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Highlights

• Cu-phthalocyanine was employed as hole transport material for CsPbBr3 inorganic perovskite solar cells.

• The optimal device acquires a decent power conversion efficiency of 6.21%, over 60% higher than those of the hole

transport material-free devices.

• The device exhibits an outstanding durability and a promising thermal stability.

Abstract Metal halide perovskite solar cells (PSCs) have

attracted extensive research interest for next-generation

solution-processed photovoltaic devices because of their

high solar-to-electric power conversion efficiency (PCE)

and low fabrication cost. Although the world’s best PSC

successfully achieves a considerable PCE of over 20%

within a very limited timeframe after intensive efforts, the

stability, high cost, and up-scaling of PSCs still remain

issues. Recently, inorganic perovskite material, CsPbBr3, is

emerging as a promising photo-sensitizer with excellent

durability and thermal stability, but the efficiency is still

embarrassing. In this work, we intend to address these

issues by exploiting CsPbBr3 as light absorber, accompa-

nied by using Cu-phthalocyanine (CuPc) as hole transport

material (HTM) and carbon as counter electrode. The

optimal device acquires a decent PCE of 6.21%, over 60%

higher than those of the HTM-free devices. The systematic

characterization and analysis reveal a more effective

charge transfer process and a suppressed charge recombi-

nation in PSCs after introducing CuPc as hole transfer

layer. More importantly, our devices exhibit an outstanding

durability and a promising thermal stability, making it

rather meaningful in future fabrication and application of

PSCs.
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1 Introduction

Organic–inorganic perovskite solar cells (PSCs) are

appearing as a hopeful new generation of photovoltaic

technology and have revolutionized the prospects of

emerging photovoltaic industry, because of the tremendous

increase in device performance [1–6]. The outstanding

photoelectric properties, such as high absorption coeffi-

cient, suitable and adjustable band gap [7–9], ambipolar

charge transport [10–13], and long carrier diffusion length

[14, 15], make perovskite materials very appropriate for

light harvesting in photovoltaics. Since the breaking report

from Miyasaka [16], power conversion efficiency (PCE) of

such PSCs has reached a remarkable value (over 22%) in a

short span [17–19], approaching the efficiency of com-

mercialized c-Si solar cells and thin-film photovoltaic solar

cells such as CdTe and Cu2ZnSn(Se,S)4 [20]. Despite the

rapid increment in PCE associated with the evolution of

new perovskite materials and novel fabrication techniques,

the instability of PSCs remains unresolved. The mostly

studied hybrid perovskite materials, for example methy-

lammonium lead triiodide (MAPbI3) and formamidinium

lead triiodide (FAPbI3), are forceless against moisture and

heat. Some organic additives in commonly used HTMs,

such as lithium bis(trifluoromethanesulfonyl)imide

(LiTFSI) and tert-butylpyridine (tBP), are also hygroscopic

and deliquescent, accelerating performance degradation

[21–24]. Thus, precise environmental controls (gloveboxes

or dryrooms) are often necessary during the fabrication of

organic–inorganic hybrid PSCs. On the other side, efficient

PSCs generally employ a p-type organic small-molecule or

polymeric hole conductor, such as 2,20,7,70-tetrakis (N,N0-
di-p-methoxyphenylamine)-9,90-spirobifluorene (spiro-

OMeTAD) [25], poly(3-hexylthiophene) (P3HT) [26], and

poly(triarylamine) (PTAA) [27] as hole-extraction materi-

als to boost device efficiencies. Discouragingly, these

conventional HTMs suffer from disadvantages of high

synthetic cost, thermal and chemical instability, and low

hole mobility or low conductivity in their pristine form

[28–30], seriously hindering the viable commercialization

of the emerging PSC technology. The necessary doping

techniques involved in improving their carrier density and

conductivity further increase the cost in production. In

addition, the high-energy-consuming coating process

together with the consumption of noble metals as counter

electrode (such as Au and Ag, widely used in efficient

state-of-the-art PSCs) gives another problem for the com-

mercialization of PSCs. To sum up, there are mainly three

cruxes for the future up-scaling of PSCs: (1) exploring

novel perovskite materials and HTMs with high stability

against humidity and heat; (2) developing efficient, low-

cost, durable, and scalable alternative HTMs that can

replace currently used organic ones; (3) searching for low-

cost and scalable substitutions for noble counter electrodes.

