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Highlights

• A novel and simple multi-phase polymeric strategy was used to fabricate hierarchical porous 3D structured vanadium

nitride/carbon (VN/C) membranes.

• The supercapacitor negative electrodes based on VN/C membranes exhibited a high specific capacitance of 392.0 F g-1

at 0.5 A g-1 and an excellent rate capability with capacitance retention of 50.5% at 30 A g-1.

• The asymmetric device fabricated using Ni(OH)2/VN/C membranes has a high energy density of 43.0 Wh kg-1 at a

power density of 800 W kg-1 and good cycling stability of 82.9% at 1.0 A g-1 after 8000 cycles.

Abstract Transition-metal nitrides exhibit wide potential

windows and good electrochemical performance, but usually

experience imbalanced practical applications in the energy

storage field due to aggregation, poor circulation stability, and

complicated syntheses. In this study, a novel and simple multi-

phase polymeric strategy was developed to fabricate hybrid

vanadium nitride/carbon (VN/C) membranes for supercapaci-

tor negative electrodes, in which VN nanoparticles were uni-

formly distributed in the hierarchical porous carbon 3D

networks. The supercapacitor negative electrode based on VN/

C membranes exhibited a high specific capacitance of

392.0 F g-1 at 0.5 A g-1 and an excellent rate capability with

capacitance retention of 50.5%at 30A g-1. For the asymmetric

device fabricated using Ni(OH)2//VN/C membranes, a high

energy density of 43.0 Wh kg-1 at a power density of

800 W kg-1 was observed. Moreover, the device also showed

goodcycling stability of 82.9%at a currentdensityof1.0 A g-1

after 8000 cycles. This work may throw a light on simply the

fabrication of other high-performance transition-metal nitride-

based supercapacitor or other energy storage devices.
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1 Introduction

With the rapid development of the global economy and

growing population, energy, as a pillar of modern civi-

lization, has received increasing attention. From the

development of clean fuel such as wind power, solar

energy, water energy, and tidal power, the tension between

rising energy demand and environmental protection is

easing [1–4]. However, the existing energy output of clean-

fuel technology is subject to discontinuity and variable

environmental factors. For efficient use of renewable

energy, it is important to develop high-efficient and

stable energy storage devices. Supercapacitors, also called

electrochemical capacitors, represent environment-friendly

and irreplaceable energy storage devices compared to tra-

ditional capacitors and rechargeable batteries. Superca-

pacitors can achieve greater energy and power densities

than conventional energy storage devices [5–7].

Supercapacitors can be classified into electrical double-

layer capacitors (EDLCs) and pseudocapacitors [8–12].

Considering their high-power densities, long cycle life, and

fast charging/discharging rate, EDLCs have been widely

used in commercial supercapacitor applications [13].

Typical electrode materials for EDLCs are carbon-based

and include activated carbon, carbon black, carbon onions,

carbon nanotubes, and graphene [14–18]. However, a

crucial limitation of EDLCs is their low energy densities of

approximately 5–15 Wh kg-1, primarily due to the fast

sorption and desorption of ions on the carbon-based elec-

trode [19]. Pseudocapacitors chemically store charge

through fast and reversible redox reactions at the electrode

interface. Electrode materials for pseudocapacitors should

exhibit considerable capacity but are typically constrained

by poor conductivity and stability. Most electrode materials

consist of metal oxides and conducting polymers such as

iron oxide [13], manganese oxide [20, 21], vanadium

nitride [22, 23], tungsten nitride [24], and polyaniline [25].

To increase the energy storage and stability of the two-

electrode materials, it is necessary to combine carbon-

based materials with high-capacitance pseudocapacitive

materials [6, 16, 20–23]. Vanadium nitride (VN) has been

shown to be a suitable candidate to improve the specific

capacitance and energy density of negative electrode

materials because of its excellent electrical conductivity as

well as its wide and electrochemically stable poten-

tial window [26–36]. It has been reported that coating

carbon on the VN surface largely improved its stability

during electrochemical reaction [37]. However, two major

obstacles hinder the efficient fabrication of VN and carbon

electrodes. The first is controlling the uniform distribution

of VN nanoparticles in carbon matrix to prevent VN

aggregation. The other problem is improving the

infiltration of the carbon surface without affecting the VN

state and its distribution within the internal holes of the

material [38]. In addition, the synthetic routes for

nanocomposites of VN and carbon remain limited due to

rather time-consuming, costly, and complex fabrication

methods which include solution adsorption, chemical vapor

deposition, laser atomic layer deposition, and electrospin-

ning. Therefore, developing effective synthetic methods is

particularly important for achieving novel supercapacitors

with improved performance.

