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Uniform Fast‑Kinetic Anode/Cathode Electrolyte 
Interphases Enable High Performance 3C Li‑Metal 
Batteries with > 99.9% Coulombic Efficiencies
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HIGHLIGHTS

•	 4-Fluoro-3-nitrophenylboronic acid, as an additive, has contributed to uniform N-/F-rich interphase layers at both electrodes of the 
lithium metal batteries.

•	 Uniform interphase layers inhibited Li dendrite growth at Li-metal anode, and alleviated uncontrolled electrolyte decomposition and 
active species loss at the LiFePO4 (LFP) cathode.

•	 Li ||Li cells demonstrate enhanced plating/stripping reversibility of >700 h at 1 mA cm−2 and 0.5 mAh cm−2, while Li ||LFP cells can 
be stably cycled for over 500 cycles at 3C rate with a capacity retention of 99.9%, simultaneously maintaining >99.9% coulombic 
efficiencies.

ABSTRACT  Lithium metal batteries (LMBs) represent one of the most 
promising energy storage systems due to unparalleled energy density. However, in 
commercial electrolytes, their practical high-power performance is still hampered 
by unstable electrolyte interfaces, leading to severe anode dendrite growth and 
cathode degradation. Here, 4-fluoro-3-nitrophenylboronic acid is introduced as a 
dual-function additive, contributing to uniform N-/F-rich interphase layers at both 
electrodes of the LMBs. Therefore, in the optimized electrolyte, Li-metal electrodes 
demonstrate enhanced plating/stripping reversibility of > 700 h (vs. 250 h at 1 mA 
cm−2 and 0.5 mAh cm−2) and coulombic efficiency of 98.2% (vs. 84.2%). Moreover, 
the corresponding LMBs achieve 99.9% capacity retention (vs. 44.7%) after 500 
cycles at 3C rate, simultaneously maintaining > 99.9% coulombic efficiencies. 
The impressive fast-charging performance attributes to not only the uniform and 
compact Li deposition at the anode, but also the inhibited uncontrolled electrolyte 
decomposition and active species loss at the cathode due to the robust electrolyte 
interphases. This work highlights that proper electrolyte additive is crucial for fast-charging metal batteries.
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1  Introduction

Lithium ion batteries have been the preferred power 
sources for portable electronic devices, electric vehicles, 
and grid-scale energy storage systems [1]. However, the 
energy density is limited due to single charge intercalation 
mechanism of the graphite anode [2]. Lithium metal, pos-
sessing ultrahigh capacity (3860 mAh g−1) and the low-
est redox potential (− 3.04 V), is recognized as the most 
promising anode for high-energy–density batteries [3–6]. 
But the practical application of Lithium metal batteries 
(LMBs) faces significant challenge of inhomogeneous 
Li deposition which readily forms protruding dendrites. 
The concentrated electric field at the dendrite, known as 
sharp-edge effect, inevitably accelerates uneven Li deposi-
tion and electrolyte decomposition [7]. The dendrites also 
possibly penetrate separators, raising safety concerns of 
internal short circuit and thermal runaway [8]. Therefore, 
the issue of lithium dendrite growth should be properly 
addressed to achieve practical LMBs [9, 10].

Various strategies, e.g., optimizing electrolyte formula-
tions, developing solid-state electrolytes, engineering arti-
ficial solid electrolyte interphase (SEI) layers, designing 
three-dimensional metal deposition frameworks, etc., have 
been extensively explored to control metal deposition behav-
ior and suppress dendrite growth [8, 11–14]. Among them, 
a stable SEI with a variety of inorganic and organic species 
at the electrode–electrolyte interface is effective to inhibit 
metal dendrites [8, 15–23]. Some inorganic interphases in 
the SEIs inhibit lithium dendrite proliferation through elec-
tron tunneling prevention, uniform Li+ transport facilita-
tion, and enhanced mechanical stability [24]. Specifically, 
the lithium fluoride (LiF) interphase usually enhances the 
interface stability, but its low ionic conductivity leads to 
sluggish interfacial kinetics and uneven lithium deposition, 
compromising the fast-charging capability of LMBs [25]. 
In contrast, the lithium nitride (Li3N) interphase effectively 
compensates for the shortcomings of LiF due to high ionic 
conductivity. Therefore, designing SEIs with uniform LiF 
and Li3N interphases is beneficial for achieving high-rate 
charging stability in LMBs [26, 27]. However, the SEIs natu-
rally evolved in conventional electrolytes typically exhibit 
non-uniform thickness and composition, exacerbating local-
ized dendrite proliferation and reducing battery cycle life 
[28–30].