It has been proposed that inorganic perovskites (e.g.,

CsPbI3 and CsPbBr3) are more stable than organic ones,

due to smaller ionic radius of Cs? than those of FA? and

MA? cations. Many works on PSCs with inorganic per-

ovskites as light absorber have been reported. Tan et al.

[31] incorporated Cs? into MA/FA hybrid perovskite to

improve the photostability of solar cells. Luo et al. [32]

prepared a CsPbI3 HTM-based PSC under fully open-air

conditions with a PCE of 4.13%. Kulbak et al. [33]

reported CsPbBr3 PSCs with different HTMs and achieved

a highest PCE of 6.2%. Sutton et al. [34] demonstrated a

CsPbI2Br-based inorganic mixed halide PSC with an effi-

ciency up to 9.8% and high ambient stability. Both Chen’s

group and Liu’s group proposed a kind of carbon-based

CsPbBr3 all-inorganic PSCs and achieved optimal effi-

ciencies of 5.0% [35] and 6.7% [36], respectively. All these

PSCs using inorganic perovskite have demonstrated a rel-

atively enhanced stability. On the other hand, p-type

semiconductor CuPc, small molecular HTMs with planar

configuration, is preferable in fabricating stable and effi-

cient traditional organic PSCs [37–39]. It owns properties

of low cost, ease of synthesis, low band gap, high hole

mobility of 10-3–10-2 cm2 V-1 S-1 (as compared with

4 9 10-5 cm2 V-1 S-1 for spiro-OMeTAD) [40], good

stability (starting degradation above 500 �C in air), and

long exciton diffusion length (Lex ranging from 8 to 68 nm)

[41–43]. Nonetheless, CuPc is never reported as HTM in

inorganic perovskite photovoltaic devices. Besides, novel

counter electrodes including Al [44], Ni [45], and carbon

[46–48] have been explored in PSCs recently. Among

them, carbon is thought to be the most promising for the

electrode material because carbon is cheap, stable, inert to

ion migration originating from perovskite and metal elec-

trodes, inherently water-resistant, and therefore advanta-

geous for good stability. The emergence of carbon counter

electrode-based PSCs greatly lowers the cost and simplifies

the procedures, rolling forward the development and

commercialization of PSCs [49].

In this work, CuPc were introduced as HTM in carbon

counter electrode-based CsPbBr3 inorganic PSCs. For

comparison, HTM-free PSCs were also made as the control

devices. The optimal CuPc-based device performance with

an efficiency of 6.21% has been achieved, 63% higher than

the HTM-free device. Systematic characterization and

analysis were performed to reveal the underlying
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mechanism of the improvement originated from the CuPc

HTM layer. Our results suggest that introducing CuPc

between the perovskite layer and carbon electrode provides

a simple and effective route to facilitate charge transfer and

suppress charge recombination in PSCs. More importantly,

our devices exhibit an outstanding durability and a

promising thermal stability, compared with the HTM-free

CsPbBr3 devices and traditional MAPbI3 devices.

2 Experimental Section

2.1 Synthesis of Carbon Paste

One gram polyvinyl acetate (PVAc) and 0.5 g hydrox-

ypropyl cellulose were dissolved in 60 mL ethyl acetate.

