While scale structures are common for

https://doi.org/10.1007/s40820-025-01984-x
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bio-organisms, it has shown great challenges to be achieved
in synthetic materials.

Herein, we report an “alcohol-triggered defect cleavage”
strategy to synthesize COFs into nanofibers (CNFs) with a
scale-like morphology, thus realizing enhanced structural
stability and flexibility of COFs. 2,6-Diaminoanthraqui-
none (DAAQ) and 2,4,6-triformylphloroglucinol (TP) are
selected as monomers for their ability to form photosensitive
COFs. Benzyl alcohol (BA), acting as a moderate nucleo-
phile, facilitates cleavage and reorganization of COF grains
through reversible Schiff base reaction, ultimately leading to
the formation of flexible CNFs with hierarchical structures.
The resulting CNFs exhibit a record-high L/D of 103.05 with
a length of > 20 pm and a wool-like elasticity (elastic modu-
lus ~4.90 GPa), enabling their assembly into self-standing
membranes and aerogels without other supporting polymers.
As a proof-of-concept study, CNFs are constructed into
nanofibrous aerogels (CNF-As) with precisely controlled
porous structure (e.g., honeycomb, lamellar, and isotropic),
high SSA (396.15 m? g~!), and superior mechanical stabil-
ity and elasticity (~0% deformation after 500 compression
cycles). Given that CNF-As are constructed from 100%
nanofibrous COFs, its application performances, such as
photo-induced uranium extraction, are significantly better
than the COF particle-embedded aerogels. The successful
synthesis of CNFs not only addresses the inherent brittle-
ness and processability issues of conventional COFs but also
opens new avenues for their application in macro-continuous
functional materials such as films, membranes, and aerogels.

2 Experimental Section
2.1 Materials

2,4,6-Triformylphloroglucinol (TP, 97% NMR, Energy
Chemical), 2,6-diaminoanthraquinone (DAAQ, 98%,
Adamas-bata), acetic acid (99.7%, Aladdin), mesitylene
(M, AR, 97%, MACKLIN), benzyl alcohol (BA, CP, SCR),
methanol (MA, 99.5%, reagent grade), isopropyl alcohol
(IPA, AR, SCR), cinnamyl alcohol (CA, 98%, Shyuanye),
N, N-dimethylacetamide (DMAc, 99.0%, Boer), and mena-
dione sodium bisulfite (MSB, 95%, Shyuanye) were supplied
by Reagent Website of Donghua University.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

2.2 Direct Synthesis of CNFs

The photoactive CNF was prepared based on conven-
tional solvothermal synthesis. Specifically, TP (0.084 g,
0.40 mmol) and DAAQ (0.143 g, 0.60 mmol) were first
dissolved in M/BA (v/v=1/1) (25 mL) separately and
mixed into a 100-mL autoclave, and acetic acid (6 M,
0.3 mL) was added as the catalyst. The reaction system
was purged with N, gas for 10 min followed by heating
the system at 120 °C for 48 h. The resultant precipitates
were washed with DMAc, H,0, and MA. The photoac-
tive CNFs with a yield of 94.11% were finally obtained
via 60 °C vacuum dry for 12 h. It is noteworthy that the
scalable production of CNFs is only limited by the size
of the equipment (e.g., autoclave and oven). For instance,
the production amount of CNF could achieve as 24 g per
day in our laboratory.

2.3 Fabrication of CNF-Ms and CNF-As

(i) Fabrication of CNF-M: CNFs (0.20 g) and deion-
ized water (19.80 g) were added into a 25 mL glass
beaker with menadione sodium bisulfite (0.002 g, MSB)
and bacterial cellulose nanofiber suspension (solid
content=0.8%, 0.02 g, BCN) as photo-crosslinker
and dispersing agent, respectively. Subsequently, the
mixed solution was homogenized under ultrasonication
(25 kHz, 120 W) for 5 min in a pulse mode while the
temperature was maintained at 25 +2 °C in an ice bath.
The homogenized solution was filtered under vacuum for
10 min. Following this, the PTFE filter membrane with
wet CNF-M was transferred into a freeze dryer (— 60 °C,
1.0 Pa) for 48 h. Finally, the CNF-M was obtained after a
UVA (365 nm, 300 mW cm_z) irradiation in a crosslink-
ing box (UVGO, China) for 10 min to form chemical
crosslinking between CNFs. (ii) Fabrication of CNF-As:
The same homogenized solution was prepared as above.
Then, the homogenized solution was transferred into
customized aerogel molds followed by freezing with liq-
uid nitrogen into ice cubes. The lyophilization and UVA
crosslinking were performed on the ice cubes to finally
achieve CNF-As according to the same procedures as
described above.

