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HIGHLIGHTS

® The self-repairing polyetherimide (PEI)-functionalized polyamide-imide (PAI@PEI) nanofiber membrane with a thermal-gated func-

tion was designed to enhance the thermal safety properties of lithium metal batteries.

o The PAI@PEI membrane with the polar amide and imide groups facilitates Li* dissociation and transport, which is essential for sup-

pressing dendrite growth.

® The aperture-restored PAI@PEI-based LillLi cell exhibits an exceptional Li* transference number of 0.71 and an excellent cycling

stability at 1 mA cm™2 for over 750 h.

ABSTRACT The internal heat
generation and the growth of lith-
ium dendrites have raised severe
safety issues in lithium metal bat-
teries (LMBs), which significantly
hinder their widespread adoption.
Therefore, it is critical to develop
intelligent separators to improve

the security and performance of

LMBs. Here, we engineer a self-

repairing polyetherimide (PEI)-functionalized polyamide-imide (PAI@PEI) nanofiber separator with a thermal-gated function, in which
the thermoplastic PEI core has an automatically thermal shutdown function via intelligent closure of apertures under high temperature,
while the thermosetting PAI shell can drive the remodeling of PEI to restore its apertures. The PAI@PEI separator showcases the topmost
aperture-closing temperature of 400 °C compared to the cutting-edge separators that typically have an aperture-closing temperature below
200 °C. Morphological characterization confirms that the PAI@PEI separator with a closed aperture can recover its apertures at 350 °C,
endowing the PAI@PEI separator with a unique self-repairing function to enhance the longevity and safety of LMBs. Meanwhile, density
functional theory calculations reveal that the polar amide and imide groups in PAI@PEI separator, both before and after aperture restora-
tion, can efficiently facilitate Li-ion dissociation and transportation for suppressing lithium dendrite growth. As a result, the aperture-
restored PAI@PEI separator (R-PAI@PEI) demonstrates significantly improved overall electrochemical performance. Specifically, the
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R-PAI@PEI-based LillLi cell exhibits an exceptional Li-ion transference number of 0.71 and an excellent cycling stability at 1 mA cm™2

for over 750 h, which significantly outperform commercial and state-of-the-art separator-based LMBs (typically below 0.65 and 500 h,
respectively). Importantly, the R-PAI@PEI-based LillNCM523 battery still exhibits an impressive specific capacity of 99.7 mAh g~! at
5C and maintains 90% of its capacity after 100 cycles. These results underscore the feasibility of designing functional separator, opening

a new avenue for next-generation highly safe LMBs separators.

KEYWORDS Lithium metal batteries; Separator; Thermal shutdown; Self-repairing; Dendrite

1 Introduction

Driven by the global demand for energy efficiency and envi-
ronmental sustainability, electrochemical energy storage tech-
nologies are advancing rapidly with the aim of achieving high
capacity, long cycle life, and fast charge rates [1-8]. In this
context, lithium metal batteries (LMBs) have gained wide-
spread attention due to their high theoretical specific capacity
and low electrochemical potential [9]. However, safety issue
remains a critical challenge in practical applications of LMBs
[10]. On the one hand, the root cause of safety issues in LMBs
is internal heat generation during operation, which can be
caused by overcharging, internal short-circuiting, or vehicle
collisions, potentially triggering safety accidents [11]. Specifi-
cally, separators play a pivotal role in enhancing the safety and
performance of LMBs by facilitating efficient ionic transport
while preventing direct contact between the anode and cath-
ode [12, 13]. On the other hand, the uncontrolled growth of
Li dendrites during LMBs charge/discharge cycles notably
impairs the coulombic efficiency (CE) and lifespan of LMBs
[14, 15]. The formation of Li dendrites can penetrate polymer-
based separator, causing internal short circuit and even ther-
mal runaway or combustion. Currently, polyethylene (PE) and
polypropylene (PP) separators are widely used in LMBs due
to low cost, electrochemical stability, and acceptable mechani-
cal strength [16]. However, the poor thermal stability of PE
and PP poses a critical safety concern to their applications in
practical LMBs due to the potential internal short circuit and
thermal runaway at elevated temperatures [17]. As a result, the
development of heat-resistant functional separators is pivotal
to enhance the security and performance of LMBs [18-23].
Considerable efforts have been dedicated to enhancing
battery safety by designing the advanced separators with a
thermal shutdown capacity, mainly including the polymer
melt and organic phase-change materials as an overheating-
response layer for closing apertures of separator [24-29].
However, the thermal shutdown function of these separators
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was irreversible, which means that the apertures of separa-
tors were permanently closed, resulting in the inactivation
of LMBs [30]. This limitation underscores the necessity for
separators with reversible thermal-responsive properties. In
addition, Li dendrite penetration remains a pervasive threat,
necessitating strategies to homogenize Li deposition [31].
To mitigate this issue, it is essential to regulate Li deposi-
tion and prevent uneven growth. Multiple strategies have
been developed to mitigate dendrite growth in commercial
polyolefin-based separators, including mechanical blocking
of Li dendrites, regulation of Li-ion (Li*) deposition, and
optimization of Li* transport pathways [32-38]. Given the
thermal instability and electrolyte incompatibility of poly-
olefin materials, the development of heat-resistant polymer
separators with polar structural units is crucial to suppress
Li dendrite formation [39, 40]. However, research on multi-
functional separators that integrate both thermal responsive-
ness and dendrite suppression remains limited.