The olivine-structured lithium iron phosphate (LiFePO4, 
denote as LFP afterward), benefiting from large theoreti-
cal capacity (~ 170 mAh g−1), high open-circuit voltage 
(3.45 V vs. Li+/Li), as well as remarkable structural and 
chemical stability, has been widely utilized as cathodes for 
LMBs [1, 31]. However, it faces inherently poor electron 
conductivity and sluggish ion diffusion process in prac-
tical application. Although the capacity of LFP can be 
improved by reducing the particle size and increasing the 
surface area, excessively exposed particles also lead to 
severe interface parasitic reactions, such as loss of active 
species by iron dissolution and structural deterioration [32, 
33]. Some functional additives, e.g., vinyl sulfonyl fluoride 
(VSF), fluoroethylene carbonate (FEC), vinyl ethylene car-
bonate (VEC), lithium difluoro(oxalato)borate (LiDFOB), 
and vinylene carbonate (VC), and N-fluorobenzenesulfon-
imide (NFSI) help to form stable cathode electrolyte inter-
phase (CEI) layers by preferential oxidation to avoid direct 
cathode–electrolyte contact and suppress these interface 
reactions [33–39]. However, conventional organic-rich 
CEIs cannot accommodate substantial volume changes, 
and exhibit insufficient anti-oxidization stability at high 
voltages, leading to continuous fracture during cycling 
[40]. Meanwhile, the additives simultaneously engineer-
ing stable SEIs and CEIs remain elusive in practical car-
bonate-based electrolytes.

In this study, take commercial 1 M LiPF6 EC/DEC 
(v/v = 1) electrolyte (denote as BE afterward) as an 
example, 4-fluoro-3-nitrophenylboronic acid (denote 
as FNPB afterward) is demonstrated as a novel dual-
function electrolyte additive, efficiently evolving uniform 
electrolyte interphases at both lithium metal anode and 
LFP cathode. Different from F-rich or N-rich interphases 
evolved from additives of single functional group (such 
as VSF, FEC, and NFSI), FNPB featuring -BO2-, -NO2, 
and -F functional groups, readily forms LiF/Li3N/LiBOx 
inorganic interphases with high ionic conductivity and 
stability, facilitating Li+ migration and deposition, and 
enhancing the cathode oxidization stability [41–43]. 
The synergistical effect of multiple interphases endows 
both SEI and CEI with enhanced stability and fast Li+ 
conductivity. As illustrated in Scheme 1, FNPB undergoes 
controllable decomposition at interfaces, generating 
uniform, stable SEI and CEI layers that reduce electrolyte 
consumption and enhance lithium-ion transport kinetics, 
in sharp contrast to anode lithium dendrites and cathode 
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active species loss in common commercial electrolytes. 
Consequently, both Li-metal symmetric cells and the 
devices substantiate significantly enhanced reversibility 
and coulombic efficiencies, especially at fast-charging 
rates.

2 � Experimental Section

2.1 � Preparation of Electrolytes and LFP Cathodes

The 4-fluoro-3-nitrophenylboronic acid (FNPB, 95%) was 
purchased from Shanghai Macklin Biochemical Technology 
Co., Ltd. The BE electrolyte was purchased from DoDo 
Chemistry. The electrolyte was prepared by adding proper 
amount FNPB into the BE electrolyte, in which the mass 
percent of additive is controlled at 0, 0.25, 0.5, and 1 wt%. 
Lithium electrodes (400 μm thickness, 14 μm diameter) were 
purchased from China Energy Lithium Co., Ltd. The LFP 
cathodes were prepared by following steps. The LFP powder 
(Canrd), acetylene black and polyvinylidene difluoride were 

mixed in a weight ratio of 8:1:1, then added in N-methyl-
2-pyrrolidone with stirring for 12 h. The electrodes were 
fabricated by pasting the slurry mixture on aluminum foil by 
an automatic thick film coater (AFA-I). The coating film was 
dried in a vacuum chamber at 80 ℃ for 12 h. Subsequently, 
the foil was compressed using an electromotive roller 
(MR-100A) and sectioned to specified dimensions (14 μm 
diameters) with a coin-type cell microtome (T-06). The 
average active material loading is around 4 mg cm−2. All 
materials were used as received.