PVAc acted as the binder in the carbon film, and hydrox-

ypropyl cellulose was used to adjust the viscosity of the

carbon paste. 20 mL of the mixed ethyl acetate solution

was blended with 2 g 40-nm graphite powder, 1 g 10-lm
flake graphite, 1 g 40-nm carbon black, and 0.5 g 50-nm

ZrO2 powder. The ZrO2 particles were introduced to

enhance the scratch resistance performance of the carbon

film [50, 51]. After vigorously milling for 2 h in an electro-

mill (QM-QX0.4, Instrument Factory of Nanjing Univer-

sity), the printable carbon paste was ready.

2.2 Device Fabrication

Perovskite thin film and solar cells were fabricated on

fluorine-doped tin oxide (FTO)-glass substrate with the

sheet resistance of 14 X sq-1. Diluted hydrochloric acid

(2 mol L-1) and zinc powder were used to pattern the

fluorine-doped tin oxide substrates. After ultrasonically

cleaned by acetone, ethanol, and deionized (DI) water, the

FTO substrates were treated under oxygen plasma for

30 min to remove the last traces of organic residues. A thin

layer of compact anatase TiO2 with 50 nm in thickness was

deposited by spin-coating a mildly acidic solution of tita-

nium isopropoxide in ethanol at 5000 rpm for 60 s and

consequently annealed at 500 �C for 30 min. After cooling

down to room temperature, the mesoporous TiO2 scaffold

(particle size 20 nm) was formed by spin-coating TiO2

paste (DSL. 18NR-T, 20 nm, Dyesol, Australia) diluted in

ethanol (2:7 weight ratio) at 5000 rpm for 60 s and con-

sequently heating at 500 �C for 30 min. The CsPbBr3
perovskite layer was prepared by a sequential method.

1.47 g PbBr2 was dissolved in 4 mL N,N-dimethylfor-

mamide (DMF) and heated at 80 �C for 12 h under mag-

netic stirring. The prepared mesoporous TiO2 films were

preheated to * 80 �C and then infiltrated with the PbBr2
precursor solution by spin-coating at 2000 rpm for 45 s and

dried at 80 �C for 30 min immediately. Sequentially, the

PbBr2 films were immersed in a methanol solution of

0.07 M CsBr for 15 min. After rinsed by 2-propanol and

dried in air, the samples were heated to 250 �C for 5 min

on a hotplate to form a uniform layer of CsPbBr3. CuPc

was deposited on the perovskite film by vacuum evapora-

tion (\ 1 9 10-3 Pa) using quartz crystal monitor to

determine the thickness and deposition rate. The deposition

of carbon CE was conducted by doctor blade method and

dried at 80 �C for 15 min. All these procedures were car-

ried out on naturally ambient atmosphere.

2.3 Characterization

The morphology of the perovskite surface and cross-sec-

tional structure of the solar cells was observed by the field

emission scanning electron microscopy (FESEM, JSM-

7600F, JEOL). The formation of CsPbBr3 perovskite

absorber layer has been further confirmed by X-ray

diffraction (XRD) analysis (PANalytical PW3040/60) with

Cu Ka radiation (k = 1.5406 Å) from 10� to 50�. An X-ray
photoelectron spectrometer (XPS, Axis Ultra DLD, Shi-

madzu) equipped with a monochromatic Al Ka source

(1486.6 eV) was employed to determine the surface

chemical composition of CsPbBr3 perovskite film. The

Raman spectra of the CuPc film on glass substrate were

performed by a Raman spectrometer (LabRAM HR800,

Horiba JobinYvon) with a 532 nm laser source. All the

XPS spectra were obtained in the constant pass energy

mode, where the pass energy of the analyzer was set at

20 eV. Here the binding energy of the C 1s peak (285 eV)