In this study, a novel and simple synthetic method was

used to fabricate electrode membrane materials in which

VN nanoparticles are uniformly incorporated into a 3D

carbon matrix. Solvent exchange, PEG immigration, and

self-assembly of the tri-block copolymer PAN-b-PMMA-b-

PAN were applied to form an asymmetric 3D polymer

membrane with hierarchical porous nanostructure. The

electrochemical performances including specific capaci-

tance, rate ability, and energy density based on the 3D VN/

C membranes electrode and the supercapacitor device were

investigated.

2 Experimental

2.1 Chemicals

Vanadyl acetylacetonate was purchased from Sinopharm

Chemical Reagent Co. Ltd. and used as received without

further treatment. Polyethylene glycol (PEG, Mw= 400)

was obtained from Aladdin (Shanghai, China). PAN was

prepared by solution polymerization as previously descri-

bed [39, 40]. The tri-block copolymer (BCP) PAN-b-

PMMA-b-PAN was synthesized by reversible addition

fragmentation chain (RAFT) polymerization as previously

described [40]. All other chemicals (analytical grade) were

obtained from Sinopharm Chemical Reagents Co. Ltd,

China, and used without further purification.

2.2 Preparation of the V Source and Uniformly

Distributed Polymer Membrane

Vanadyl acetylacetonate (0.5 g), PAN (1.5 g), PEG

(0.5 g), and BCP (0.4 g) were dissolved in N,N-dimethyl-

formamide (DMF, 11.2 g) with continuous stirring at

60 �C until a dark green homogeneous solution was

obtained, which was subsequently used as casting solution.

The material of vanadyl acetylacetonate/multi-phase

polymeric membranes (I) was prepared by spin coating the

casting solution on glass at 20 �C. Immediately, the

membrane was submerged in deionized water as coagula-

tion bath and subsequently the cured membrane was

transferred to an air atmosphere at 40 �C to remove the
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residual water and solvent in the membrane. A casting

solution without PEG and BCP was prepared to fabricate

vanadyl acetylacetonate/polymeric membranes (II) using

the same process as for vanadyl acetylacetonate/multi-

phase polymeric membranes (I).

2.3 Synthesis of the Hierarchical Porous Vanadium

Nitride/Carbon (VN/C) Membranes

The V/P-M membrane was first heated at 250 �C for 2 h

under air flow and then sintered at 800 �C for 1.5 h under a

mixed gas of NH3:N2 = 3:2. After cooling to room tem-

perature, the hierarchical porous VN/C (I) and VN/C (II)

were obtained from vanadyl acetylacetonate/multi-phase

polymeric membranes (I) and vanadyl acetylacetonate/

polymeric membranes (II), respectively.

2.4 Materials Characterization

The microscopic morphologies of the samples were char-

acterized by field emission scanning electron microscopy

(FE-SEM, JSM-6701F, JEOL, Japan) and transmission

electron microscopy (TEM, JEOL, JEM-2010, Japan). The

crystal structure was identified by X-ray diffraction (XRD,

D/MAX 2400, Japan) with Cu Ka radiation (k = 1.5418 Å)

operating at 40 kV and 60 mA. The N2 adsorption–des-

orption isotherms of samples were measured at 77 K using

an ASAP 2460 (Micromeritics, USA) instrument to mea-

sure the specific surface area. The specific surface area was

calculated using the Brunauer–Emmett–Teller plot of the

nitrogen adsorption isotherm. Non-local density functional

theory (NLDFT) model was adopted to analyze the pore

size distribution of samples (calculation model: slit/cylin-

drical pore, NLDFT equilibrium model). X-ray photo-

electron spectroscopy (XPS) analysis was performed using

a PerkinElmer PHI ESCA system with Al Ka (1486.6 eV)

as the X-ray source. The electrical conductivity of the

samples was determined using a four-point probe (RTS-9).