2.2 � Physiochemical Characterization

The corresponding morphology, composition, and chemical 
bonding were characterized by scanning electron microscope 
(SEM, HITACHI, 30 kV), transmission electron microscope 
(TEM, FEI Tecnai G2 F30, 300 kV), energy dispersion X-ray 
spectrometer (EDS), and X-ray photoelectron spectrometer 
(XPS, Nexsa), respectively. Time-of-flight secondary ion 
mass spectroscopy (TOF–SIMS) depth profiling was also 

Scheme 1   Illustration of uniform anode/cathode electrolyte interphases induced by a dual-function electrolyte additive versus the control one 
accompanied by anode lithium dendrites and cathode active species loss
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performed to get insights of elements involved in the surface 
components of Li-metal and LFP after 50 or 100 cycles. 
Raman spectra of the electrolytes were obtained using a 
RENISHAW inVia Qontor with a 633 nm laser source.

2.3 � Electrochemical Characterization

Li symmetric cells were assembled with Celgard 2500 and 
30 μL electrolyte in the CR 2025. Half cells with LFP as 
the cathode, Li-metal as the anode, and Celgard 2500 as 
separator were assembled in the electrolytes (30 μL) with 
and without additive in the CR 2025. All cells were assem-
bled in an Ar-filled universal glove box with the oxygen 
and water vapor pressure less than 0.1 ppm. Electrochemi-
cal impedance spectroscopy (EIS) measurements were car-
ried out using a CHI 600E electrochemical workstation on 
Li||Li cells, with frequencies ranging from 0.1 to 100 kHz 
with an alternating voltage amplitude of 10 mV. Linear 
sweep voltammetry (LSV) tests were implemented at 
a scan rate of 1 mV s−1 and a voltage range from 3.0 to 
5.0 V. Galvanostatic tests were measured using Neware 
electrochemical test system. Li||Li cells were cycled with 
the areal capacities of 0.5 and 3 mAh cm−2 at the current 
densities of 1 and 3 mA cm−2, respectively. The stability of 
Li||LFP full cells were cycled at 1C (170 mA g−1) between 
2.5 and 4.0 V. Coulombic efficiency (CE) test was meas-
ured as Aurbach method [44]. Specifically, 5 mAh cm−2 Li 
was deposited on Cu foil under 1 mA cm−2, after which the 
cell was charged to 0.5 V to fully strip the active Li. Then, 
another 5 mAh cm−2 Li was deposited on the Cu surface 
as ( QT  ), cycling at 1 mA cm−2 and 0.5 mAh−2 ( QC ) for 
10 cycles, after which stripping Li to 0.5 V ( Qs ). CE is 
calculated as following Eq. (1)

where n is the cycling number. QC, Qs , and QT are the fixed 
capacity of Li, stripping capacity of Li, and capacity of Li 
reservoir, respectively.

The tLi
+ was calculated by the Bruce & Vincent method, 

according to the following Eq. (2) [45]:

(1)CE =
nQC + Qs

nQC + QT

(2)t+
Li
=

Iss
(

ΔV − IoR0

)

I0
(

ΔV − IssRss

)

where R0 and Rss are the interfacial resistance of the Li 
electrode before and after the polarization, respectively. I0 
and Iss are the initial-state and steady-state currents during 
polarization, respectively. ΔV  is the bias voltage. The bias 
voltage of chronoamperometry test of Li||Li cells was 10 
mV.