Here, we engineer a smart polyamideimide shell-encap-
sulated polyetherimide-core nanofiber separator (PAI@PEI)
with a thermal-gated function, wherein the PEI core exhibits
an automatic thermal shutdown feature by closing separa-
tor’s apertures under high temperature conditions, while the
PAI shell facilitates the remodeling of the PEI core to restore
its apertures. Therefore, the PAI@PEI separator exhibits
an unprecedented aperture-closing temperature of 400 °C,
which is significantly higher than that of all conventional
separators (typically below 200 °C). Furthermore, scanning
electron microscope (SEM) images confirm that the PAI@
PEI separator can recover its apertures at temperatures of
350 °C. Simultaneously, the polar amide and imide groups
of PAI and PEI can efficiently facilitate Li* dissociation and
regulate Li* uniform transport, as evidenced by the strong
binding energies with Li* (—3.29 eV for PAl and—3.81 eV
for PEI) via the density functional theory (DFT) calcula-
tions. Attributing to the exceptional merits, the LillLi cell
using a R-PAI@PEI-based separator demonstrates an
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outstanding Li* transference number of 0.71, along with
remarkable cycling stability at 1 mA cm™2, lasting for over
750 h. These remarkable properties provide excellent spe-
cific capacity (99.7 mAh g~ at 5C) for R-PAI@PEI-based
LilINCM523 batteries, along with 100-cycle battery stability
at 1C, maintaining 90% of its capacity.

2 Experimental Section
2.1 Preparation of PAI@PEI Nanofiber Membrane

To prepare a homogeneous 12 wt% polyamide acid (PAA)
solution, 2.1489 g of BPDA was gradually added into a 50 mL.
DMAC solution containing 1.9570 g of DABA. The mixture
was vigorously stirred at 0—10 °C for 48 h, followed by stand-
ing for degassing. Meanwhile, a 20 wt% polyetherimide (PEI)
core solution was prepared by dissolving 5 g of PEI in a 50 mL
of N-methyl-2-pyrrolidone (NMP) and stirring mechanically
at 120 °C for 6 h. Both the PAA shell precursor and PEI core
solutions were then allowed to stand before being loaded
into separate syringes equipped with stainless-steel needles.
Coaxial PAA @PEI nanofiber nonwovens were fabricated via
electrospinning. The voltage was adjusted between 25 and
30 kV, and the collector rotation speed was set to 350 rpm.
Following electrospinning, the PAA @PEI nanofiber separator
was thermally treated at 300 °C for 120 min to yield the final
PAI@PEI nanofiber separator.

2.2 Characterization

The morphology of the PAI@PEI fibrous composite films,
both before and after hot-pressing, was analyzed using a
scanning electron microscope (SEM, Hitachi S-4800-I).
The chemical composition of the composites was investi-
gated using Fourier-transform infrared spectroscopy (FT-IR,
Nicolet 8700). Mechanical strength and puncture strength
were evaluated using a universal tensile testing machine
(INSTRON 3344), and the puncture strength test employed a
steel needle with a diameter of 1.0 mm and a tip radius of 0.5
mm at a speed of 100 mm min~". The differential scanning
calorimetry (DSC, TA Instruments Q200) was employed to
assess the melting behavior. Thermal stability was evaluated
through thermogravimetric analysis (TGA, TA Instruments
Q50) under an air atmosphere. Dimensional stability was

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

measured by thermomechanical analysis (TMA, TA Instru-
ments Q800). Wettability of the electrolyte was quantified
using contact angle measurements (OCA20, Data Physics,
Germany). Glass transition temperature (T,) was determined
using a DMA (Q800 TA Instruments, USA), with the sample
heated from room temperature to 500 °C at 5 °C min™' under
nitrogen. The X-ray photoelectron spectroscopy (XPS) was
used for evaluating the electrochemical stability of separator
during long-term cycling. The air permeability of the separa-
tors was measured using a Gurley densometer (GTR-704R
II), where the Gurley number, representing the time required
for 100 mL of gas to pass through a 6.45 cm? area under 1.21
kPa pressure, was used to evaluate pore connectivity.