@ Springer
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3 Results and Discussion
3.1 Rational Design

Mimicking the scale architecture in nature, we engineer
COFs into nanofibers with scale-like morphology through
an “alcohol-triggered defect cleavage” strategy. We chose
2,6-diaminoanthraquinone (DAAQ) and 2,4,6-triformylphlo-
roglucinol (TP) as monomers, and the resultant COFs are
obtained via a Schiff base condensation reaction (Fig. S1).
Generally, defects (i.e., amorphous regions) are difficult to
be avoided during the COF synthesis, and a specific reaction
condition could even selectively design the COF defects,
resulting in COFs with various morphologies and properties
[21-25]. As proposed in Fig. la, b, small molecules with
moderate nucleophilicity could act as defect cleavage agents
to first penetrate into the defects of a semicrystalline COF,
and then cleave the COF into grain A and grain B along
the defects based on a reversed Schiff base reaction [20].
After the cleavage, the crystallinity of the COF increased,
and its morphology could also be designed. As illustrated in
Fig. 1c, benzyl alcohol (BA), a moderate nucleophile, was
introduced into the synthesis system as a defect cleavage
agent to manipulate the morphology of COFs into nanofib-
ers. During the synthesis, BA will diffuse into the COF
defects and break the imine bonds that are formed by the
monomers. The released active groups (i.e., amine or alde-
hyde) from the detects could undergo the Schiff base reac-
tion again to modify its crystalline structure. After several
rounds of this bond breaking-forming process, COF grains
will grow into nanoflakes, and they will finally aggregate
together to produce nanofibers with a scale-like architecture.
As exhibited in Fig. 1d, CNFs with an averaged diameter of
200 nm and a length over 20 pm were successfully obtained
through the solvothermal synthesis without any structural
supporting materials. The atomic force microscope (AFM)
images also showed that the CNFs possess surface rough-
ness, which differs from large-scale COF single crystals
(Fig. S2) [26-28]. To deeply explore the microstructure of
CNFs, high-resolution-transmission electron microscope
(HR-TEM) was adopted. As shown in Fig. le, an individual
CNF was constructed by multiple COF grains with mis-
aligned overlapping, which is highly similar to the structure
of biological scales. The magnified HR-TEM image of the
CNF clearly showed the lattice distance of (100) as 2.61 A.

© The authors

Energy-dispersive spectroscopy (EDS) was performed to
examine the elemental distribution on CNFs. Figure 1f
showed that carbon (C), nitrogen (N), and oxygen (O) are
all uniformly distributed along the CNF, which demonstrated
the successful synthesis of CNFs with high purity. The atten-
uated total reflection (ATR) spectra and the *C solid state
nuclear magnetic resonance (SSNMR) spectra provide extra
structural evidence of CNF (Fig. S3).

The above results triggered us to deeply explore the for-
mation process of CNFs, thus understanding its synthesis
mechanism. By examining the morphologies of CNFs at
different synthesis timepoints, we could clearly see a time-
dependent morphology and crystallinity evolution (Figs. S4
and S5b). Specifically, before heating (i.e., 0 h), two mon-
omers already formed aggregates, the sizes of which are
determined by the composition of the solvent system (e.g.,
alcohol type, alcohol concentration, etc.) (Figs. S4a and S6).
When the reaction starts, the COFs preferentially stack in
a two-dimensional direction due to Schiff base condensa-
tion, gradually transforming from aggregates into uniformly
shaped nanoflakes (Fig. S4b—f), then these nanoflakes
continuously grew to exhibit a thickening effect when the
reaction time was prolonged to 10 h (Fig. S4g). We then
observed that the thickened nanoflakes started to cleave into
nanofibers and presented uniform fiber diameters when the
synthesis time reached 48 h (Fig. S4h—j). By further increas-
ing the reaction time to 72 h, shorter COF nanofibers were
obtained (Fig. S4k). To further elucidate the morphology
evolution of CNFs in terms of defect cleavage and crystal-
linity variation, deep analyses of XRD spectra and the syn-
thesis kinetics were performed. As shown in Figs. S5 and S7,
the formation of CNF proceeds through four distinct stages:
(1) within the first 8 h of synthesis, crystallinity increased
initially due to the formation of the COFs via Schiff base
condensation, consuming available monomers. (2) A sudden
drop in crystallinity was observed at 10 h, coinciding with
the approach of reaction equilibrium where monomer con-
sumption and CNF yield stabilized. At this stage, the Schiff
base reaction rate approaches its peak, which far exceeds
the molecular ordering rate, forming disordered packing
regions that subsequently trigger defect cleavage initiated
by alcohols; (3) with further prolonging the reaction time,
the crystallinity recovered and plateaued until 48 h, attrib-
uted to structural correction and reorientation driven by the
alcohol-triggered reversed Schiff base reaction; (4) the crys-
tallinity decreased again with increasing the reaction time