2.5 Electrochemical Measurements

All electrochemical measurements including cyclic

voltammetry (CV), galvanostatic charging/discharging

(GCD), and electrochemical impedance spectroscopy (EIS)

were taken using an electrochemical working station

(CHI660E, Shanghai, China) in 6 M KOH aqueous elec-

trolyte. A three-electrode system including the as-prepared

active material as the working electrode, platinum foil

electrode as the counter electrode, and saturated calomel

electrode (SCE) as the reference electrode was used to

evaluate electrochemical performance. The working elec-

trode was prepared using mixed active material, conducting

graphite, acetylene black, and a poly(tetrafluoroethylene)

emulsion at a weight ratio of 80:7.5:7.5:5, then pressed

onto a 1-cm2 nickel foam current collector at 10 MPa, and

dried at 60 �C for 8 h. The mass loading of the active

material was 4 mg cm-2. The specific mass capacitance of

the electrode based on the galvanostatic cycle test was

calculated by Eq. 1,

C ¼ I � Dt=ðDV � mÞ ð1Þ

where I (A), Dt (s), DV (V), and m (mg) are the discharging

current, discharging time, voltage range during discharg-

ing, and mass of the electrode, respectively.

For the assembled supercapacitor, charge storage on the

positive and negative electrodes was accurately described

by q? = q-. To balance the charge storage, the mass

matching of the positive and negative electrodes was

optimized by Eq. 2:

mþ=m� ¼ ðC� � DV�Þ= ðCþ � DVþÞ ð2Þ

The energy density and average power energy were cal-

culated by Eqs. 3 and 4:

E ¼ CV2=7:2 ð3Þ
P ¼ 3600E=ðDtÞ ð4Þ

where E (Wh kg-1), C (F g-1), V (V), P (W kg-1), and Dt
(s) are the energy density of the device, specific capaci-

tance, potential drop during discharging, power density of

the device, and discharging time, respectively.

3 Results and Discussion

The structure architecture of the interpenetrating car-

bon/vanadium nitride networks, oxygen functional group-

containing surfaces, and hierarchical porous structure is

schematically shown in Scheme 1. The polymer casting

solution including PAN, PEG, and BCP (PAN-b-PMMA-b-

PAN) was spin coated and immersed into a non-solvent

water bath to induce phase separation for membrane for-

mation. In the process, vanadyl acetylacetonate was added

to the casting solution, as vanadyl acetylacetonate and PAN

show good blending compatibility in DMF at a suit-

able temperature. We sought to determine the optimal

conditions for uniform dispersion of V into the polymer

system in the polymer precursor/V source hybrid system.

Through thermotreatment under a NH3/N2 atmosphere,

interpenetrating carbon/VN networks were obtained. In the

networks, VN was dispersed uniformly and was wrapped

by the carbon scaffold. During the phase process, PEG

moved to the surface of the membrane, which generated

oxygen-containing functional groups on the surface. The

functional groups through sintering improved the infiltra-

tion of the electrode in electrolyte solution. Solvent
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exchange, PEG immigration, and self-assembly of BCP

created an asymmetric 3D polymer membrane with hier-

archical porous structure. This unique structure was pre-

served in the final carbon/VN material after heat treatment.

Solvent exchange and PEG migration leave micropores

with a variety of pore sizes. On the other hand, self-

assembled PMMA blocks from BCP were used as a

‘‘sacrificed chain’’ and generated abundant mesopores

during high-temperature carbonation. In addition, under a

NH3 and N2 mixed atmosphere at 800 �C, VN/C (I) was

doped with nitrogen and underwent further modification.

SEM, TEM, and N2 adsorption–desorption isotherms of

VN/C (I) were used to study the morphology as well as

pore structure and distribution, as shown in Fig. 1. Typical

SEM cross-sectional views of the VN/C (I) sample showed

a classic membrane structure formed by the liquid–liquid

phase-separation method (Fig. 1a–c). The representative

morphology of the asymmetric membrane with a thickness

of approximately 5.0 lm was observed with a regular and

uniform shape and porous structure (Fig. S1). By com-

paring the SEM images of top and bottom sections of the

VN/C (I) (Fig. 1b–c) and VN/C (II) (Fig. S1b–c), VN/C

(I) exhibited more mesoporous features, as shown in the

high-magnification SEM images. According to the SEM

images, as shown in Fig. 1d and S2, a uniform concave size

appeared in the VN/C (I) sample that was caused by the

aggregation of BCP and loss of PMMA blocks during

phase inversion and thermotreatment, respectively. How-

ever, the surface of the VN/C (II) sample was smooth, fine,

and compact with few pores, which significantly decreased

ion accumulation at its surface. In addition, from the TEM

images, as shown in Fig. 1e–f and S3, abundant homoge-

neous mesopores approximately 40–50 nm in size were

observed throughout the VN/C (I) material, but none were

observed in VN/C (II). The porous structures of the

membranes were also analyzed by nitrogen adsorption. As

shown in Fig. 1g–h and S4, and Table S1, the VN/C

(I) sample exhibited a typical type-IV curve with an

average pore diameter of 1.9 nm and total pore volume of

0.24 cm3 g-1. A wide pore size distribution range from 1.7

to 250 nm was observed, which manifested as a loose

network with micro-, meso-, and macropores. In compar-

ison, the VN/C (I) sample exhibited a larger specific sur-

face area (SSA, 523.5 m2 g-1) than that of VN/C (II)