2.3 Electrochemical Measurement

The battery tests, based on a LillseparatorllLi configuration,
were conducted under DC polarization conditions. The
exchange current density (i) was measured by linearly fit-
ting the Tafel plots at a sweep rate of 1.0 mV s~! from —200
to 200 mV. The interfacial resistance of the battery was
measured using AC impedance. The Li* transference num-
ber (#;*) was determined by the Bruce-Vincent method with
an applied potential of AV=10 mV for 1800 s, and the result
was calculated using Eq. (1):

tie = L((AV = IhRy ) /1o (AV = IR)) M

where I, and I represent the currents at initial and steady
states, respectively, while R, and R denote the interfacial
resistances at the initial and steady states. Galvanostatic
cycling of LillLi symmetric cells were conducted at a current
density of 1 mA cm™2. The polarization voltage of the cells
increased progressively with current density, ranging from 0
to 8 mA cm™~2, with increments of 0.2 mA cm™2, to evaluate
the critical current density (CCD) of the LillLi cells. The
rate performance of the LillLi cell was investigated at cur-
rent densities ranging from 0.5 to 2 mA cm™2 with charge/
discharge durations of 30 min. LillCu cells were assembled
to investigate the average coulombic efficiency (CE,,,), the
nucleation overpotential, and the Sand’s time. The charge/
discharge performance was systematically assessed at vari-
ous current rates using a battery testing system (LAND
CT2001A). Long-term cycling stability was evaluated at
a constant rate of 1C. All coin-type cells (CR2032) were
fabricated in an argon-filled glovebox to maintain an inert
atmosphere. The commercial cathode material consists of
NCM523, carbon black (Super P), graphite (KS-6), and
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polyvinylidene fluoride (PVDF) as the binder. Additionally,

the active material loading was 8.51 mg cm™2.

3 Results and Discussion

3.1 Design of PAI@PEI Core-shell Nanofibers
and Characterization

Polyamide-imide (PAI) was synthesized by the polyconden-
sation reaction between dianhydride and diamine (Fig. S1),
which is stable below 400 °C due to its thermosetting nature
(Fig. S2). Therefore, we devised a core—shell structural
PAI@PEI nanofiber separator with a thermal-gated func-
tion via electrostatic coaxial co-spinning (Fig. 1a), which
employs the commercial PEI as the core and PAI as a shell.
This unique design utilizes the thermoplastic PEI core to
close apertures for endowing the PAI@PEI nanofiber separa-
tor with an automatically thermal shutdown function, while
the rebound resilience of PAI facilitates the remodeling of
the PEI core to restore separator’s apertures. Specifically, as
shown in Fig. 1b, the PAI@PEI membrane shows an intrin-
sic self-recovery capability via 350 °C-triggered reconfigu-
ration of its apertures, resulting from the shape memory of
PATI shell. Significantly, polyimide (PI), a typical example
of emerging shape-memory polymer materials, is renowned
for its exceptional mechanical properties, thermal stability,
and shape memory capabilities [41]. The PAI shell, a deriva-
tive of PI, can deform under external pressure at 400 °C
and returns to its original shape once the external stress
is released at 350 °C, which is close to its glass transition
temperature of 371 °C (Fig. S3) [42, 43]. Fourier-transform
infrared spectroscopy (FTIR) analysis (Fig. S4) reveals dis-
tinct absorption peaks corresponding to the C=O stretch at
1669 cm™' and N-H bond at 3364 cm™" of the PAI amide
group. Meanwhile, the PAI@PEI also displays the character-
istic peaks of C—O—C (1104 and 1270 cm™") of PEL These
characteristic peaks confirm the successful integration of
PEI and PAI within the PAI@PEI separator. Besides, the
polar amide and imide groups of PAI and PEI can serve as
the adsorption sites of Li* to build transport channel, regu-
lating Li* uniform transport (Fig. 1¢). To further examine
the interaction between PAI and PEI with LiPF, both mate-
rials were immersed into electrolyte solutions (PAI/LiPF,
and PEI/LiPF), followed by FTIR analysis (Fig. 1d). The
observed attenuation and shifts in the characteristic peaks,
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particularly v, (C=0) and v, (C-O-C), signify strong inter-
actions between PAI and PEI with Li* [44]. Consequently,
the smart PAI@PEI separator provides abundant adsorp-
tion sites for dissociating Li* from the electrolyte, thereby
homogenizing Li* flux and further suppressing Li dendrite
growth. Besides, the as-prepared PAI@PEI membrane
exhibits a randomly arranged and uniformly distributed sur-
face microstructure (Fig. le, f), while the cross-sectional
SEM images reveal a clear core—shell structure (Fig. 1g, h).
Notably, the synergetic effect of PAI chain with a hydrogen
bond and the ether bond-containing PEI backbone among
the homogeneous PI-based core—shell nanofiber mitigates
interface defect. As a result, the PAI@PEI membrane
achieves enhanced tensile strength (30 MPa) and elastic
modulus (0.70 GPa) (Fig. S5). The high elastic modulus of
the PAI@PEI membrane helps to impede the growth of Li
dendrites, thus ensuring the secure cycling of LMBs.

