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Highlights

• Formamidinium lead trihalide (FAPbBr3) microcrystal-based photodetectors facilitate efficient charge transfer.

• The fabricated FAPbBr3 photodetector shows good responsivity, external quantum efficiency, and detectivity.

• Two-photon performance of the photodetectors is better than that previously reported for MAPbBr3 photodetectors.

Abstract Because of the good thermal stability and superior

carrier transport characteristics of formamidinium lead trihalide

perovskite HC(NH2)2PbX3 (FAPbX3), it has been considered to

be a better optoelectronic material than conventional CH3NH3-

PbX3 (MAPbX3). Herein, we fabricated a FAPbBr3 microcrys-

tal-based photodetector that exhibited a good responsivity of

4000 A W-1 and external quantum efficiency up to 106%under

one-photon excitation, corresponding to the detectivity greater

than 1014 Jones. The responsivity is two orders of magnitude

higher than that of previously reported formamidinium per-

ovskite photodetectors. Furthermore, the FAPbBr3

photodetector’s responsivity to two-photon absorption with an

800-nm excitation source can reach 0.07 A W-1, which is four

orders of magnitude higher than that of its MAPbBr3 counter-

parts. The response time of this photodetector is less than 1 ms.

This study provides solid evidence that FAPbBr3 can be an

excellent candidate for highly sensitive and fast photodetectors.

Keywords Formamidinium lead trihalide (FAPbBr3) �
Perovskite microcrystals � Photodetector � External
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1 Introduction

In recent years, photoelectric devices have been widely

investigated [1–3], especially detectors with different

morphologies and sizes, for exploring their mechanisms,

simplifying their syntheses, and improving device effi-

ciencies [4–10]. Photodetectors based on hybrid organo-

lead trihalide perovskite CH3NH3PbX3 (MAPbX3, X = Cl,

Br, I) have attracted significant attention in the optoelec-

tronic field owing to their strong absorption coefficients (up

to 105 cm-1) [11–14], carrier mobilities (2.5–1000 cm2

v-1 s-1) [15–19], long carrier lifetimes (0.08–4.5 ls)
[17, 19–21], and diffusion lengths (2–175 lm)

[19, 20, 22, 23]. In particular, Saidaminov et al. produced a

planar-integrated photodetector using MAPbBr3 single

crystals, achieving high-performance light detection in the

wide wavelength range [24]. Bao et al. reported low-noise

and large-linear-dynamic-range photodetectors based on

MAPbBr3 and MAPbI3 [25]. Yang et al. demonstrated the

great potential of metal–semiconductor–metal structures

for low-cost and high-performance optoelectronic devices

[26]. Moreover, Hu et al. [27] reported high-performance

and low working-voltage perovskite thin-film photodetec-

tors. Further, a UV-selective photodetector based on

MAPbCl3 was also demonstrated [28, 29]. However, con-

ventional MAPbX3 materials have poor stability [30, 31],

which severely impedes device development.

HC(NH2)2PbX3 (FAPbX3), which replaces organic

methylammonium cation (MA?) with the larger formami-

dinium cation (FA?) [32, 33], is much more stable in air

because the high Goldschmidt tolerance factor of its lattice

(& 1) [33–35]. Moreover, previous reports have revealed

that FA-substituted compounds (e.g., FAPbX3) showed

remarkably improved carrier transmission performance

than MAPbX3 in both polycrystalline thin films and

monocrystalline phases, including a longer carrier lifetime

and lower dark carrier concentration [20, 22, 35–37]. As a

result, FAPbBr3 is expected to perform better in photode-

tectors than MAPbBr3. However, a prototype device based

on FAPbBr3 has not been reported yet, except for a two-

dimensional (OA)2FAn-1PbnBr3n?1 photodetector with

low responsivity [38]. Taking advantage of the high carrier

mobility, stability of single crystals and the efficient charge

transfer in the micron scale, we synthesized FAPbBr3
microcrystals (MCs) and deposited them as a photodetec-

tor. Detailed investigations under single- and two-photon

excitation and front- and back-side excitation were per-

formed to reveal the great potential of the fabricated pho-

todetector as an optoelectronic device.