2.4 � Density Functional Theory Calculation

Representative solvation configurations were derived from 
extensive atomistic simulations, which were adopted as 
starting configurations for additional density functional 
theory (DFT) calculation. Electrostatic potential (ESP) 
mapping was calculated by Multiwfn program and plot-
ted by visual molecular dynamics (VMD) [46]. Binding 
energy is calculated according to the following Eq. (3):

where the Ecomplex is the energy of the complex formed by 
lithium ions and solvent molecules, ELi+ and Esolvent repre-
sent the energy of isolated lithium ions and solvent mol-
ecules, respectively.

3 � Results and Discussion

3.1 � Additive Effect on Performance of Li‑Metal 
Electrodes

As shown in the Nyquist plots (Fig. S1), the charge-transfer 
resistance (Rct) of Li-metal symmetric cells before cycling 
rises from about 150 to 450 Ohm when the amount of 
FNPB in the electrolyte increases from 0 to 1% in weight 
percentage [47] The increased Rct in the EIS spectra 
confirm the efficiency of FNPB in altering the kinetics 
of electrolyte and electrolyte interphases. The similar 
electrolyte internal resistance (Ri) shown by EIS spectra 
and the almost identical solvation effect demonstrated 
by similar signals of coordinated PF−

6
 at 743 cm−1 and 

solvating EC/DEC at 905 cm−1 in the Raman spectra 
(Figs. S2 and S3) indicate that the kinetics regulation of 
FNPB may mainly target the electrolyte interphases [48]. 
After initial test of 50 cycles at 1 mA cm−2 and 0.5 mAh 
cm−2, the decreased Rct values of the Li-metal electrodes 
in the electrolytes with FNPB (Fig. 1a) further confirm 
the improved interface kinetics due to the evolution of 

(3)Ebinding = Ecomplex − (ELi+ + Esolvent)
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stable SEIs [49]. Among all the electrolytes, the one with 
0.5 wt% FNPB substantiates the best improved interface 
kinetics with Rct of 95 Ohm, in sharp contrast to 133 Ohm 
of BE.

Except for the kinetics process, the plating/stripping 
stability of Li-metal electrodes is also enhanced after 
FNPB addition. When galvanostatic plating/stripping at 
1 mA cm−2 and 0.5 mAh cm−2 (Fig. 1b, c), the Li-metal 
electrodes in BE stably persist for only 200 h, and exhibit 
ever-increasing overpotentials. The severe increased polar-
ization overpotential up to 0.3 V at 350 h leads to the 
short circuit of the Li-metal symmetric cell, demonstrat-
ing ineffective lithium dendrite suppression. In contrast, 
the cycling stability of the Li-metal electrodes in FNPB 
is generally enhanced, showing lowered overpotentials of 
0.11, 0.063, and 0.105 V at 350 h for electrolytes with 
0.25, 0.5, and 1 wt% FNPB, respectively. The reduced 
polarization of lithium plating/stripping process attrib-
utes to the enhanced kinetics of SEIs forming in the initial 
cycles, as indicated by the initial large overpotentials due 
to the decomposition of the FNPB additive. The calculated 
binding energies of Li-metal with FNPB, EC, and DEC 
(Fig. S4) show the priority of reaction between Li and 
FNPB. The molecular electrostatic potential surface simu-
lation (Fig. S5) further demonstrates the possible reaction 
sites of -NO2, -BO2-, and -F, with gradually decreasing 
negative potentials, readily producing multiple F-rich/N-
rich interphases (Fig. S6) with enhanced stability and dif-
fusion kinetics. Notably, Li-metal electrodes in electro-
lytes with 0.5 wt% FNPB maintain > 700 h stable cycling 
performance at 1 mA cm−2 and 0.5 mAh cm−2 without 
short circuiting, indicating the effectively suppressing of 
dendrite growth. Moreover, the lower polarization overpo-
tentials and enhanced cycling stability at 3 mA cm−2 and 
3 mAh cm−2, and at varying rates of 0.1–2 mA cm−2 and 
1 mAh cm−2 (Fig. 1d, e) furthers substantiate the effective-
ness of FNPB in evolving SEIs with rapid Li+ transfer and 
enhance interfacial stability at different cycling conditions, 
as verified in the significantly elevated Li+ transference 
number from 0.17 to 0.89 (Figs. S7 and S8).