3.2 Thermal Response Function and Thermostability

The thermal-gated function of the PAI@PEI membrane
under heat stimulation and specific pressure is illustrated
in Fig. 2a. The surface morphology of the PAI@PEI
membrane is displayed between 350 and 400 °C, illus-
trating the gradual transition from open pores to closed
apertures (Fig. S6). At 400 °C, the PAI shell extrudes the
PEI melt, forming a flat core—shell nanofiber and thus
creating a closed-aperture structure. When the closed-
aperture PAI@PEI membrane is exposed to temperatures
ranging from 320 to 360 °C (Fig. S7), its porous struc-
ture gradually undergoes a transformation, leading to the
opening of the apertures through a self-driven recon-
figuration process. Obviously, the PAI@PEI membrane
fully opens its apertures and maintains a compact struc-
ture at 350 °C. The PAI@PEI membrane after restoring
aperture is simply referred as R-PAI@PEI. This change
is attributed to the thermoplastic properties of PEI and
the resilience of PAI, and the PAI shell can facilitate the
nanofiber’s rebound ability at elevated temperatures, as
validated by SEM analysis (Fig. 2a). To further verify the
recoverability of the PAI shell, the entire shape memory
process of a star-shaped film (in its original shape), made
from PAI@PEI, was recorded at high temperature (Fig.
S8), clearly showing the recovery process. The schematic
diagram of the self-recovering mechanism for PAI@PEI

https://doi.org/10.1007/s40820-025-02050-2
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Fig. 1 Schematic diagram of synthesis and structural characterization for smart PAI@PEI separator. a Preparation of PAI@PEI separator via
a coaxial electrospinning strategy. b Schematic illustration of thermal response function of the PAI@PEI separator. ¢ Schematic diagram of the
interaction between Li* with PAI and PEL d FTIR spectra of PAI/LiPF, and PEI/LiPF;. e, f Surface and g, h cross-sectional SEM images of the
PAI@PEI membrane