2 Experimental

2.1 Chemicals and Reagents

Formamidine acetate, lead bromide (PbBr2,[ 98%) and

hydrobromic acid (48 wt% in water) were purchased from

Alfa Aesar. Gamma-butyrolactone (GBL) and N,N-

dimethylformamide (DMF) were purchased from Kermel.

All compounds were used without any further purification.

2.2 Synthesis of CH(NH2)2Br (FABr)

FABr was synthesized by slowly dropping 10 mL hydro-

bromic acid into 50 mmol (5.205 g) formamidine acetate

in a flask, accompanied by continuous stirring at 0 �C for

2 h under argon atmosphere. The product FABr was

formed once the solvent was removed using a rotary

evaporator at 70 �C. The crude white powder was dis-

solved in ethanol and subsequently reprecipitated in diethyl

ether. Then, the filtered product was dried at 60 �C in a

vacuum oven for 24 h for further use.

2.3 Synthesis of FAPbBr3 MCs

FAPbBr3 MCs were grown by a modified inverse temper-

ature crystallization method using toluene as the antisol-

vent. In brief, 5 mmol PbBr2 (1.835 g) and 5 mmol FABr

(0.625 g) were dissolved in 10 mL mixed DMF:GBL (1:1

v/v) solvent at 25 �C, and the solution was filtered using

nylon filters with a 0.22-lm pore size. Then, 1 mL pre-

cursor was diluted in 2 mL DMF and antisolvent toluene

was added to obtain a saturated solution. Single crystals of

FAPbBr3 with millimeter dimensions were formed after

stirring on a hot plate of 80 �C.

2.4 Device Preparation

Standard photolithography and hydrochloric acid etching

were used to obtain conductive glass substrates with a

channel length and width of 5 lm and 1 mm, respectively.

After synthesizing FAPbBr3 MCs using the above-de-

scribed method, the substrates were deposited on these

crystals and dried at 160 �C for 10 min.

2.5 Measurements and Characterizations

Scanning electron microscopy (SEM) was performed using

a field-emission scanning electron microscope (JEOL,

JSM-7800F, 3 kV). X-ray diffraction (XRD) was per-

formed using an X’pert PRO diffractometer equipped with

Cu Ka X-ray (k = 1.54186 Å) tubes. UV–Vis diffuse

reflectance spectra were recorded at room temperature on a
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JASCO V-550 UV–Vis absorption spectrometer with an

integrating sphere operating in 200–900 nm. Photolumi-

nescence (PL) was recorded using a Horiba PTI Quan-

taMaster 400 system with an excitation of 470 nm. Time-

resolved PL decay was obtained on the basis of the time-

correlated single-photon counter (TCSPC) technology

using a light-emitting diode (LED) to provide a 376-nm

excitation beam. The decay data were analyzed using

commercial software provided by Horiba. For trap-state

density evaluation, one layer of conductive glass (ITO)

undertaken the crystal film was used as one electrode. An

800-nm-thick gold (Au) layer deposited on top of the film

by thermal evaporation was used as the other electrode.

This structure had a rather simple geometry with the

sample deposited on ITO and evaporated Au on opposite

sides, and the structure should be kept in the dark. Current–

voltage measurements were conducted using a Keithley

2400 source meter. For light characterization under one-

photon excitation, a monochromatic source (LED,

k = 495 nm) was used. Spectral responsivity (R) was cal-

culated by the photocurrent (Iph) and incident power (Pinc)