(504.2 m2 g-1), which was also much higher than previ-

ously reported VN and carbon composite materials

[38, 41–44]. Notably, the pore distribution range with lar-

ger pores, formed by adding PEG and BCP to the casting

solution, can act as ion buffer pools by storing electrolytes

and facilitating ion transmission to improve the efficiency

of the material ratio surface area.

Through the phase-separation and thermotreatment

process, an interpenetrating polymer/V-sources network

was formed followed by fabrication of interpenetrating

carbon/VN networks. Figure 2 shows the correlation rep-

resentational data that highlight the homogeneity of the

VN/C (I) sample. The high-resolution TEM image

(Fig. 2a) exhibited a large number of small VN quantum

dots with 5–8 nm in size, which was evenly and densely

embedded in the carbon substrates. The low-crystalline

nature of VN/C (I) was indicated by surface area electron

diffraction (SAED) measurements (Fig. 2c). The XRD

pattern of the VN/C (I) sample (Fig. 2b) exhibits a broad

peak at approximately 22�, indicating the presence of

amorphous carbon derived from the PAN precursor in the

homopolymer or BCP. This carbon scaffold improves the

PEG

PAN

V source

N2, NH3

800 °C

Surface
Modification

Self-assembled

BCP

N2, NH3

800 °C

N2, NH3

800 °C

Hierarchical Porous Structure

Oxygen Groups surfaces

Interpenetrating Networks

Scheme 1 Schematic representation of the fabrication strategy for the VN/C (I)
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electrical conductivity of the material and increases the

utilization and stability of VN quantum dots. In addition, a

slightly stronger peak at 43.6� and two weak peaks at

approximately 37.4� and 63.4� were, respectively, ascribed
to the (2 0 0), (1 1 1), and (2 2 0) diffractions of the VN

(ICDD PDF 35-768) [27, 31]. The XRD results and SAED

pattern indicate that the prepared VN/C (I) contained

amorphous carbon and VN with low crystallinity. Fig-

ure 2d shows the TEM elemental mapping images of VN/C

(I), which revealed uniform distributions of C, N, O, and V

throughout the material. In conclusion, these results indi-

cated that the VN nanoparticles were evenly distributed in

the substrate material. The carbon provided active sites for

electrolyte ions by preventing VN grain growth and

aggregation [22, 23, 27, 32–36].

To further explore the surface modification, XPS of the

VN/C (I) (Fig. 3) and VN/C (II) (Fig. S5) samples was

performed. The overall XPS spectra show that the surface

of samples consisted of C, N, V, and O, and the

corresponding analytical results are summarized in

Table S2. The respective proportions of C, N, V, and O in

VN/C (I) and VN/C (II) were 88.0, 3.6, 2.3, 6.1 at%, and

87.8, 4.2, 2.7, 5.3 at%, respectively. Three main peaks at

284.7, 285.6, and 286.2 eV were observed in the C 1 s

spectrum in Fig. 3b and were attributed to C–C, C–N, and

C–O bonds, respectively [9, 13, 45, 46]. As illustrated in

Fig. 3c, the N 1 s signal could be partitioned into four

characteristic peaks at 398.3, 400.0, 401.1, and 403.2 eV

corresponding to pyridinic N (N-6), pyrrolic N (N-5),

graphitic N (N-Q), and oxygenated N (N–O), respectively

[19, 46–48]. As shown in Fig. 3d, the peaks centered at

531.1, 532.6, and 534.5 eV were assigned to V–N–O,

C = O/N–O, and C–OH, respectively [19, 31, 39, 40]. In

addition, the peaks at approximately 514.1 and 521.6 eV

typical of vanadium in the VN structure, and the peaks at

517.1 and 524.4 eV arose from the V–O bonds on the

surface of VN/C (I) (Fig. 3e) [22–24, 30, 31, 49]. Com-

paring the C 1 s, N 1 s, and O 1 s spectra of the two
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Fig. 1 SEM images of the VN/C (I): a–c cross-sectional views and d surface view. e, f TEM images of the VN/C (I). g, h N2 adsorption–