The utilization efficiency of Li is determined by CE of 
Li||Cu asymmetric cells according to the Aurbach method 
[44]. As shown in Fig. 1f, the CE of the cell with BE is 
84.2%, while that with 0.5 wt% FNPB is elevated to 98.2%, 
implying that the addition of FNPB probably avails to 
the evolution of stable SEIs and inhibits continuous side 

reactions between Li-metal and the electrolyte. The LSV 
(Fig. 1g) is performed to explore the anodic stability of 
Li-metal electrodes in different electrolytes. The cell with 
BE exhibits an obvious increase in polarization current at 
4.3 V (vs. Li/Li+) due to the oxidative decomposition of 
carbonate components at the stainless-steel plate cathode. 
The onset potential shifts to about 3.75 V (vs. Li/Li+) for the 
cell with 0.5 wt% FNPB, indicating that FNPB decomposes 
preferentially and probably evolves into protective CEIs on 
the surface of the cathode, consistent with the theoretical 
calculation results of binding energy mentioned above 
[50–52]. Figures S9 and S10 displayed that the contact 
angle decreases from 36.66° of BE to 34.93° of 0.5 wt% 
FNPB, indicating enhanced wetting ability of the electrolyte 
after FNPB addition. The good wettability helps to achieve 
consistent distribution of lithium-ion fluxes favorable for fast 
kinetics and uniform Li deposition.

3.2 � Additive Effect on Morphologies of Li Deposit

The morphology and microstructure of Li deposit present 
important insights into the reversibility of Li-metal 
electrodes. The SEM images of the deposit on the Cu 
substrates at 1 mA cm−2 (Fig.  2) show that Li deposit 
plated in BE for 3h, i.e., 3 mAh cm−2, appears as highly 
porous needle-like products ranging from nanometers to 
micrometers (Fig. 2a), known as Li dendrites. Although 
the deposition layer densifies as the dendrites aggregate 
after plating from 3 to 9 h (Fig. 2c), the dendritic growth 
behavior maintains due to the lack of an effective electrolyte 
interphase layer, easily piercing separators and causing cell 
short circuit. In contrast, a quite different two-dimension 
(2D) planar growth behavior is observed for the Li deposit 
plated in FNPB (Fig.  2b), which leads to significantly 
elevated densification and alleviates volume effect as the 
plating process continues (Fig. 2d). The chronoamperometry 
analysis (Fig. S11) also reveals that the initial nucleation 
current has been significantly increased after FNPB addition, 
indicating a greater number of nucleation sites and more 
uniform lithium deposition. The compact deposition layer 
also avails to reduced evolution of “dead Li” due to lose-of-
connect, quite different from easy disconnection of partial 
Li in the porous dendrites, consistent to the elevated Li 
utilization efficiency for Li plating/stripping in FNPB. The 
results indicate that the FNPB additive effectively regulates 
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the growth behavior of Li-metal, promoting the formation 
of densification Li deposit, which contributes to enhanced 
cycling stability of Li-metal electrodes.

The SEM images after 50 plating/stripping cycles (Fig. 3) 
are also presented to further explore the different deposition 
behaviors. After repeatedly plating/stripping processes, the 

Figure 1   Performance of Li-metal electrodes in electrolytes with different amounts of FNPB. a EIS plots after 50 cycles at 1 mA cm−2 and 
0.5 mAh cm−2. Plating/stripping performance at b, c 1 mA cm−2 and 0.5 mAh cm−2, d 3 mA cm−2 and 3 mAh cm−2, and e varying currents 
from 0.1 to 2 mA cm−2 and 1 mAh cm−2. f Aurbach coulombic efficiencies. g Anodic stability of Li-metal with the stainless-steel plate cathode 
revealed by LSV scanning at 1 mV s−1
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top-view SEM image (Fig. 3a) displays that the deposit 
layer of Li-metal electrodes in BE still hold the dendrite-
like morphology different from the pristine one, showing 
abundant pores at micrometer scale (Figs. S12 and S13). 
No obvious electrolyte interphase layer with a continuous or 
consistent structure can be observed, implying uneven SEIs 
or uncontrolled electrolyte decomposition during the plating/
striping process. The corresponding cross-sectional SEM 
image in Fig. 3b further confirms a large thickness of 11.27 
μm for the deposit layer, verifying inconsistent deposition 
of Li with very poor compactness in the dendrite growth. 
While the top-view SEM image of the Li-metal electrode in 
FNPB (Fig. 3c) exhibits a uniform and smooth appearance. 
Moreover, the cross-sectional SEM image (Fig. 3d) shows 
a significantly lowered thickness of only 5.21 μm. The 
uniform electrolyte interphase layer and the very compact 
deposit together verify that FNPB is an effective additive to 