https://doi.org/10.1007/s40820-025-01984-x
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and aspect ratios of reported anisotropic COFs obtained from solvothermal synthesis

to 72 h, resulting from the gradual disintegration of COF
grains under prolonged heating. This hypothesis was also
proved by noticing a decrease of CNF yield. Moreover, the
concentration of the catalyst also poses a significant effect
on the CNF morphology, which controls the kinetics of the
Schiff base reaction (Fig. S8). An appropriate amount of cat-
alyst provides sufficient time for CNF to correct and revise
its structure. During the synthesis, the proportion of BA in
the solvent system played a crucial role in controlling the
CNF morphology (Fig. S9a—g). With the absence of BA, i.e.,

Tl
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mesitylene (M) as the solvent, particulate and low crystalline
products were obtained. With increasing the volume fraction
of BA, we clearly observed that the product morphology
shifts to nanofibers, and the more the BA, the finer the fibers
and the higher the crystallinity (Fig. S6h). Compared with
the reported anisotropic COFs, including single crystals and
polycrystals, CNFs that featured a record-high aspect ratio
(103.05), long fiber length (> 20 pm), and uniform nanofiber
architecture were achieved in our work when the synthetic
conditions were solvent: mesitylene/BA =1/1 v/v, catalyst:

@ Springer
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6 M acetic acid, temperature: 120 °C, and time: 48 h, respec-
tively (Fig. 1g and Table S1).

3.2 Investigation of Synthesis Mechanism of CNFs

To gain a deeper understanding of the role of BA, other
alcohols, including methanol (MA), isopropanol (IPA), and
cinnamyl alcohol (CA), were attempted for CNFs synthesis.
The addition of alcohols with different polarity primarily
affects the solvent properties, which influences the solubil-
ity of monomers and the resultant COFs, manipulating the
morphology of as-synthesized CNFs [29]. Hansen solubil-
ity parameter (HSP) theory describes molecular interactions
through contributions from three types of cohesion energies:
dispersion forces (6D), dipole interaction (6P), and hydrogen
bonding (6H) [29]. Referenced from Chen et al. [30] that the
contribution to the affinity between two substances in solu-
tion from dispersion forces (6D) and dipole interactions (6P)
could be integrated into one parameter. By correlating 2D
HSP plots (6D + 6P vs 6H) of solvent systems to the CNF
architecture (Figs. 2a, b and S6), we identify that the opti-
mal CNF formation occurs when the HSP distances between
solvent and CNF approach 15.79 ~ 16.88 MPa!’? (i.e., M/
BA =1/1~2/3 regimes). Intriguingly, MA/IPA/CA-involved
systems only yield CNFs with good crystallinity when their
HSPs converge to a critical window with |Adl for each inter-
action parameter < 1.83 MPa'? (Fig. 2b, ¢), confirming that
a balanced dispersion—dipole—hydrogen interaction of the
solvent system is prerequisite for CNF growth (Table S2).
The alcohol-COF interfacial affinity critically dictates
defect cleavage efficiency, where the optimal HSP match-
ing enables alcohol penetration into amorphous domains to
initiate the reversed Schiff base reaction, thus determining
the morphology of the CNFs. Figure 2d summarized the
HSP distance between alcohols and CNF, demonstrating an
order with decreased affinity as BA>CA>MA >IPA. In
addition, density functional theory (DFT) and the independ-
ent gradient model based on Hirshfeld partition (IGMH)
analysis were adopted to clarify their intermolecular inter-
actions. As presented in Fig. 2e—h, BA/CNF and CA/CNF
predominantly exhibited van der Waals interaction, while
the MA/CNF and IPA/CNF presented strong hydrogen
bond interaction (green denotes strong attraction including
hydrogen bond, pink indicates van der Waals interaction,
and purple-to-blue refers to strong repulsion such as steric

