Supporting Information for

## In-Situ Coupling Strategy for Anchoring Monodisperse Co<sub>9</sub>S<sub>8</sub> Nanoparticles on S and N Dual-Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn-Air Battery

Qi Shao<sup>1</sup>, Jiaqi Liu<sup>1</sup>, Qiong Wu<sup>1</sup>, Qiang Li<sup>1</sup>, Heng-guo Wang<sup>1,\*</sup>, Yanhui Li<sup>1</sup>, Qian Duan<sup>1,\*</sup>

School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China

\*Corresponding authors. E-mail: wanghengguo@cust.edu.cn (H.G. Wang), duanqian88@hotmail.com (Q. Duan)

Tel: +86-431-85583176

## S1 Experimental Method

### S1.1 Materials

All chemical reagents (including  $CoCl_2 \cdot 4H_2O$ , ethanol, KOH, methanol, polyvinyl alcohol) were purchased from reliable sources (Aladdin Industrial Co., Shanghai; Sinopharm Chem. reagent Co. Ltd, China; Sigma Andrich) and used as received. All the chemicals were analytical grade in purity. Graphene oxide (GO) was synthesized by a modified Hummers Method [S1]. De-ionized water was obtained from an ultrapure purification system. The zinc foil (99.98% metal basis) was obtained from Alfa Aesar and the light emitting diode (LED) (5 mm size, ~3 V), LED bike lamp (45×20 mm, 4.2 V) and LED scroll displaying screen (93 mm×32 mm, 4.7 V) were obtained from the local supplier.

# S1.2 Synthesis of 5, 10, 15, 20-Tetrakis (4-sodiosulfophenyl)-21H, 23H-Porphyrin (TSPP)

5, 10, 15, 20-Tetraphenyl-21H, 23H-porphyrin (TPP) was synthesized following the Adlers Method [S2]. TPP (0.5 g, 0.8 mmol) was dissolved in  $H_2SO_4$  (17 mL, 0.32 mol) under reflux and heating conditions (120 °C) for 2h. After cooling to room temperature, the reaction mixture was poured into 300 mL deionized water and regulated the pH to 7-8 by using NaOH. Thereafter, the as-obtained solution was concentrated and filtered to remove the Na<sub>2</sub>SO<sub>4</sub>. Subsequently, the resulted solution was added into methanol and filtrated for several times to remove the precipitated Na<sub>2</sub>SO<sub>4</sub>. Finally, the crude compound was further purified by recrystallization from methanol and acetone for three times to obtain the purified TSPP.

## S1.3 Synthesis of Cobalt (II) 5, 10, 15, 20-tetrakis (4-sodiosulfophenyl)-21H, 23H-porphyrin (TSPPCo)

TSPP (0.2 g, 0.2 mmol) and CoCl<sub>2</sub>·4H<sub>2</sub>O (0.2 g, 1 mmol) were dissolved in 150 mL deionized water and heated to reflux for 4 h. After that, the mixture solution was concentrated and dissolved in methanol. At last, the resulted product was dried under vacuum for 12 h to obtain the TSPPCo.

### **S1.4 Characterization**

The microstructures of the nanomaterials were observed by scanning electron microscopy (SEM Hitachi S-4800) and transmission electron microscope (TEM) recorded on a Tecnai G2 operating at 200 kV. The crystal phases were evaluated by X-ray diffraction (XRD) patterns recorded on a Rigaku-Dmax 2500 diffractometer with Cu Ka radiation. FTIR measurements performed on a Bruker IFS 66V/S spectrometer using KBr pellets. X-ray photoelectron spectroscopy (XPS) analysis conducted with ESCALAB MK II X-ray instrument was used to analyze the composition of the nanomaterials. Raman spectra were collected with a Renishaw 2000 model confocal microscopy Raman spectrometer.

#### **S1.5 Electrochemical Measurements**

The recorded potentials versus SCE were converted to a RHE scale based on the Nernst equation ( $E_{RHE}=E_{SCE}+0.241+0.059$  pH). To prepare the working electrode, 5 mg of Co<sub>9</sub>S<sub>8</sub>/NSG-700 was ultrasonically dispersed in ethanol (1 mL) with Nafion solution (50 µL) to generate a uniform ink. 10 µL of the catalyst slurry was dropped onto the surface of the electrode and then dried at the room temperature for the measurements of ORR/OER.