according to the relation R = Iph/Pinc. For two-photon

irradiation, the photocurrent was generated using a fem-

tosecond laser system (Spitfire Pro, SpectraPhysic) with an

output wavelength of 800 nm and a repetition rate of

1000 Hz as the light source.

3 Results and Discussion

We synthesized FAPbBr3 MCs using a modified antisol-

vent-assisted inverse temperature crystallization method

[8, 24, 28]. To facilitate the removal of the solvent and

form homogeneous crystalline films, 1 M precursor

(equimolar FABr and PbBr2 dissolved in a mixed solvent

as shown in experimental section) was diluted three times

in DMF. The antisolvent toluene was then added to obtain

a saturated solution. This saturated solution was stirred at

80 �C to accelerate the nucleation and increase the yield of

the interconnected crystals. The mean size of the as-ob-

tained FAPbBr3 MCs was * 10 ± 5 lm, as shown in the

top-view SEM image (Fig. 1a). These MCs were inter-

connected as a continuous film with a thickness of

* 150 lm, as shown in Fig. 1b. XRD results shown in

Fig. 1c confirmed the cubic phase of the FAPbBr3 MCs

[35, 39]. The MCs exhibited an absorption band edge at

570 nm, corresponding to a bandgap of 2.18 eV, as

obtained from the Tauc plot of the absorption spectrum

(Fig. 1d). The emission peak of the MCs appeared at

567 nm (insets of Fig. 1d), which was consistent with

previous results [33, 37, 40]. Additionally, PL decay was

measured using the TCSPC technology (Fig. 1e), and a fast

component (s1, 15 ± 1 ns) and slow decay (s2,
282 ± 5 ns) reflected the surface and bulk carrier lifetimes
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Fig. 1 a Top-view and b cross-sectional SEM images. c XRD pattern d Steady-state absorption spectrum of FAPbBr3 MCs film. Left insets: the

optical bandgap extracted from Tauc plot; right insets: PL spectrum. e PL decay of the sample excited at 376 nm, which could be well fitted by

biexponential functions. f Current–voltage responses of FAPbBr3 MCs
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of the FAPbBr3 MCs, respectively. We also conducted dark

current measurements to estimate the trap-state density of

the FAPbBr3 MC film, as depicted in Fig. 1f. Here, the

trap-state density was calculated to be 6.98 9 1011 cm-3

according to Eq.1:

ntrap ¼
2e0eVTFL

qL2
ð1Þ

where VTFL is the voltage at which trap states are fully

filled by injected carriers, q and L represent the elemental

charge and film thickness, respectively, e0 and e denote the
vacuum permittivity and dielectric constant of FAPbBr3,

with e = 43.6 [37]. The relatively fewer defects contributed

to the formation of a high-quality film, thus promoting their

application in photoelectronic devices [37, 41].

In the next step, FAPbBr3 MCs were directly deposited

on interdigitated ITO substrates to form the prototype

photodetector device. The length and width of the gaps

between neighboring digits were 5 lm and 1 mm, respec-

tively, as shown in Fig. S1. FAPbBr3 MCs covered the

entire active area, forming Schottky barriers due to contact

with the ITO electrode. Once a voltage was applied to the

detector device, ion migration and carrier trapping occur-

red in the active layer and at the electrode/perovskite

interfaces, respectively. This indicated that an Ohmic

contact between the FAPbBr3 MCs and the ITO electrode

was formed. The cathode collected abundant

photogenerated holes, while holes from the anode were

injected into the active layer, showing the photoconduc-

tivity of the device [42–44]. The compact morphology of

the MCs minimized the grain boundary and consequently

diminished interfacial charge recombination. As shown in

Fig. 2a, the photocurrent drastically increased with

increasing excitation light intensity. In addition, the small

dark current of the device (seen in Fig. S2) indicated the

low carrier concentration of FAPbBr3 MCs [37]. The

photoresponse was also reproducible under a periodic

excitation of the light pulse, as demonstrated in Fig. S3.

As shown in Fig. 2b, the photocurrent increased linearly

with the incident power and the corresponding responsivity

(R, defined as photocurrent/the incident light power) lin-

early decreased. The responsivity was 4000 A W-1 at 5 V

(k = 495 nm, probe intensity = 10 nW cm-2), which was

two orders of magnitude higher than that of other FA-based

perovskite photodetectors [7, 38, 45, 46]. Furthermore, the

external quantum efficiency (EQE) calculated by Eq. 2 was

as high as 1.05 9 106% (Fig. 2c):

EQE ¼ R � hc
qk

ð2Þ

In addition, the detectivity D* of the device was

3.87 9 1014 Jones, as obtained from Eq. 3:
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D� ¼ R
ffiffiffi

A
p
ffiffiffiffiffiffiffiffiffiffiffi

qIdark
p ð3Þ

This value of D* was higher than that of state-of-art

MAPbI3 photodetectors (* 1013 Jones) [46]. Moreover,

the FAPbBr3 MC photodetector exhibited a rapid response

with a rise time (srise) of 0.67 ms and fall time (sfall) of

0.75 ms (Figs. 2d and S4), where srise and sfall are defined

as the time required for light response from 10 to 90% in

the rising stage and from 90 to 10% in the falling stage,

respectively.