© The authors

hindrance) [31-33]. The high affinity between the alcohol
and CNF was also proved by calculating the change of Gibbs
free energy (AG) of forming alcohol/CNF composites. As
presented in Fig. 2i, all composites show negative AG,
indicating the process of composite formation is thermo-
dynamically allowed, i.e., high affinity existed between the
alcohol and CNF. According to the calculated AG values,
the affinity followed an order of BA (— 31.73 kJ mol~!)>CA
(— 21.07 kJ mol™')>MA (- 5.84 kJ mol~!)>IPA
(- 1.84 kJ mol™!), which is consistent with that predicted
based on HSP theory (Fig. 2d).

More importantly, the cleavage of the defects is crucial for
CNF to achieve its nanofibrous morphology. The “alcohol-
triggered defects cleavage” via the reversed Schiff base reac-
tion specifically involves four steps: (1) protonation of the
imine-N in CNF, (2) attack of the imine bond by the alcohol,
(3) proton rearrangement within the imine linkage, and (4)
breakage of the imine linkage (Fig. S13—-S16). As summa-
rized in Fig. 2i, the reversed Schiff base reactions triggered
by four alcohols are all spontaneous by showing an overall
AG of — 837.50~—912.50 kJ mol~!, while thermal activa-
tion (i.e., 120 °C) to overcome a 78.22 ~118.84 kJ mol™!
energy barrier at Step 3 is required (Table S3). We exploited
the nucleophilicity of alcohols to shape COFs into nanofib-
ers with a scale-like architecture via controlled grain disas-
sembly and re-stacking, which diverges from the control of
epitaxial growth mechanism that reported by Ma et al. [18].

We then carefully investigated the microstructure of CNFs
using HR-TEM and the selected area electron diffraction
(SAED) to provide direct evidence for the proposed mecha-
nism. BA-engineered CNFs exhibit hierarchically ordered
assemblies of COF grains through misaligned stacking with-
out forming interstitial pores (Fig. S17). As the magnified
TEM results shown in Fig. 2j, from the fiber edge to the
core, COF grains with different thicknesses and number of
layers can be seen clearly. Here, the BA in the synthesis
system targeted to cleave the defects and acted as a grain
size and crystallinity modifier, thus a large number of grains
with different orientations could be observed in an individ-
ual CNF (Fig. S18). The microstructures of grain A and
grain B in CNF during the cleavage are labeled in Fig. 2k,
where the cleaved edges present as amorphous while their
interiors show a regular lattice structure with high crystal-
linity (Fig. S18). The defect cleavage produces crystalline/
amorphous interfaces, which are further evidenced by the

https://doi.org/10.1007/s40820-025-01984-x
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SAED patterns showing crystalline cores that are surrounded
by amorphous edges (width of ~5 nm) (Fig. 21).

3.3 Demonstration of the Flexibility of Individual CNFs

The softness and flexibility of CNFs are highly related to
their microstructure. The softness of nanocrystalline materi-
als could be achieved by reducing the grain size, allowing the
stress relaxation to occur at grain boundaries [34]. In addi-
tion, the gain boundaries with low crystallinity are able to
scatter and dissipate the stress concentration, thus achieving
bending of CNF under external stress without breakage. To
explore the mechanical properties and flexibility of CNFs,
AFM in peak force quantitative nanomechanics (PF-QNM)
mode was adopted to monitor the individual CNF. For the

SHANGHAI JIAO TONG UNIVERSITY PRESS

sample preparation, CNFs were first ultrasonically (180 W)
dispersed in ethanol for 5 min and then dropped on a mica
substrate for air-dry. Then, the AFM probe scanned the CNF
surface in a raster pattern, generating high-resolution 3D
topographic images as shown in Figs. 3a and S2. Consistent
with the SEM and TEM results, CNF exhibits a uniform fiber
diameter of ~200 nm and a scale-like surface morphology
constructed by stacked CNF grains. During scanning, the
tip applied a fixed peak force to the CNF surface, allowing
precise measurement of its elastic modulus as 4.90+0.75
GPa based on Derjaguin—Muller—Toporov (DMT) model
(Fig. 3b). Due to the misaligned assembly of COF grains, the
elastic modulus is not homogeneous along the CNF, but var-
ies depending on the specific arrangement of the COF grains
(Fig. S19). By screening the elastic modulus of common