arising from adventitious carbon was used for the energy

calibration. UV–Vis spectrophotometer (UV 2600, Shi-

madzu) was utilized to obtain the absorption spectra of

CsPbBr3 and CsPbBr3/CuPc films. The steady-state pho-

toluminescence measurements were taken using a spec-

trometer (LabRAM HR800, Horiba JobinYvon) under an

excitation laser with a wavelength of 325 nm. The time-

resolved photoluminescence decay transients were mea-

sured at 525 nm using excitation with a 478-nm light pulse

from a HORIBA Scientific DeltaPro fluorimeter. Current

density–voltage (J–V) curves were recorded under AM 1.5,

100 mW cm-2 simulated sunlight (Oriel 94043A, Newport

Corporation, Irvine, CA, USA) with an electrochemical

station (Autolab PGSTAT302 N, Metrohm Autolab,

Utrecht, The Netherlands), previously calibrated with an

NREL-calibrated Si solar cell. The measurements were

taken with a black metal mask with a circular aperture

(0.071 cm2) smaller than the active area of the square solar

cell (1.5 9 1.5 cm2). The incident photon to current con-

version efficiency (IPCE) was performed employing a

xenon lamp coupled with a monochromator (TLS1509,

Zolix) controlled by a computer.
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3 Results and Discussion

Figure 1a shows the schematic cross-sectional view of the

CuPc-based CsPbBr3 PSC. The cell consists of functional

layers of FTO/compact TiO2/mesoporous TiO2/inorganic

perovskite CsPbBr3/CuPc/carbon. Figure 1b displays the

schematic energy-level alignment of the PSCs device. The

TiO2 compact layer is used as the electron-collecting layer,

and the mesoporous TiO2 layer is used as the scaffold for

light-sensitive absorption material. According to previous

study, the EC, EF, and EV of TiO2 are 4.0, 4.15, and 7.6 eV,

respectively [52]. The counter electrode is printed by a

low-temperature printable carbon paste. Compared to the

traditional organometal CH3NH3PbI3 perovskite material,

CsPbBr3 owns a wider band gap of 2.3 eV, a work function

of 3.95 eV, and a valence band energy of 5.75 eV [53].

CuPc is a typical organic small molecular photoelectric

semiconductor material with the corresponding molecular

structure as shown in Fig. S1. The highest occupied

molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO) levels of CuPc are ascribed to

- 5.2 and - 3.5 eV, respectively [54]. What is more, the

gap between EF and EV is reported to be 0.7 eV [55]. It can

be found that the device exhibits a smooth energy-level

transition by using CuPc as the HTM. The proposed band

bending at interfaces is illustrated in Fig. 1c. Under illu-

mination, free charge carriers generated in the CsPbBr3
layer can be extracted by transferring electrons (filled cir-

cle) and holes (open circle) to TiO2 and CuPc, since the

energy-level alignments are appropriate. Besides, the con-

duction band offset between the CsPbBr3 layer and CuPc

layer (0.5 eV) provides an energy barrier that prevents

photogenerated electrons from flowing to the CuPc layer,

whereas the valence band offset provides an additional

driving force for the flow of photogenerated holes to the

CuPc layer. The insertion of the CuPc layer not only pre-

vents electron flow from CsPbBr3 to the anode but may

also reduce surface recombination of photogenerated

electrons and holes at the CsPbBr3/carbon interface

[46, 56]. The final collection of the holes is extracted by

carbon through the CuPc/carbon interface from the HOMO

of CuPc (- 5.2 eV) to carbon (- 5.0 eV), while electrons

are collected by FTO (- 4.6 eV) [47, 48].

The film quality of the CsPbBr3 and the surface mor-

phology of the CsPbBr3 film with CuPc on the top, as well

as the cross-sectional view of the whole device, are mea-

sured by high-resolution SEM, as depicted in Fig. 2a–d.

The as-formed CsPbBr3 film possesses the characteristic of

well surface coverage on the substrate. Relatively uniform

grain size ranging from 100 to 1000 nm can be derived

from Fig. 2a. However, striking different top-view mor-

phology is revealed by depositing CuPc on the surface of

the perovskite grains (Fig. 2b). The higher-magnification

image derived from Fig. S2 demonstrates a nanorod-like

morphology of the CuPc aggregated by layered deposition.