desorption isotherms and pore size distribution of the VN/C (I)
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samples, it is clear that more oxygen-containing groups

such as C–O (20.0 at%), N–O (20.9 at%), and C–OH (29.7

at%) were present in VN/C (I) compared to the VN/C (II)

sample (C–O 17.1 at%, N–O 12.3 at%, and C–OH 16.9

at%). These results indicated that PEG formed oxygen

functional groups through sintering at the surface, which

improved the infiltration of the VN/C (I) electrode.

To investigate the electrochemical capacitive perfor-

mance of the prepared samples, CV, GCD, and EIS were

measured using a three-electrode system in 6 M KOH

aqueous electrolyte with a SCE and Pt as the reference and

counter electrodes, respectively. The CV curves of the VN/

C (I) and VN/C (II) samples were obtained at a scan rate of

10 mV s-1 in the potential range of - 1.2–0 V, as shown

in Fig. 4a. Both curves were quasi-rectangular in shape and

Fig. 2 a HRTEM image, b XRD pattern, c selected-area electron diffraction, and d TEM elemental mapping images of the VN/C (I)
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Fig. 3 X-ray photoelectron spectra of the VN/C (I)
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featured broad redox humps, indicating typical double-

layer capacitive behavior with Faradaic reactions

[48, 50, 51]. However, the CV curves of the VN/C

(I) showed much bigger curve areas compared to those of

VN/C (II), indicating a higher capacitance. As shown in

Fig. 4b, the GCD curves of the samples were measured at a

current density of 0.5 A g-1. VN/C (I) showed a linear and

slightly asymmetric triangle shape resembling the charac-

teristics of a normal double-layer capacitor and indicating

satisfactory electrochemical reversibility. The discharging

time required for the VN/C (I) sample was longer than that

of VN/C (II), indicating the better capacitance of VN/C (I).

Moreover, from the relevant calculations, the mass specific

capacitances of VN/C (I) and VN/C (II) were 392.0 and

245.1 F g-1, respectively, at a current density of

0.5 A g-1. EIS tests were also performed over a frequency

range of 0.01 Hz to 100.0 kHz (Fig. 4c). The impedance

curves contained one semicircle at a high frequency and a

linear feature at low frequency. In addition, the internal

resistance of the VN/C (I) (0.55 X) electrodes, acquired

from the intercept of the plots on the real axis, was much

smaller than that of VN/C (II) (0.64 X). This indicated

good infiltration of the electrolyte caused by the introduc-

tion of oxygen-containing functional groups. Because of

the weakened conductivity, the diameters of the semicir-

cles of the VN/C (I) samples were larger than that of VN/C

(II). Moreover, the conductivity was measured using a

4-point probe resistivity measurement system (RTS-9), and

values of 8.3 and 9.7 S cm-1 for VN/C (I) and VN/C (II),

respectively, were obtained. These results agreed well with

the smaller charge transfer resistance of VN/C (II) indi-

cated by the EIS analysis. In addition, the plots of the VN/

C (I) Warburg angle were higher than those of the VN/C

(II), indicating that the abundant pore structure was bene-

ficial for the diffusion of electrolyte ions and resulted in a

small diffusion impedance. Figure 4d shows the specific

capacitances of the samples at different current densities.

When the current density increased from 0.5 to 30 A g-1,

the capacitance retention values for VN/C (II) and VN/C

(I) were 46.1 and 50.5%, respectively. Thus, in terms

of comprehensive capability, the VN/C (II) electrode was

shown to be more suitable for use in supercapacitors.

The electrochemical behavior of VN/C (I) at various

current densities was also investigated. As shown in

Fig. 5a, all CV loops were nearly quasi-rectangular in

shape and almost no deformation was observed at high

scan rates, indicating a small internal resistance. The low

internal resistance was likely due to good wettability of the
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Fig. 4 a CV, b GCD, c EIS curves, and d the specific capacitances of the VN/C (I) and VN/C (II) at different current densities (scan

rate = 10 mV s-1 in 6.0 M KOH aqueous solution)
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VN/C (I) electrode with electrolyte and its hierarchical