According to the LSV curves of ORR at the different potentials, the electron transfer number (n) was calculated according to the Koutecky-Levich (K-L) equations:

$$\frac{1}{J} = \frac{1}{J_D} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{nFkC_{O_2}}$$
$$B = 0.62nFC_{O_2} (D_{O_2})^{2/3} v^{-1/6}$$

Where J is the measured current density using RDE, while  $J_D$  and  $J_K$  are the diffusionand kinetic-limiting current density, respectively. n is the number of transferredelectron per oxygen molecule and F is the Faraday constant (96,485 C mol<sup>-1</sup>). In addition,  $\omega$  reflects the rotation rate and k is the electron transfer rate constant. Meanwhile, B represents the slope of the following equation. Moreover,  $C_{O_2}$  is the bulk concentration ( $1.1 \times 10^{-3}$  mol cm<sup>-3</sup> for 0.5 M H<sub>2</sub>SO<sub>4</sub> aqueous solution and  $1.2 \times 10^{-3}$  mol cm<sup>-3</sup> for 0.1 M KOH aqueous solution), while the  $D_{O_2}$  is the diffusion coefficient ( $1.4 \times 10^{-5}$  cm<sup>2</sup> s<sup>-1</sup> for 0.5 M H<sub>2</sub>SO<sub>4</sub> solution and  $1.9 \times 10^{-5}$  cm<sup>2</sup> s<sup>-1</sup> for 0.1 M KOH solution). Besides, v is the kinetic viscosity of solution (0.01 cm<sup>2</sup> s<sup>-1</sup> for both 0.5 M H<sub>2</sub>SO<sub>4</sub> solution and 0.1 M KOH solution).

## **S2** Supplemental Figures







Fig. S2 The <sup>1</sup>H-NMR image of TSPP



Fig. S3 UV/Vis absorption spectra of TSPP, TSPPCo and TSPPCo/GO



**Fig. S4 a** FTIR spectra of TPP, TSPP and TSPPCo. **b** FTIR spectra of Co<sub>9</sub>S<sub>8</sub>/NSG-700 before and after carbonization



**Fig. S5** Nitrogen adsorption and desorption isotherms of NSG-700, Co<sub>9</sub>S<sub>8</sub>/NSG-600, and Co<sub>9</sub>S<sub>8</sub>/NSG-800



Fig. S6 TG curve of Co<sub>9</sub>S<sub>8</sub>/NSG-700 S4/S9



Fig. S7 SEM images of a Co<sub>9</sub>S<sub>8</sub>/NSG-600 and b Co<sub>9</sub>S<sub>8</sub>/NSG-800



Fig. S8 SEM image of Co<sub>9</sub>S<sub>8</sub>/C-700



Fig. S9 Particle size distribution of Co<sub>9</sub>S<sub>8</sub>/NSG-700 S5/S9



**Fig. S10** LSV curves of **a** Co<sub>9</sub>S<sub>8</sub>/NSG-600, Co<sub>9</sub>S<sub>8</sub>/NSG-700, Co<sub>9</sub>S<sub>8</sub>/NSG-800 and **b** Co<sub>9</sub>S<sub>8</sub>/NSG-700-0.5, Co<sub>9</sub>S<sub>8</sub>/NSG-700, Co<sub>9</sub>S<sub>8</sub>/NSG-700-1.5



**Fig. S11 a** LSV curves of Co<sub>9</sub>S<sub>8</sub>/NSG-600 at different rotating rates. **b** K-L plots and the electron transfer number (insert) obtained from RDE results of Co<sub>9</sub>S<sub>8</sub>/NSG-600. **c** LSV curves of Co<sub>9</sub>S<sub>8</sub>/NSG-800 at different rotating rates. **d** K-L plots and the electron transfer number (insert) obtained from RDE results of Co<sub>9</sub>S<sub>8</sub>/NSG-800



Fig. S12 OER polarization curves of  $Co_9S_8/NSG$ -700 before and after a continuous 2000-cycle CV scan



Fig. S13 a SEM image and b TEM image of Co<sub>9</sub>S<sub>8</sub>/NSG-700 after OER test



Fig. S14 High resolution spectra: a N 1s, b Co 2p and c S 2p of Co\_9S\_8/NSG-700 after the OER catalytic process



**Fig. S15 a** Open-circuit plots of assembled rechargeable Zn-air battery of Pt/C-RuO<sub>2</sub> catalysts. **b** Photograph of open-circuit potential

**Table S1** Elemental contents of C, O, N, S and Co in the Co<sub>9</sub>S<sub>8</sub>/NSG-700 before andafter OER test determined by XPS analysis

| Catalyst                                           | C (at%) | S (at%) | N (at%) | O (at%) | Co (at%) |
|----------------------------------------------------|---------|---------|---------|---------|----------|
| Co <sub>9</sub> S <sub>8</sub> /NSG-700 before OER | 89.38   | 2.16    | 2.89    | 5.12    | 0.45     |
| Co <sub>9</sub> S <sub>8</sub> /NSG-700 after OER  | 72.2    | 2.07    | 3.57    | 21.65   | 0.51     |