induce the formation of a uniform SEI layer, which regulates 
dense and uniform Li deposition in planar growth manner, 
inhibiting dendrite growth, side reactions, and ultimately 
leading to higher CE and longer cycling stability. The 
corresponding SEM EDS element mapping images (Fig. 3e) 
display that the SEI layer is characteristic of compactly 
packed monodisperse particles (Fig. S14) with uniformly 
distributed C, N, F, and P elements, attributed to uniform 
distribution of FNPB-derivatives and their interaction with 
the electrolyte.

3.3 � Additive Effect on the Electrolyte Interphases 
of Li‑Metal Electrodes

The interphase species in the SEIs are further analyzed by 
XPS and TOF–SIMS. The Li-metal electrodes cycled in 

Figure 2   SEM images of Li deposit on Cu substrates after plating in different electrolytes at 1 mA cm−2 for a, b 3 h, c, d 9 h
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electrolytes with/without the FNPB additive show similar 
SEIs with both the organic and inorganic components. The 
difference lies in the types, distribution, and content of 
the components. Specifically, the F 1s XPS depth profiles 
(Fig. 4a, b) after different durations of Ar+ plasma etching 
display similar deconvoluted peaks at 684.8 eV from 
Li-F bonding of inorganic LiF, and 686.8 eV from C-F 
bonding from organic species [53]. The variation of their 
normalized intensities exhibits that the intensities of C-F 
signal progressively decrease for both SEIs, but the one 

obtained in FNPB shows negligible C–F intensity after 60 
s sputtering, implying the formation of LiF-rich interphase 
layer. Concurrently, the deconvoluted N 1s XPS spectra in 
Figs. 4c and S15 displayed N–O (~ 400.8 eV), C–N (~ 397.8 
eV), and Li–N (~ 395.2 eV) bonding signals exclusively for 
the SEI in FNPB system, confirming the involvement of 
nitrogen-containing groups (–NO2) from FNPB in evolving 
into inorganic Li3N and organic C–N/N–O species [54]. The 
emergence of N species in the SEI, e.g., Li3N as an excellent 
ionic conductor, compensates for the low ionic conductivity 

Figure  3   a, c Top-view, b, d cross-sectional SEM images of Li electrodes after plating/stripping at 1 mA cm−2 for 50 cycles in different 
electrolytes, and e the corresponding EDS element mapping images
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of LiF, guaranteeing the good ion conductivity of the SEI 
layer for fast-charging process.

The LiF-rich interphase in SEIs for FNPB is also 
confirmed by the remarkable intensities of LiF signals 
from LiF at 52.5 eV in the deconvoluted Li 1s XPS spectra 
(Figs. S16 and S17), much stronger than the counterparts for 
BE throughout the plasma sputtering. Due to its excellent 
electronic insulation performance and high interfacial 
energy, LiF is regarded as a key SEI component for inhibiting 
Li dendrite growth and ensuring high CE [55]. Besides, the 
deconvoluted B 1s XPS spectrum (Fig. S18) also indicates 
the evolution of borate or fluoborite interphases, e.g., 
LiBxOy, with relevant signals of B-O bonding at 191.7 eV 
and B-F bonding at 194.3 eV, respectively. These inorganic 
interphases are also beneficial components, inhibiting the 
consumption of the bulk electrolyte and the growth of 
lithium dendrites [56]. In the XPS quantitative analysis 
(Fig. 4d, e), the faster decrease in the content of C species 
(mainly from organic interphase) for SEIs in FNPB than 
those in BE, and the slower decrease in the content of F 

and B species (mainly from inorganic interphase) for SEIs 
in FNPB than those in BE as the sputtering lasts, also 
substantiate the inorganic-rich interphases for the SEI 
evolved in FNPB.