Decorated with the CuPc film, the perovskite grains

become sea cucumber-like. The molecular interactions in

the CuPc nanorods are enhanced due to the strong p–p
stacking between the layered CuPc molecular, which

favors the formation of high carrier mobility to some

extent. [57] Moreover, depositing thin CuPc can also

compensate some defects on the surface of the CsPbBr3 as

well as induce a large interfacial area of the CuPc, which is

conductive to a good contact with the counter electrode,

correspondingly favoring the hole transported from the

CuPc to the carbon. The cross-sectional SEM images of the

whole device shown in Fig. 2c, d demonstrate a well-de-

fined layer-by-layer structure with sharp interfaces. The

thickness of the mp-TiO2, perovskite capping layer, and

carbon layers is determined as 600 nm, 500 nm, and

50 lm, respectively. The CuPc layer is too thin to be

identified in this scale. The line-scan analysis of EDX map

is further conducted to investigate the distribution of

components in the solar cell, as shown in Fig. S3. The

evident peak from Cu proves the existence of CuPc

between the interface of CsPbBr3 and carbon. According to
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Fig. 1 a Schematic cross-sectional view of the CuPc-based CsPbBr3 PSC with a printable low-temperature carbon electrode. b Schematic

energy-level alignment at interfaces. EVAC is the vacuum energy, EC is the conduction band edges, EF is the Fermi levels, and EV is the valence

band edges. c Schematic illustration of proposed band bending at interfaces
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the result of four-point probe resistivity measurement,

the carbon electrode shows a sheet resistance of around

70 X sq-1 and exhibits a good electrical conductivity.

Figure 2e shows the XRD patterns of the FTO/TiO2 (black

curve), FTO/TiO2/CsPbBr3 (red curve), and FTO/TiO2/

CsPbBr3/CuPc (blue curve) films. Obvious diffraction

peaks at 15.1�, 21.4�, 30.6�, 34.3�, and 43.7� are consistent
with the planes of (100), (110), (200), (210), and (220) of

CsPbBr3, respectively [35]. Impure peaks at 11.6� and

29.3� (marked by rhombuses) may attribute to (002) and

(220) planes of by-product CsPb2Br5, which is hard to

eliminate when to obtain CsPbBr3. The occurrence of

CsPb2Br5 in the final product can be attributed to the

metastable state in the cubic phase, non-stoichiometric

material transfer, or structural rearrangement [58, 59]. The

generation of secondary-phase CsPb2Br5 in the product can

be ascribed to the following process:
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PbBr2 þ CsPbBr3 ! CsPb2Br5 ð1Þ

The excess PbBr2 or the poor solubility of CsBr in

methyl alcohol could facilitate the transformation at a low

temperature [60]. CsPb2Br5 crystal is reported to exhibit an

inactive photoluminescence behavior and a large indirect

band gap of approximately 3.1 eV [61], which are unfa-

vorable in the application of photovoltaic device and need

to be eliminated by future process optimization. After

coated by CuPc, the XRD patterns of the film show neg-

ligible changes, mainly due to the amorphous state of the

CuPc [42]. In the Raman spectra (Fig. S4), the peak at

680.2 cm-1 is ascribed to the breathing vibration band of

phthalocyanine ring, the peak at 1140.5 cm-1 is ascribed to

the breathing vibration band of benzene ring, and the peaks

at 1137.5, 1452.0, and 1526.5 cm-1 are attributed to the

stretching vibration band of C–C, C–N, and C=C bond,

respectively [62]. UV–Vis absorbance spectra of the CuPc,

FTO/TiO2/CsPbBr3, and FTO/TiO2/CsPbBr3/CuPc are also

demonstrated in Fig. 2f. The CsPbBr3 film strongly absorbs

light with the wavelength between 300 and 540 nm, own-

ing to the relatively wide band gap (2.3 eV) as shown in

Fig. S5. Pristine CuPc demonstrates a wide spectral ranging

from 500 to 800 nm, and peaks at 625 and 696 nm, which

are ascribed to the Q-band of CuPc. The peak at 625 nm is

the absorbance peak of the CuPc dimer, and the peak at

696 nm comes from the CuPc monomer [63, 64]. In the

presence of CuPc, an enhancement in absorption is

observed, especially in the region of 537–800 nm. Corre-

spondingly, the color of the films changes from golden

yellow to light green, as shown in the inset of Fig. 2f.