@ Springer
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fibers, the CNF exhibits a similar softness as natural wool
while being stiffer than some synthetic nanofibers (Fig. 3¢
and Table. S4), which makes CNFs unique compared to con-
ventional COF particles in terms of material fabrication and
subsequent applications. To visually show the flexibility of
the CNFs, we used a focused ion beam (FIB) probe to per-
form a dynamic bending on the individual CNF (Fig. 3d).
By fixing both ends of the CNF and moving the FIB probe,
the CNF could be easily bent to a curved state and recover
to its original without any cracks (Video S1), highlighting
the superior flexibility and mechanical strength of the CNF
under the corresponding force.

As illustrated in Fig. 3e, when the CNF is bent, the mis-
aligned COF grains on the upper surface of an individual

© The authors

CNF are squeezed while the grains on the bottom suffer from
an extension. This situation could be visually evidenced by
examining the SEM images of a bent CNF (inserted graphs
in Fig. 3e). On one hand, the misalignment of grains pro-
vides sufficient spaces to tolerate such movements. On the
other hand, each COF grain contains crystalline/amorphous
interfaces, allowing it to be flexible and resistant to exter-
nal forces at the grain level. Thus, the flexibility of CNF
is achieved by a multiscale structural characteristic at both
fiber and grain levels. To comprehensively elucidate the flex-
ibility and the mechanical energy dissipation mechanisms in
terms of biomimetic scale-like CNFs, a mechanical simu-
lation of the bending process was conducted based on the
finite element analysis (FEA). This simulation focused on

https://doi.org/10.1007/s40820-025-01984-x
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the examination of the COF grains on the upper and bottom
CNF surfaces during bending, while the stress changes are
more pronounced on the squeezing side of the bent CNF
(Fig. S20). As displayed in Fig. 3f, the deformation of the
scale-like CNF on the squeezing side under progressive
bending deformation (¢ =10% ~ 50%) revealed a three-stage
stress evolution: initial localization at intergranular contact
zones (¢ =10%), followed by planar diffusion along slip
planes (¢ =30%), and final load redistribution via further
planar and inter-grain stress diffusion (¢ =50%). The hier-
archical stress delocalization mechanism operated through
sequential activation of primary stress-transfer networks and
secondary load-bearing grains, achieving dual-mechanical
energy dissipation via interfacial friction between COF
grains and crystalline domain deformation within each grain.

