Supporting Information for

Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI₃ Perovskite Nanorods Bilayer Structure

Yantao Chen², Xiaohan Wu², Yingli Chu², Jiachen Zhou², Bilei Zhou², Jia Huang^{1, 2, *}

¹Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China

²Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China

*Corresponding author. E-mail: huangjia@tongji.edu.cn (Jia Huang)

Supplementary Figures

Fig. S1 Photoresponse properties for transistors based on C8BTBT in the dark and under light illumination (10 mW cm⁻²) at $V_D = -30$ V

Fig. S2 Calculated *EQE* of the hybrid phototransistors as a function of the illumination wavelength under 0.5 mW cm⁻² at $V_{\rm G}$ = -60 V, $V_{\rm D}$ = -30 V

Fig. S3 a *I-V* curves of the only CsPbI₃ nanorods-based photodetectors measured in dark and under 5 mW cm⁻². **b** Time-dependent photoresponse of the only CsPbI₃ nanorods-based photodetectors measured in dark and under 5 mW cm⁻² at 10 V

Fig. S4 Normalized mobility of the hybrid phototransistors versus the power intensity at $V_{\rm D} = -30$ V

Fig. S5 The output current in off-state of the hybrid phototransistor as a function of the power intensity at $V_{\rm D} = -30$ V

Fig. S6 10 s white light irradiation of the hybrid devices under 0.5 mW cm^{-2} followed by removal of light incident to allow relaxation for 5 min

Fig. S7 The photoresponse curves of the hybrid phototransistor and the fitted lines

Material	Light source	$R(A W^{-1})$	I _{photo} /I _{dark}	Stability	Ref.
CsPbI ₃ nanorods	405 nm	2.92×10^{3}	3×10^3	1 week	[1]
CsPbI3 nanoarrays	N/A	0.0067	N/A	N/A	[2]
CsPbI3 nanowires	White light	N/A	100	4 weeks	[3]
CsPbI ₃ nanocrystals	405 nm	N/A	10 ⁵	N/A	[4]
films					
CsPbI ₃ QDs	525 nm	1.5	10 ⁴	60 days	[5]
/NaYF4:Yb,Er QDs					
CsPb(Br/I)3 nanorods	532 nm	N/A	10 ³	N/A	[6]
CsPbI3 nanorods	White light	5.3 × 10 ³	2.2 × 10 ⁶	1 month	This work
/C8BTBT					

Table S1 Performance comparison of our C8BTBT/CsPbI₃ nanorods-based photodetectors with low-dimensional all inorganic perovskite-based photodetectors in literatures

Supplementary References

- T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang et al., Superior photodetectors based on all-inorganic perovskite CsPbI₃ nanorods with ultrafast response and high stability. ACS Nano. 12(2), 1611-1617 (2018). https://doi.org/10.1021/acsnano.7b08201
- [2] A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang et al., All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17(8), 4951-4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
- [3] Lai M, Kong Q, Bischak CG, Yu Y, Dou L, Eaton SW, Ginsberg NS, Yang P. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10(4), 1107-1114 (2017). https://doi.org/10.1007/s12274-016-1415-0
- [4] P. Ramasamy, D.H. Lim, B. Kim, S.H. Lee, M.S. Lee, J.S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 52(10), 2067-2070 (2016). https://doi.org/ 10.1039/C5CC08643D
- [5] X.S. Zhang, Q. Wang, Z.W. Jin, J.R. Zhang, S.F. Liu, Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI₃ perovskite and NaYF₄:Yb,Er quantum dots. Nanoscale 9(19), 6278-6285 (2017). https://doi.org/10.1039/c7nr02010d
- [6] X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou et al., All-inorganic perovskite CsPb(Br/I)₃ nanorods for optoelectronic application. Nanoscale 8(33), 15158-15161 (2016). https://doi.org/10.1039/c6nr01828a