is displayed in Fig. S9. Moreover, the fiber diameters of
PAI@PEI, closed-aperture PAI@PEI (C-PAI@PEI), and
R-PAI@PEI indirectly confirm the reconfiguration pro-
cess of the fibers (Fig. S10a—c), and the aperture diam-
eters of the R-PAI@PEI membrane are smaller than those
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of the PAI@PEI membrane (Fig. S10d, e). Moreover, the
opening and closing aperture test reveals the fine self-
repairing function of PAI@PEI membrane after heating
and cooling cycles (Fig. S11), showing the feasibility of
its thermal-gated self-repair behavior in LMBs. After
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multi-cycle tests, the tensile strength, aperture diam-
eters, puncture strength, porosity, gas permeability, and
ionic conductivity of PAI@PEI-based membrane have
no significant change (Figs. S5, S12, and Table S1),
further verifying the reversible thermal shutdown func-
tion. Notably, the PAI@PEI separator, with its revers-
ible thermal shutdown capability, significantly achieves
a record closed-aperture temperature of 400 °C, exceed-
ing values reported for cutting-edge separators (Fig. 2b
and Table S2, respectively) [11, 25-27, 29, 45-64]. This
elevated shut-off temperature not only enhances battery
safety at higher temperatures, but also delays the critical
point for triggering thermal runaway under extreme con-
ditions such as overcharging, internal short circuits, or
external thermal shock, providing a longer response win-
dow for safety systems. The DC voltage of the PAI@PEI
separator before and after thermal treatment was meas-
ured, and both the PAI@PEI and R-PAI@PEI separators
can operate normally, as shown in Fig. 2c. Furthermore,
the presence of polar amide and imide groups in PAI and
PEI endows the PAI@PEI and R-PAI@PEI separators
with excellent wettability, as indicated by a low contact
angle of 19.27° and 19.40°, as well as rapid electrolyte
absorption within 10 s (Figs. 2d and S13, respectively).
In contrast, the Celgard membrane exhibits a higher con-
tact angle of 42.4°, with electrolyte droplets maintain-
ing their original shape due to its intrinsic hydrophobic-
ity. Consequently, the PAI@PEI-based separator shows
superior electrolyte absorption (Fig. S14). The PAI@PEI
and R-PAI@PEI separators also demonstrate improved
electrolyte uptake (480.8% and 448.2%, respectively) and
porosity (88.3% and 73.0%, respectively) compared to
the Celgard membrane, which has electrolyte uptake of
91.1% and porosity of 40.7%, as shown in Fig. 2e. The
thermostability of separators is a critical factor in deter-
mining the safety of batteries, especially during thermal
runaway events, where separator shrinkage or ignition
can compromise the battery’s security. Considering the
structural consistency of PAI@PEI and R-PAI@PEI, the
thermal properties of PAI@PEI were investigated solely
for comparison with the performance of the Celgard
membrane. Thermogravimetric analysis (TGA) of the
PAI@PEI coaxial nanofiber membrane only exhibits a
5% weight loss at 530 °C. In comparison, the Celgard
membrane begins to decompose at approximately 240 °C,

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

with complete mass loss occurring by 400 °C (Fig. S15).
These results highlight the superior thermal stability of
PAI@PEI separator. Further supporting these findings,
thermomechanical analysis (TMA) emphasizes the excep-
tional dimensional stability of the PAI@PEI separator,
which maintains its structural integrity up to 300 °C (Fig.
S16). In contrast, the Celgard separator experiences sig-
nificant thermal deformation at around 150 °C due to the
softening of the polyolefin matrix. Differential scanning
calorimetry (DSC) analysis shows a small melting peak
at 220 °C for PAI@PEI separator due to the presence of
thermoplastic PEIL. This behavior sharply contrasts with
the Celgard separator, which shows a distinct melting
peak at approximately 168 °C (Fig. S17). The thermal
shrinkage of the separators was assessed over a 2 h period
at various temperatures. The PAI@PEI separator displays
exceptional dimensional stability at 200 °C (Fig. S18).
In contrast, the Celgard separator undergoes significant
shrinkage and deformation at 150 °C and completely
melt at 200 °C. Ignition experiments confirm the supe-
rior flame-retardant properties of the PAI@PEI-based
separator (Fig. S19), which exhibits self-extinguishing
behavior due to its aromatic heterocyclic structure. In
contrast, the polyolefin-based Celgard separator ignite
rapidly and melt upon flame exposure. These findings
underscore the superior thermal stability and flame resist-
ance of the PAI@PEI separator, highlighting its potential
for enhancing the safety of LMBs.