The spatial distribution of the interphase species is further 
revealed by the corresponding three-dimensional (3D) ren-
der overlay images of TOF–SIMS depth profiling (Fig. 4f, 
g). The extremely uneven distribution of the strong signals 
of CH2

− and C2HO− fragments from organic species, and 
the very weak signal of LiF2

− fragment from LiF indicates 
an organic-rich SEI in the Li-metal electrodes cycled in BE. 
In contrast, relatively similar intensities of the distribution 
of CH2

−, C2HO−, and LiF2
− signals substantiate a uniform 

SEI with relatively high content of inorganic LiF. Moreo-
ver, the emerging C2N− fragment from C–N organic species, 
and LiNO2

− and BO2
− fragments from inorganic nitride and 

borate species (Figs. 4g and S19) indicate that the FNPB 
additive also introduces abundant N-/B-based interphases, 
demonstrating the effectiveness of –NO2/–B(OH)2/–F 
groups in forming inorganic-rich SEIs. The SEI layer with 

Figure 4   Interphases of Li-metal electrodes after 50 cycles in different electrolytes. Deconvoluted a, b F 1s, and c N 1s spectra of XPS depth 
profiling, and d, e the corresponding quantitative elemental analysis profiles. f, g 3D render overlay images for various fragments of TOF–SIMS 
depth profiling
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uniform distribution of organic and abundant inorganic spe-
cies accounts for the suppressed lithium dendrite growth.

3.4 � Additive Effect on the Performance of LMBs

Benefiting from the N-/F-rich SEI inducing compact 
and uniform Li deposition in FNPB, the LMBs with 
the commercial LFP cathodes demonstrate enhanced 
electrochemical performance. Specifically, at a window 
voltage of 2.5–4.0 V, both LMBs deliver similar initial 
reversible capacity of about 130 mAh g−1 at 1C (1C = 170 
mA g−1, Fig.  5a, b) due to similarly low deposition 
overpotentials of the Li-metal anodes at the initial cycles. 
However, comparing to the LMB with BE, the one with 
NFPB exhibits enhanced cycling stability, demonstrating 
86.6% capacity retention after 450 cycles at 1C, far 
superior to only 54.4% after 400 cycles of the former. The 
remarkable advantage of fast-charging performance is even 
prominent at 3C (Fig. 5c, d) rate. The initial coulombic 
efficiency increases from 76.1% to 96.5% after 0.5 wt% 
FNPB addition, substantiating the efficiency of the additive 
in inhibiting uncontrolled electrolyte decomposition [35]. 
Simultaneously, a reversible capacity of 111 mAh g−1 is 
achieved in the LMB with FNPB, which maintains 99.9% 
capacity retention after 500 cycles, far superior to only 
44.7% of the control one with BE. Notably, the LMBs with 
FNPB also maintained > 99.9% coulombic efficiencies 
throughout the cycling processes at both rates, while the 
coulombic efficiencies only hold at 99.0% for the control 
ones with BE due to continuous electrolyte decomposition or 
loss of active species due to ineffective electrolyte interfaces.

The remarkably alleviated voltage hysteresis in the charge/
discharge plateaus and cyclic voltammetry curves (Fig. 5d, 
e) further indicate that the kinetics process is significantly 
improved. Except for cycling stability and power perfor-
mance, the ion storage capability at relatively small rates has 
also been strengthened due to high Li utilization efficiency 
endowed by the effective electrolyte interphases. The LMBs 
with FNPB (Fig. 5f) deliver reversible discharge specific 
capacities of 167, 158, 147, and 131 mAh g−1 at 0.2C, 0.5C, 
1C, and 2C, respectively, generally higher than those of the 
control ones. The enhanced fast kinetics in FNPB is highly 
relevant to the significantly reduced charge-transfer resist-
ance from 373 to 74 Ohm (vs. 895 to 135 Ohm of the control 
ones) of the electrolyte interphase layers (Fig. 5g). Overall, 

the FNPB-induced fast-kinetics N-/F-rich interphase layers 
remarkably improve the cycling stability and ion storage 
capability of LMBs under fast-charge conditions.