Steady-state PL and time-resolved photoluminescence

(TRPL) are judiciously employed for the CsPbBr3 film and

the CsPbBr3 film coated by CuPc, which are deposited on

the quartz glasses. As shown in Fig. 3a, both samples under

the same laser pulse energy exhibit PL emission peaks at

525 nm arising from the CsPbBr3 perovskite layer.

Significant quenching effect is observed when the per-

ovskite layer interfaces with the CuPc layer, indicating that

CuPc is effective in hole extraction. This owes to the high

mobility and high interfacial film quality together with

intimate contact with the CsPbBr3 film formed by excellent

p–p stacking. In order to evaluate the hole-extraction rate

and bimolecular recombination process of the free elec-

trons and holes, TRPL decay is further performed via

monitoring the peak emission at 525 nm. The results are

shown in Fig. 3b. The excitation impinges on the sample

from the glass side with a pulsed laser at 478 nm. By

biexponential fitting of the dynamic TRPL curve, the pure

CsPbBr3 perovskite film exhibits a carrier lifetime of

2.82 ns, whereas the addition of nanorod-like CuPc

accelerates the PL decay with an observed carrier lifetime

of 0.79 ns. Here the carrier lifetime in the perovskite film

describes various radiative and non-radiative loss channels

responsible for photoexcited carrier recombination [65].

The smaller lifetime induced by the CuPc nanorods

quenching indicates a fast hole-diffusion process, a reduced

trap-assisted recombination, and an efficient hole-extrac-

tion capability [40].

The photovoltaic performances of the devices with

60-nm CuPc as HTM or without any HTM were charac-

terized by J–V measurements under simulated AM 1.5G

solar irradiation at 100 mW cm-2 in the air (Fig. 4a). The

results are summarized in Table 1. The optimized device

with CuPc as HTM shows a short-circuit current density

(JSC) of 6.62 mA cm-2, an open-circuit voltage (VOC) of

1.26 V, a fill factor (FF) of 0.74, and a champion PCE of

6.21%, showing 63% enhancement than the HTM-free

device (3.8%). The corresponding IPCE spectra are dis-

played in Fig. 4b. The IPCE starts to increase at 540 nm,

consistent with the UV–Vis spectrum of CsPbBr3. After

applying CuPc as the HTM, the IPCE shows noticeable

improvement in the region between 300 and 540 nm due to
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more effective charge collection and extraction. Note that

the IPCE curve also exhibits a blue-shift character, leading

to an effective use for the near-ultraviolet light. Integrating

the overlap of the IPCE spectra of the CuPc-based and

HTM-free devices yields the current density of 6.58 and

4.48 mA cm-2, respectively, in good agreement with the

experimentally obtained JSC. Figure 4c–f is box charts

exhibiting the statistical features (JSC, VOC, FF, and PCE)

of the carbon-based CsPbBr3 PSCs with CuPc as HTM and

those without HTM. It is obvious that the PCE is enhanced

after introducing CuPc, mainly ascribing to the improved

JSC. Moreover, the thickness of the CuPc layer also plays a

vital role in affecting the performance of the solar cells (see

Fig. S7 and Table S2). If the CuPc layer is too thin, the hole

transportation function of the CuPc will not work effec-

tively; if the CuPc is too thick, the series resistance of the

device will increase due to relatively low conductivity of

the pristine CuPc, resulting in a poor performance. Thus,
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the optimized thickness of the CuPc layer is very impor-