| Cotolysta                            | Loading (mg cm <sup>-2</sup> ) | ORR    |           | OER        | $\Delta E$           |                         |
|--------------------------------------|--------------------------------|--------|-----------|------------|----------------------|-------------------------|
| Catalysis                            |                                | Eonset | $E_{1/2}$ | $E_{j=10}$ | (E <sub>j=10</sub> - | References              |
|                                      |                                | (V)    | (V)       | (V)        | $E_{1/2}$ ) (V)      |                         |
| Co <sub>9</sub> S <sub>8</sub> /NSG  | 0.25                           | 0.92   | 0.79      | 1.61       | 0.82                 | This work               |
| Co <sub>9</sub> S <sub>8</sub> /NSPG | 0.283                          |        | 0.8       | 1.51       | 0.82                 | ACS Sustainable Chem.   |
|                                      |                                |        |           |            |                      | Eng. 2017, 5, 9848-9857 |
| Co <sub>9</sub> S <sub>8</sub> @NSCM | 0.15                           | 0.97   | 0.81      | 1.60       | 0.79                 | Nanoscale 2018, 10,     |
|                                      |                                |        |           |            |                      | 2649-2657               |
| Co-N-pCNs                            | 0.25                           | 0.96   | 0.80      | 1.63       | 0.83                 | ChemCatChem. 2017, 9,   |
|                                      |                                |        |           |            |                      | 1601-1609               |
| N-GCNT/FeCo                          | 0.2                            | 1.03   | 0.92      | 1.73       | 0.81                 | Adv. Energy Mater.      |
|                                      |                                |        |           |            |                      | 2017, 7, 1602420        |
| Co <sub>3</sub> O <sub>4</sub> /NPGC | 0.2                            | 0.97   | 0.84      | 1.68       | 0.84                 | Angew. Chem. Int. Ed.   |
|                                      |                                |        |           |            |                      | 2016, 55, 4977-4982     |
| NiCo/PFC                             | 0.13                           | 0.92   | 0.79      | 1.63       | 0.84                 | Nano Lett. 2016, 16,    |
|                                      |                                |        |           |            |                      | 6516-6522               |
| CoS <sub>x</sub> @PCN/rGO            | 0.408                          |        | 0.78      | 1.57       | 0.79                 | Adv. Energy Mater.      |
|                                      |                                |        |           |            |                      | 2018, 8, 1701642        |
| CuCo <sub>2</sub> S <sub>4</sub> NSs | 0.2                            | 0.90   | 0.70      | 1.52       | 0.82                 | Nanoscale 2018, 10,     |
|                                      |                                |        |           |            |                      | 6581-6588               |

Table S2 A survey of the catalytic performance of various bifuctional electrocatalysts

Notes: ORR and OER Data reported in these works are normalized into reversible hydrogen potential (RHE).

| Catalysts                           | Loading<br>(mg cm <sup>-2</sup> ) | Peak Power<br>(mW cm <sup>-2</sup> ) | Open circuit<br>potential (V) | References                                                         |
|-------------------------------------|-----------------------------------|--------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Co <sub>9</sub> S <sub>8</sub> /NSG | 1.0                               | 72.4                                 | 1.42                          | This work                                                          |
| N-GRW                               | 0.5                               | 65                                   | 1.46                          | <b>Sci. Adv.</b> 2016, 2, e1501122                                 |
| N-CN9                               | 1.0                               | 41                                   | 1.13                          | <b>Electrochim. Acta.</b> 2017, 247, 1044-1051                     |
| NPMC                                | 0.5                               | 55                                   | 1.48                          | <b>Nat. Nanotech.</b> 2015, 10, 444-452                            |
| S, N-Fe/N/C-CNT                     | 1.25                              | 102.7                                | 1.35                          | <b>Angew. Chem. Int. Ed.</b> 2017, 56, 610-614                     |
| N8-VA-CNTs/GF                       | 1.3                               | 67                                   | 1.45                          | <b>J. Mater. Chem. A</b> 2017, 5, 2488-2495                        |
| c-CoMn <sub>2</sub> /C              | 2.0                               | 79                                   |                               | <b>Nat. Commun.</b> 2015, 6, 7345                                  |
| NiFeO@MnO <sub>x</sub>              | 0.25                              | 81                                   | 1.32                          | <b>ACS Appl. Mater.</b><br><b>Interfaces</b> 2017, 9,<br>8121-8133 |
| Fe@C-NG/NCNT                        | 1.0                               | 101.3                                | 1.37                          | <b>J. Mater. Chem. A</b> 2018, 6, 516-526                          |

Table S3 A survey of the performance of Zn-air batteries with various electrocatalysts

### **S3 References**

[S1] W.S. Hummers, R.E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc. **80**(6), 1339 (1958). https://doi.org/10.1021/ja01539a017

[S2] A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. **32**(2), 476 (1967). https://doi.org/10.1021/j001288a053