3.5 � Additive Effect on the Electrolyte Interphases 
of LFP Cathodes

The LFP cathodes after 100 cycles are also characterized 
to further get insights into the performance improvement. 
The SEM images (Fig. 6a, b) exhibit similar irregular 
particles of commercial LFP at micrometer scale. 
Differently, the particles cycled in FNPB show relatively 
uniform gel-like film encapsulation, indicating the 
formation of uniform CEI layer. The corresponding TEM 
and high-resolution TEM (HRTEM) images (Fig. 6c, d) 
further confirm the film of uniform thickness of 15–20 
nm, featuring abundant nanocrystals of about 5 nm 
distributed in the amorphous species. The nanocrystals 
exhibit well-defined lattice fringes with an interplanar 
spacing of 0.2 nm, ascribing to (200) planes of cubic 
LiF. In contrast, no consistent covering can be observed 
outer the particles of LFP cycled in BE. The uniform CEI 
layer is also confirmed in the high angle annual dark-field 
scanning TEM (HAADF-STEM) image (Fig. 6e), showing 
clear encapsulation layer outer the LFP particle with less 
pronounced contrast. The corresponding EDS element 
mapping images display remarkable aggregation of C, O, 
and F elements in the CEI layer, probably from amorphous 
organic carbon and crystalline LiF.

TOF–SIMS 3D render overlay images (Fig. 6f, g) for 
depth profiling reveal that both cathodes show similar signal 
intensity of LiF2

− fragments from LiF, indicating the forma-
tion of LiF interphase due to initial electrolyte decomposi-
tion. Differently, comparing to the cathode cycled in BE, 
the one in FNPB shows slower decrease in LiF content from 
outer to inner layer, verifying much more and compacter LiF 
interphases. Simultaneously, the change of CH− fragment 
from organic carbon implies the latter features fewer organic 
species. The emergence of NO− fragment indicates the exist-
ence of nitrite interphases in the CEI layer. The F-/N-rich 
interphases in the CEI are also corroborated by the local 
deconvoluted F 1s and N 1s XPS spectra (Fig. 6h, i), show-
ing intensified LiF bonding signal at about 685 eV, and N-Li 
(396 eV), C-N (399 eV), N–O (401 eV) bonding signals 
from Li3N, LiNO2 and organic C-N species [57]. The stable 
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dense CEI formed by introducing FNPB can thus provide 
enduring protection for the cathode, maintain the integrity 
of LFP. Obviously, the FNPB additive facilitates the evolu-
tion N-/F-rich inorganic interphases in both the anode and 
the cathode of LMBs, contributing to uniform SEI and CEI 

layers simultaneously, which not only guarantee suppressed 
lithium dendrite growth, but also alleviated uncontrolled 
electrolyte decomposition and loss of active species.

Figure  5   Electrochemical performance of LMBs with the LFP cathodes and different electrolytes cycling at 2.5–4.0 V. a, c Cycling 
performance and b, d voltage profiles tested at different C rates. e CV curves at 0.1 mV s−1, f rate performance, and g EIS plots
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4 � Conclusion

In summary, FNPB has been demonstrated as an electrolyte 
additive to significantly enhance the performance of 

LMBs with conventional EC/DEC electrolytes. During 
the initial cycles, small quantities of additives decompose 
sacrificially, forming electrochemically stable SEIs and 
CEIs. The uniform N-/F-rich interphase layers effectively 
prevent excessive electrolyte decomposition, inhibit dendrite 

Figure  6   a, b SEM, c, d TEM and HRTEM, e HAADF-STEM and EDS element mapping images of LFP cathodes cycled in different 
electrolytes after 100 cycles. TOF–SIMS 3D render overlay images of LFP cathodes cycled in f BE and g FNPB after 50 cycles. h, i F 1s and N 
1s XPS spectra of LFP cathodes cycled after 50 cycles
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formation during cycling and thereby enhance cycling 
stability and coulombic efficiency of LMBs. The work 
implies that proper electrolyte additive matters very much 
for LMBs at fast-charging processes.
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