3.3 Electrochemical Performances Test

The lithium-ion transference number (#;;*) was determined
using electrochemical impedance spectroscopy (EIS) on
symmetric LillLi cells with a potential polarization. The
PAI@PEI and R-PAI@PEI separators exhibit higher 7 ;* val-
ues of 0.66 and 0.71, respectively, compared to the polyole-
fin-based Cegard separator with a #; ;* value of 0.43 (Figs. 3a
and S20). The polar PAI and PEI units of the separator facili-
tate Li* desolvation via ion—dipole interactions between the
imide/amide/ether groups and Li*, improving Li* mobil-
ity. In contrast, the Celgard separator exhibits a slow Li*
migration because of its non-polar structure, which promotes
the formation of larger solvation clusters within electrolyte.
The large-scale solvated Li™ clusters can shuttle through the
Cegard separator, resulting in reduced Li* mobility, a strong
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interfacial electric field, and uneven Li* deposition [65]. The
polar amide and imide groups of the PAI@PEI separator
provide additional active sites for Li* adsorption, weaken-
ing Li*-solvent interaction and facilitating faster Li* trans-
port. The PAI@PEI and R-PAI@PEI separators demonstrate
lower areal resistance than the Celgard separator (Fig. S21),
reflecting their superior ionic conductivity of 1.60 and 1.63
mS cm™!, respectively. These values significantly surpass
the Celgard’s conductivity, which is only 0.79 mS cm™".
The high ionic conductivity of PAI@PEI and R-PAI@PEI
separators is primarily attributed to their high porosity, low
tortuosity, enhanced wettability, and increased Li™ mobility,
all of which are facilitated by the PAI and PEI matrix. This
increased Li* mobility also plays a crucial role in uniform Li
deposition, thereby inhibiting the formation of Li dendrites.
Further analysis of the impedance of LillLi cells reveals the
interfacial stability of the PAI@PEI separator (Fig. S22).
After one cycle, cell with the Celgard separator shows an
elevated interfacial resistance of approximately 124 Q, com-
pared to 60 and 64 Q observed in R-PAI@PEI and PAI@
PEI separators, respectively. After 10 cycles, the resistance
for the Celgard decreases to around 70 Q, while R-PAI@
PEI and PAI@PEI separators maintain consistently lower
resistances of 39 and 42 Q, respectively. The lower resist-
ance of the R-PAI@PEI and PAI@PEI separators indicates
a more stable interface with the Li anode, contributing to
enhanced cycling performance. The exchange current den-
sity (i) of LillLi cells was also calculated from the Tafel
profiles, reflecting the kinetic resistance associated with the
Li deposition/stripping process (Fig. 3b). The i, values for
R-PAI@PEI (0.21 mA cm~2) and PAI@PEI (0.20 mA cm ™)
surpass that of Celgard (0.12 mA cm™2), suggesting a faster
electrochemical reaction at the SEI/lithium interface.

To evaluate the cycling stability of these separators, gal-
vanostatic cycling tests were conducted on LillLi symmetric
cells equipped with various separators (Fig. 3c). The Cel-
gard-based LillLi cell exhibits pronounced voltage fluctua-
tions during Li stripping and deposition cycles, indicating
the growth of Li dendrites due to the nonuniform ion flux. In
contrast, the LillLi cells with the R-PAI@PEI and PAI@PEI
separators maintain consistent voltage profiles over 750 h at
the current density of 1 mA cm~2, demonstrating effective
suppression of dendrite growth. This is further supported
by the smooth surface microstructure of the cycled Li metal
in LillLi cells using the R-PAI@PEI and PAI@PEI separa-
tors (Fig. S23). In contrast, cell using the Celgard separator
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displays rough Li metal surfaces. Simultaneously, PAI@
PEI-based LillLi cells separator also exhibits good cycling
stability compared with the Celgard separator at the current
density of 2 and 3 mA cm™2 (Fig. S24). Moreover, the PAI@
PEI-based LillLi cells also exhibit lower plating/stripping
overpotentials than that of Celgard separator under vari-
ous current densities (0.5-2 mA cm™?) (Fig. S25). Impor-
tantly, both the Li* transference number and exceptional
cycling stability at 1 mA cm~2 of R-PAI@PEI-based LillLi
cells significantly outperform those of modified PI-based,
polyolefin-based, and heat-resistant separators (e.g., PVDF,
PEEK, and PAN), as shown in Fig. 3d and Table S3. Criti-
cal current density is an important parameter for evaluating
Li* deposition kinetics. As shown in Fig. S26, the LillLi
cell with the Celgard membrane experiences a short circuit
at a current density of 4.4 mA cm~2, while LillLi cells with
the PAI@PEI and R-PAI@PEI membranes reach 6.92 and
7.52 mA cm~2, respectively. This demonstrates that PAI@
PEI-based separators can enhance Li* transport kinetics
through the electrode/electrolyte interfaces while facilitat-
ing the uniform Li* distribution and Li dendrite suppres-
sion. To further assess the separator’s ability of inhibiting
Li dendrite growth, the CullLi cells were assembled to
measure nucleation overpotential (Fig. 3e). Cells with the
R-PAI@PEI (~ 54 mV) and PAI@PEI separators (~59 mV)
demonstrate lower nucleation overpotentials compared
to cell with the Celgard (~96 mV) separator. This reduc-
tion in overpotential is directly linked to the suppression
of irregular Li nucleation and enhanced uniformity in Li*
deposition. The electrochemical reversibility of Li deposi-
tion was quantitatively evaluated by analyzing the average
coulombic efficiency (CE,,) in LillCu asymmetric cells. As
shown in Fig. 3f, the cells using the PAI@PEI and R-PAI@
PEI separators exhibit enhanced cycling stability, achieving
a CE