3.4 Processibility and Applications of CNFs

Preparation of pure COF materials with macro-continuity
still faces great challenges [35-38]. The direct synthesis
of CNFs possessing large L/D and appropriate fiber length
offers a promising strategy to process COFs as common
nanofibers into a wide variety of materials with large-scale
dimensions and designable microstructures [39—41]. For
instance, COF nanofibrous membranes (CNF-Ms) were
achieved by vacuum filtration (Figs. 4a and S21). By con-
trolling the concentration of CNFs and the filtration pres-
sure, CNF-Ms could be designed into different thicknesses
and densities, fitting to specific application fields. Given the
unique bonding point based on physical interweaving and
chemical crosslinking applied on the CNF-M, the resultant
membrane with a thickness of ~0.80 mm exhibits superior
flexibility that can be folded and recovered without form-
ing cracks (Fig. S21). More interestingly, nanofibrous aero-
gels are materials with open-pores in a three-dimensional
architecture, which have been widely applied in the fields
of energy storage [42—44], pollution management [45—48],
sensing [49-51], thermal insulation [52-54], and hetero-
geneous catalysis [55-57] due to the integrated features of
large SSA, high porosity, and lightweight. Although pure
COF aerogels have been successfully fabricated by the
sol—gel strategy followed by lyophilization, the porous struc-
tures and mechanical properties of such aerogels are diffi-
cult to be designed and manipulated [15, 58-60]. The direct
synthesis of CNFs allows them to be readily homogenized
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and molded into COF nanofibrous aerogels (CNF-As) with
tunable porous topology (including isotropic, lamellar,
and honeycomb) and sizes (140 mm X 15 mm (D x H) and
55 mm X 60 mm (D X H)) (Fig. S22). The size and shape
of the CNF-As could be controlled by varying the size and
shape of the mold and the freeze dryer. Their designable
porous structures of specific cross section in the CNF-As
(labeled in red) are presented under SEM monitoring and
shown in Figs. 4b-d and S23-S24. In order to stabilize the
structure of as-obtained CNF-As, photo-induced chemical
crosslinking was introduced. Specific crosslinking mecha-
nism and parameter selection are available in Figs. S25-29.
Considering the mechanical strength, structural stability, and
porosity of the CNF-As, the optimal crosslinking param-
eters were set as MSB concentration of 1.0% and irradiation
time of 10 min. Taking honeycomb CNF-A as an example,
after UVA irradiation (365 nm, 300 mW cm™?), the CNF-A
exhibited the optimal mechanical properties with a com-
plete recovery of its shape after compression (Fig. S26). The
binding points between CNFs can be observed in Fig. 4e,
which enables the structural stability and superelasticity of
the aerogels, especially in liquid systems. This interfibrous
binding joint was also noticed in other CNF-As (Figs. S23
and 24). First, the structural flexibility of the CNF-A was
examined by a folding test. We designed a mold and used it
to fabricate a CNF-A with a length of 8.0 cm and a thickness
of 1.0 cm. It performs good integrity, and can be folded by
135° and then recovered without structural collapse (Figs. 4f
and S30). More importantly, the CNF-A could retain its 3D
structure without any release of CNFs after immersing in
water for 180 days (Fig. S31). The stress—strain curves of
CNF-A in water were acquired at different stains (Fig. 4g),
and they exhibit classical closed loops with three character-
istic stages: (i) a typical Hookean elastic regime (¢ <30%)
with a tangential modulus of do/de =26.67 kPa, (ii) a subse-
quent plateau stage near the yield point (30% < ¢ <45%), and
(iii) a stress hardening region (& > 45%) with stress increas-
ing sharply. Moreover, as displayed in Figs. 4h and S32, the
3D structure of the CNF-A could be completely retained
(~0% plastic deformation) after 500 compression cycles at
£=50% in water, indicating the superior mechanical stability
and superelasticity of the CNF-A (Video S2).

Given the construction of CNF-A by pure COFs, it exhib-
its comparable and ~ 17 times higher SSA (396.15 m* g™!)
than that of the CNFs (400.07 m* g~!) and COF/nanofiber
composite aerogels (COF-As) (23.35 m? g1, respectively

@ Springer
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ing application. j U adsorption capacities of different materials. k Comparisons of U adsorption capacity among reported adsorbents. 1 Diamond
plot comparing the features of CNF-As with other COF-based aerogels designed for UES

(Fig. S33). The COF-As were fabricated by the conventional
method of mixing COF particles with supporting nanofibers,
which were chosen here as bacterial cellulose nanofibers (see
details in the Supplementary Methods and Fig. S34). Addi-
tionally, CNFs possess intrinsic photosensitivity by having

© The authors

benzophenone moieties in their chemical skeleton. The
engineered hierarchical porosity (Fig. S35) and increased
SSA of CNF-As synergistically enhance the photocatalytic
efficiency through two mechanisms of increasing active
site accessibility and extending light-transporting pathways

https://doi.org/10.1007/s40820-025-01984-x
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[61, 62]. In this case, the as-fabricated CNF-As with robust
mechanical property and improved photosensitivity could be
an optimal prototype for photo-induced uranium extraction
from seawater (UES) (Fig. 41).

