Supporting Information for

Computational Study of Ternary Devices: Highly Stable, Low Cost and Efficient Planar Perovskite Solar Cells

Sajid¹, Ahmed Mourtada Elseman², Jun Ji¹, Shangyi Dou¹, Dong Wei¹, Hao Huang¹, Peng Cui¹, Wenkang Xi¹, Lihua Chu¹, Yingfeng Li¹, Bing Jiang¹, Meicheng Li^{1,*}

¹State Key Laboratory of Alternate Electrical Power, System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206, People's Republic of China

²Electronic & Magnetic Materials Department, Advanced Materials Division, Central Metallurgical Research and Development Institute (CMRDI), Helwan, P.O.Box 87, Cairo 11421, Egypt

*Corresponding author. E-mail: mcli@ncepu.edu.cn (Meicheng Li); Tel: +86 10 6177 2951

Supplementary Figure and Table

Fig. S1 Absorbance spectra of the MAPbI₃, MAPbI₂Br and MAPbBr₃ materials

Parameters and units	ZnO/perovskite	Cu:NiO _x /perovskite
Dielectric constant	30	11
Band gap (eV)	1.5	3.6
Electron affinity (eV)	3.93	1.46
Thickness (nm)	2	2
Electron and hole mobility(cm ² /V/s)	50, 50	0.5, 0.5
Acceptor concentration (cm ⁻³)	2.14×10^{17}	1.4×10^{20}
Donor concentration (cm ⁻³)	0	0
Effective conduction and density (cm ⁻³)	2.5×10^{20}	2×10 ¹⁷
Effective valence band density (cm ⁻³)	2.5×10^{20}	1.1×10^{19}
Characteristic energy for donor and acceptor-like tails (eV)	0.015, 0.015	0.01, 0.01
Band tail density of states (1/cm ³ /eV)	1×10^{14}	1×10^{14}
Capture cross section for electrons and holes in donor tail states (cm ²)	1×10 ⁻¹⁵ , 1×10 ⁻¹⁷	1×10 ⁻¹⁵ , 1×10 ⁻¹⁷
Capture cross section for electrons and holes in acceptor tail states (cm ²)	1×10 ⁻¹⁷ , 1×10 ⁻¹⁵	1×10 ⁻¹⁷ , 1×10 ⁻¹⁵
Switch-over energy (eV)	0.7	0.8
Density of mid-gap acceptor and donor-like states $(cm^{-3} eV^{-1})$	1×10^{16} to 1×10^{19}	1×10^{17} to 1×10^{19}
Capture cross section of electrons and holes in donor mid-gap states (cm ²)	1×10 ⁻¹⁷ , 1×10 ⁻¹⁸	1×10 ⁻¹⁶ , 1×10 ⁻¹⁷
Capture cross section of electrons and holes in acceptor mid-gap states (cm ²)	1×10 ⁻¹⁸ , 1×10 ⁻¹⁷	1×10 ⁻¹⁷ , 1×10 ⁻¹⁶

 Table S1
 Basic parameters for thin defect layers at the interfaces of ZnO/perovskite and Cu:NiOx/perovskite