avg

of 77.2% and 82% over 10 cycles, surpassing the
Celgard (67.7%) separator. The morphology of Li deposition
in LillCu cells is shown in Fig. S27. The Celgard separator
leads to significant mossy Li dendrite formation, while cells
with PAI@PEI and R-PAI@PEI separators exhibit smooth,
dense, and uniform Li deposition microstructures. The Cu
foil surfaces reveal that R-PAI@PEI-based and PAI@PEI-
based cells show no accumulation of dead Li, whereas sub-
stantial dead Li is present in LillCu cells with the Celgard
separator (Fig. S28). The Sand’s time was investigated to
verify the impact of separator for ion transport kinetics (Fig.
S29). The voltage changes of LillCu cells with the Celgard,

https://doi.org/10.1007/s40820-025-02050-2
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PAI@PEI, and R-PAI@PEI occur at 7.2, 13.4, and 17.0 h,
respectively. The extended Sand’s time displays enhanced
ion transport capability, suggesting that the PAI@PEI-based
separator effectively improves Li* flux and mitigates den-
drite growth. These results highlight that the R-PAI@PEI
separator, after recovering its apertures, still enables uniform
Li* transport, deposition, and stripping, effectively suppress-
ing dendrite formation.

Density functional theory (DFT) calculations were con-
ducted to further investigate the interaction between PAI@
PEI and Li™, aiming to elucidate the mechanism of Li* depo-
sition. As shown in Fig. 4a, the binding energies (Eg) of Li*
with PEI, PAI, polypropylene (PP), and various electrolytes
(DEC, DMC, and EC) are evaluated and compared. The
binding energies of PAI and PEI with Li* are found to be
notably higher, with values of —3.29 and —3.81 eV, respec-
tively, significantly surpassing those of DEC (—2.06 eV),
DMC (—1.91eV), and EC (-2.18 V). Furthermore, the Eg
of PAI and PEI also exceeds those of PP (—1.26 eV), high-
lighting the enhanced affinity ability of PAI and PEI with
Li*. The strong binding affinity provides abundant active
sites for Li* adsorption, facilitating uniform Li* migration,
in contrast to the Celgard separator, which lacks Li™ attract-
ing functionality. Figure 4b shows the electrostatic poten-
tial, which can conjecture the functional sites for analyzing
the electrostatic interaction between PAI/PEI molecule and
Li", in contrast to the non-polar polypropylene structure.
The negative charges are predominantly localized on the
amide, imide, and ether groups, which serves as the chelat-
ing sites for Li* and further confirms the binding affinity
of PAI and PEI with Li*. Thus, the strong binding affinity
of PAI@PEI-based separator can facilitate Li* dissociation
and regulate Li* uniform transport, effectively suppressing
dendrite formation. Molecular dynamics (MD) simulations
were employed to explore the Li* transport behavior. Two
box systems were constructed, both incorporating the same
liquid electrolyte composition, but with different polymer
layers: one using PP and the other employing the PAI@PEI
polymer layer, as depicted in Fig. 4c, d. The electrolyte sys-
tem in this simulation consists of 1 mol L™! LiPF¢, with
the solvent being a 1:1:1 mixture of EC, DEC, and DMC,
consistent with the experimental setup. The mean square
displacement (MSD) of Li* was then calculated to evaluate
diffusion behavior. The MSD, defined as the deviation of a
particle’s position from its reference point over time, serves
as a measure of the Li* diffusion rate. The MSD curves

© The authors

for the different separators are shown in Fig. 4e. Notably,
the slope of the MSD for Li* is twice as steep in the PAI@
PEI separator + liquid electrolyte (0.097) compared to the
PP separator + liquid electrolyte (0.043), indicating a sig-
nificantly higher migration efficiency of Li* in the PAI@PEI
system. These results further underscore the critical role of
the PAI@PEI separator in enhancing Li* conductivity and
promoting rapid ion transport.