Nuclear energy has emerged as a pivotal power source
in the near future due to its high energy density and no
greenhouse gas emission [63-66]. U is a primary nuclear
resource, and its efficient acquisition is essential for the
large-scale and sustainable development of the nuclear
industry. The U content in seawater exceeds 4.5 billion
tons, a thousand times higher than that of terrestrial ore,
yet its extraction remains challenging due to the extremely
low concentration (~ 3.3 ppb) and competitive ion interfer-
ence [67—69]. While traditional amidoxime-based adsor-
bents dominate the current approach, recent advances
have shown that photocatalytic UES relying on selective
redox conversion achieves superior performance in fibrous
adsorbents [2]. The benzophenone moieties in CNFs align
their energy bands with the redox potential of U(VI)/U(IV)
(Fig. S36), enabling photocatalytic U extraction via the
reduction of soluble U(VI) to insoluble U(IV). Detailed
mechanism is explained in the Supporting Information. As
shown in Fig. 4j and Table S5, the photocatalytic U extrac-
tion capacity of CNF-As achieves 920.12 mg g~!, which is
16.54 times, 11.72 times and 1.90 times higher than that
of the particulate COFs (COF-Ps), COF-As, and CNFs,
respectively. It is worth noting that the U extraction by the
CNF-A under a dark condition only presents a capacity of
82.25 mg g~ !, revealing that the photo-induced conversion
of U(VI) to U(IV) significantly drives the adsorption reac-
tion (Fig. S37). Moreover, the adsorption kinetics of such
materials was evaluated by abstracting the slope from their
Qt curves. As shown in Fig. S38b, CNF-A presents the
highest adsorption rate (k=68.39 mg g~ h™!) over others.
Moreover, the CNF-As performs outstanding U extrac-
tion ability compared with numerous reported materials,
including particles, membranes, and aerogels based on
physical adsorption, photo-induced, and electrical-trig-
gered adsorption mechanisms (Fig. 4k and Table S6) [68,
70-91].

The adsorption selectivity is crucial for extracting U from
seawater where abundant competing ions exist. As shown in
Fig. S39 and Table S7, CNF-A exhibits a superior adsorption
selectivity of U when competed with seven types of metal
ions (i.e., V, Fe, Zn, Cu, Ni, Pb, and Co), and the selectiv-
ity against V reached U/V=2.31, making the CNF-A more
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promising to realize the UES in a practical scenario. The
adsorption selectivity of CNF-A is also higher than other
control materials, especially for a selectivity coefficient of
U/V=2.31, which is 2.41, 2.48, and 1.18 times higher than
that of COF-P, COF-A, and CNF, respectively (Fig. S39).
We also conducted a trial to examine its function in natural
seawater. As shown in Fig. S40, the U adsorption amount
of CNF-A achieved 2.87 mg g~! after 15 days of seawater
immersion under light exposure, which is much higher than
other typical competing ions, especially for V (adsorption
amount=0.74 mg g~ '), proving CNF-A to have outstanding
practical application prospects. During six extraction—elu-
tion cycles, the U extraction amount and elution rate only
decreased by 1.88% and 2.08% for each cycle, respectively,
and finally retained a high adsorption recovery (88.74%) and
elution rate (87.54%) (Fig. S41 and Table S8), indicating
a superior reusability of the CNF-A. Benefiting from the
direct synthesis of CNFs, the as-fabricated CNF-As emerged
as one of the most promising COF-based aerogels, demon-
strating Sgpr and COF content outstandingly higher than
those of previously reported ones, while performing superior
adsorption capacity, adsorption rate, and adsorption selectiv-
ity (Fig. 41 and Table S9) [2, 92-94]. In summary, the above
results not only emphasized the importance of designing
novel adsorbents with 100% COF contents, but also high-
lighted the advantages of synthesizing COFs into nanofibers
and constructing them into 3D aerogels.

4 Conclusions

In this study, flexible CNFs with biomimetic scale-like
architecture were successfully prepared by the “alcohol-
triggered defect cleavage” strategy, which integrated the
kinetic control of the reversed Schiff base reaction with
the alcohol-mediated crystal reconstruction mechanism.
Theoretical simulations were adopted to understand the
manipulation function of different alcohols on COF mor-
phology, enabling the direct synthesis of CNFs featur-
ing long length (>20 pm), record-high L/D (103.05),
and wool-like elastic modulus (~4.90 GPa), which over-
comes the fundamental limitations of mechanical fragility
and processability inherent to conventional COFs. The
individual CNF performed superior flexibility and stress
resistance, which was attributed to the multiscale stress
dispersion among the misaligned COF grains. The further
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constructed CNF-As exhibited programmable porous
structure, high SSA, (396.15 m? g~!) and superelastic-
ity (~0% structural deformation after 500 compression
cycles), and its photo-induced U adsorption capacity
(920.12 mg g~!) is 11.72 times higher than that of the
COF-A, making them promising for practical UES. This
work established a facile defect-engineering strategy for
constructing mechanically durable COF materials, bridg-
ing the long-standing gap between nanoscale precision
and macroscopic functionality. The demonstrated synergy
between structural engineering and photosensitivity opens
new horizons for COFs used in adsorption and separation,
heterogeneous catalysis, and energy storage.
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