porous structure, which was important for electron trans-

port. The GCD curves (Fig. 5b) obtained at various current

densities from 0.5 to 5 A g-1 exhibited a nearly linear and

typical triangular symmetrical trend, demonstrating good

electrode-reaction reversibility of the VN/C (I). The cal-

culated specific capacitances were 392, 322, 295, 280, 276,

267 F g-1 at different current densities of 0.5, 1, 2, 3, 4, 5

A g-1, respectively. In addition, an excellent cycling sta-

bility of 83.5% was obtained at a current density of

2 A g-1 after 5000 cycles (Fig. 5d). Figure S6 shows the

low- and high-resolution TEM images of VN/C (I) after

5000 cycles, which maintained their original morphology,

indicating high stability. The TEM images show numerous

small VN quantum dots homogeneously embedded in the

porous carbon substrate. This explicitly indicates that the

carbon matrix can prevent VN aggregation and simulta-

neously act as an active material for charge storage during

the charging/discharging process. In conclusion, all the

electrochemical results show convincingly that the pre-

pared VN/C (I) is a promising electrode material.

To accurately assess the performance of the developed

material for practical application, an asymmetric superca-

pacitor featuring a two-electrode system was assembled

using VN/C (I) in 6 M KOH as the negative electrode and

Ni(OH)2 as the positive electrode. Figure 6a shows the CV

curves of the hybrid device over the voltage range of

0–1.6 V at various scanning rates between 10 and

50 mV s-1. In addition, a couple of wide oxidation

reduction peaks at 1.0 V were observed, which were likely

caused by the pseudocapacitive reactions related to the

positive Ni(OH)2 and negative VN/C (I) electrodes. Fig-

ure 6b shows the linear potential–time relationship of the

GCD curves of the hybrid device at different current den-

sities from 1 to 5 A g-1 at working potential window of

1.6 V. The specific capacitance measured at the current

density of 1 A g-1 was calculated to be 122 F g-1, and the

retained capacitance was 91 F g-1 when the current den-

sity increased to 5 A g-1. As shown in Fig. 6c, the EIS of

the hybrid device was tested in from 0.01 Hz to 100 kHz at

room temperature. Notably, a small intercept at the real

axis at approximately 0.87 X was observed, indicating a

lower intrinsic resistance of the supercapacitors (SCs).

Figure 6d shows a high rate performance where approxi-

mately 74.6% of specific capacitance was retained as the

current density was raised from 1 to 5 A g-1. Moreover, the

Ragone plots, as shown in Fig. 6e, showed the relationship

between energy and power densities. The Ni(OH)2//VN/C
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(I) device showed an excellent energy density of

43 Wh kg-1 and high-power density of 800 W kg-1. From

the comparison of power and energy densities in Fig. 6e

and more detailed information in Table S3, the perfor-

mance of the SCs was superior to related materials in the

recently published papers. The cyclic stability of the SCs

was determined by repetitive operation of the galvanostatic

charging/discharging process (Fig. 6f). The Ni(OH)2//VN/

C (I)-based SCs demonstrated excellent life cycle stability

with 82.9% initial capacitance retention after 8000 cycles

at a current density of 1.0 A g-1. Overall, the applica-

tion potential of the prepared hybrid device was demon-

strated by thorough characterization of all relevant

electrochemical characteristics.

4 Conclusion

In conclusion, the VN/C (I) design with interpenetrating

carbon/VN networks, oxygen group-containing surfaces,

and hierarchical porous structure was successfully fabri-

cated for use as a supercapacitor electrode material. The

advanced structure endowed VN/C (I) with a high specific

surface area of approximately 523.5 m2 g-1 and excellent

electrochemical behavior, including low resistance, good

cyclic stability, and high specific capacitance. VN/C

(I) presented a specific capacitance of 392.0 F g-1 at a

current density of 0.5 A g-1 in 6.0 M KOH and a good rate

capability with capacitance retention of 50.5% at

30 A g-1. Notably, the asymmetric device fabricated with

Ni(OH)2//VN/C (I) exhibited a high energy density of

43.0 Wh kg-1 at a power density of 800 W kg-1, which

only dropped to 32.3 Wh kg-1 at an increased power
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density of 4000 W kg-1. Moreover, excellent cycling sta-

bility (82.9%) was obtained at a current density of 1 A g-1

after 8000 cycles. This simple and novel strategy can be

expanded to the synthesis of other hierarchical porous

composite materials combining carbon-based and transi-

tion-metal oxide (nitride or sulfide) materials for numerous

application in sensors, catalysts, gas separators, and other

electrodes in hybrid supercapacitors.
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