Previous research has revealed that the photoresponse to

the excitation wavelength is different for front-side exci-

tation and back-side excitation [46]. In back-side excita-

tion, charge carriers are efficiently collected in the vicinity

of the electrodes. However, in front-side excitation, it is

more difficult for charge carriers generated by short-

wavelength photons to penetrate the thick film to electrodes

than that of long-wavelength photons with energy compa-

rable to the bandgap [46]. In our case, the wavelength-

dependent light response using front-side excitation

resembled that using back-side excitation, indicating that

our device was a broadband photodetector (Figs. 3a and

S5). It was found that the thickness of the FAPbBr3
microcrystalline film of about 150 lm allowed most

photons to be transmitted through the film to generate

corresponding photocurrents. Once the film became suffi-

ciently thick ([ 200 lm), it blocked the short-wavelength

photons to the microcrystalline film to form a narrowband

photodetector, which was also confirmed by Saidaminov

and coworkers [46]. In addition, the generally lower pho-

tocurrent for front-side excitation could be attributed to the

insufficient diffusion length of the photogenerated charges

for the given film thickness, which hindered charge trans-

portation to the bottom electrode [46]. Figure 3b shows the

photocurrent variation for different bias voltages. As

shown in Fig. 3c, d, when the bias voltage was decreased,

the photocurrents of the photons excited far above the

absorption band edge degraded more.

Perovskites have also attracted considerable attention as

nonlinear semiconductor absorbers for optical limiting

[47], ultrafast optical signal characterization [48], micro-

scopy [49], and lithography [50]. Therefore, we charac-

terized our device under two-photon excitation, where the

photocurrent was generated by an 800-nm pulse laser with

a photon energy much smaller than the bandgap of

FAPbBr3 (2.18 eV). Figure 4a shows the PL mechanism of

FAPbBr3 at 567 nm obtained under 800-nm two-photon

absorption. Under 800-nm back-side illumination at a fixed

bias of 5 V, the tendency of light current variation with
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respect to voltage (30–110 mW cm-2) is provided in

Fig. 4b. Under ideal conditions, the photocurrent generated

by two-photon absorption showed a square (n = 2)

dependence on the input intensity [51]. However, our tes-

ted photocurrents (with 1\ n\ 2) exhibited highly

dependent on incident power, which was mainly attributed

to the effect of trap-state’s sub-gap absorption [8, 52]. This

tendency was consistent with that reported for near-in-

frared CsPbBr3 and MAPbBr3 photodetectors [8, 51].

Consequently, the responsivity of the two-photon pumped

FAPbBr3 MC detector increased with increasing input

intensity in the linear excitation region (Fig. 4c). The lar-

gest responsivity under 800-nm excitation (0.07 A W-1)

was much higher than that previously reported for

MAPbBr3 single crystals [51]. The fast response of our

detector under two-photon excitation with a fast fall time

(0.72 ms) is also shown in Fig. 4d. The result is similar to

that observed under one-photon excitation (0.75 ms). The

rapid pulse light with periodic changes was responsible for

the missing rising stage.

Moreover, the amplified spontaneous emission (ASE)

behavior of the FAPbBr3 microcrystalline film was mea-

sured using 800-nm laser pulses with tunable intensities.

The emission spectra (Fig. S6) with increasing light

intensity exhibited an ASE threshold of 1.75 mJ cm-2,

which was similar to the reported two-photon ASE

threshold of MAPbBr3 photodetectors (2.2 mJ cm-2) [53].

4 Conclusion

In summary, organolead trihalide perovskite FAPbBr3 MCs

were synthesized and then deposited as a photodetector.

The photodetector exhibited a good responsivity of up to

4000 A W-1 under back-side one-photon excitation with

an EQE and detectivity of up to 1.05 9 106% and

3.87 9 1014 Jones, respectively. Besides, the two-photon

responsivity under 800-nm excitation was 0.07 A W-1,

which was four orders of magnitude higher than that

reported for MAPbBr3 single crystals (10-6 A W-1). This

deposited FAPbBr3 microcrystalline photodetector showed

great potential for developing fast and sensitive

photodetectors.
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