To comprehensively evaluate the practical applicability
of separators in LMBs, the electrochemical performance
of LilINCM523 full cells was investigated. The EIS of
LilINCM523 cells using R-PAI@PEI and PAI@PEI sepa-
rators exhibit charge-transfer resistances of 101 and 108 Q,
respectively, both of which are markedly lower than that
of the Celgard-based cell (157 Q) (Fig. S30). This reduc-
tion in resistance can be attributed to the abundant ion
transport pathways and sufficient electrolyte uptake. Such
structural advantages can enhance interfacial wettability
and accelerate electrochemical kinetics, thereby contrib-
uting to the superior electrochemical performance. Fig-
ure 5a shows the initial discharge profiles of LilINCM523
cells equipped with different separators. Cells equipped
with PAI@PEI and R-PAI@PEI separators demonstrate
superior specific capacities of 173.3 and 173.4 mAh g~!
at 0.1C, respectively, and 149.4 and 149.9 mAh g~! at
1C, respectively, outperforming those with the Celgard
separator (165.1 and 141.5 mAh g~!). Moreover, the rate
performance of LilNCM523 cells also was investigated.
The discharge capacities for cells with PAI@PEI, R-PAI@
PEI and Celgard separators are 172.7, 173.4, and 164.7
mAh g~ at 0.1C, respectively (Fig. 5b), further validating
the practicability and advancement of PAI@PEI before
and after aperture restoration. Notably, during high-rate
cycling tests from 0.1C to 5C, the PAI@PEI and R-PAI@
PEI separators maintain high capacities of 95.1 and 99.7
mAh g! at 5C, exceeding the Celgard-based LilNCM523
cells. Furthermore, upon returning to lower discharge rates
of 1C, 0.5C, and 0.2C, the LilINCM523 cells demonstrate
substantial capacity recovery, indicating robust rate capa-
bility. After 100 cycles at 1C (Fig. 5c), the LilINCM523
cells with the PAI@PEI and R-PAI@PEI separators
exhibit excellent capacity retention of 87.9% and 90.0%,
surpassing that of the Celgard (66.8%) separator-based
cell. SEM images (Fig. S31) reveal that Li metal surfaces
in cells with the PAI@PEI and R-PAI@PEI separators
remain smooth and compact morphology after cycling

https://doi.org/10.1007/s40820-025-02050-2
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test, while cell with the Celgard separator exhibits pro-  LilINCM523 cells (Fig. S32). Overall, the R-PAI@PEI
nounced dendritic formations. The X-ray photoelectron  separator represents a significant advancement in overall
spectroscopy (XPS) verifies the electrochemical stability ~ performance compared to the Celgard (Fig. 5d). Impor-
of the R-PAI@PEI separator during long-term cycling of  tantly, the electrochemical performance of the R-PAI@
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PEI separator is superior to that of the PAI@PEI separa-
tor owing to the smaller and more uniform pore size of
the R-PAI@PEI separator. Figure Se illustrates the Li*
deposition behavior of the R-PAI@PEI and commercial
separators. The straight through-hole structure of the flam-
mable Celgard separator causes uneven Li* distribution
on the Li anode surface, promoting dendritic Li growth
that may puncture the separator and lead to safety risks. In
contrast, the smart R-PAT@PEI can effectively diffuse Li*
through its polar groups and 3D nanofiber network, which
can inhibit dendrite growth. These results demonstrate that
the R-PAI@PEI separator effectively mitigates dendrite
formation and presents the remarkable specific capability
and capacity retention, highlighting its potential for next-
generation high-safety LMBs.

4 Conclusions

In summary, we have engineered a core—shell PAI@PEI
separator, where the PEI core enables the separator to
close its aperture structure at 400 °C, while the PAI shell
facilitates the recovery of the apertures through thermal
triggering at 350 °C. This structure imparts exceptional
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properties to the PAI@PEI-based separator, including high
ionic conductivity (1.63 mS cm™), satisfying Li* transfer-
ence number (0.71), a reduced nucleation overpotential
(54 mV), and an elevated average coulombic efficiency
(82%). The DFT calculation results verify that PAI@PEI
can dissociate the Li* and PF,~ from electrolytes, which
can be adsorbed near the affinity sites of PAI and PEI,
thereby enabling the PAI@PEI-based separator to restrain
the growth of Li dendrites. Therefore, LillLi symmetric
cells with the PAI@PEI-based separator demonstrate mini-
mal voltage polarization during Li plating/stripping cycles
over 750 h. Furthermore, LilINCM523 full cells retain
90.0% of their initial capacity after 100 cycles and deliver
99.7 mAh g~! at a 5C rate. This work provides valuable
insights for designing high-safety functional separators
that can meet the demands of other energy-storage devices
requiring safe and controlled energy delivery.
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