tant, and 60 nm is obtained in this study. Generally, PSCs

suffer from hysteresis phenomena: VOC and FF varied

under different scan directions. As displayed in Fig. S8,

despite the improvement in efficiency after introducing

CuPc as HTM, our device still suffer from severe hysteresis

effect: Efficiency at forward scan (3.12%) is only 54% of

the efficiency at reverse scan (5.74%). Recent studies

suggest that J–V hysteresis is related to the presence of

defects and trap states at the perovskite/electron transport

layer and/or perovskite/hole transport layer interfaces

[66–69]. The combination of ion migration in the per-

ovskite film and interfacial recombination is thought to be

responsible for many of the observed hysteresis behaviors

[70–72]. These phenomena may be further eliminated via

interfacial modification or interface passivation [73–77].

To further evaluate the recombination in the HTM-free

and CuPc-based CsPbBr3 PSCs, EIS was applied to track

the interface charge behavior. Measurements were taken at

a bias of 1.0 V in the frequency ranging from 107 to 10 Hz

under dark condition. Figure 5a, b shows the Nyquist plots

of two devices (with CuPc or HTM-free), and an equivalent

circuit (inset in Fig. 5a) is used to fit the curves. As can be

found, there are two well-defined semicircles, including a

small one in the high frequency range (magnified in

Fig. 5b) and a large one in the low frequency range. The

right semicircle in the low frequency range is mainly

attributed to the recombination resistance (Rrec) at the

TiO2/perovskite interface. The small semicircle corre-

sponding to the high-frequency part stands for the charge

transfer resistance (Rct) at the perovskite/HTM or per-

ovskite/carbon interface [78–80]. Compared with the

HTM-free CsPbBr3 PSC, the Rrec increases from 2.87 to

3.41 kX after using CuPc as HTM in the device. The larger

Rrec of the device with CuPc at the same forward bias

voltage suggests that CuPc as the HTM is superior in

preventing charge recombination. Furthermore, introducing

CuPc will also lower the Rct (from 213.0 to 45.6 X),
indicating a more efficient charge transfer process than that

occurred in the HTM-free device. All these results lead to

an enhanced JSC and thereby an improved PCE. A further

explanation is that the appropriate energy level and high

hole mobility of the CuPc may help to accelerate the

extractions of photon-generated carriers, resulting in a

larger Rrec and a smaller Rct. The favorable effect of the

CuPc HTM layer on the device operation is summarized by

the device models shown in Fig. 5c, similar to the planar

heterojunction organic photovoltaic devices [81]. A per-

foration in the perovskite film (circled by dash line in red)

is sketched for better illustration of the working mechanism

of our devices. It does not indicate that the perovskite film

is totally discontinuous since the hole is enlarged for

clarity. In perovskites, bimolecular recombination is

caused by the recombination of photogenerated electrons

and holes, whereas monomolecular recombination is from

photoexcited carriers and unintentionally trap states [82]. It

is proposed that large perovskite grains with few trap states

show bimolecular recombination and high device effi-

ciency, whereas the perovskite films with trap states pre-

sent monomolecular recombination and low device

efficiency [3]. The carriers trapped by the trap states will

lead to slow response of the photocurrent through the delay

in charge transport by trapping and detrapping processes

and cause losses in carrier collection which will lead to a

low JSC. Hence, there are mainly two reasons for the

enhanced photovoltaic performance of the CuPc-based

PSCs. First, pin-holes in the perovskite layer (as shown in

Fig. S9), which are hard to eliminate by technological

means, will lead to the formation of defects, acting as

centers to facilitate the recombination of holes and elec-

trons. Introducing CuPc as HTM layer can build a Schottky

barrier at the perovskite/carbon interfaces and suppress

carrier recombination [83, 84]. Second, the CuPc HTM

layer provides a smoother energy-level transition, reducing

trap states and monomolecular recombination, which will

benefit for high efficient solar cells [3, 85].

Moreover, CuPc-based CsPbBr3 PSCs with large active

area (2.25 cm2) were also fabricated. Figure 6a shows the

J–V plots of a large-area PSC under AM1.5 G standard

solar light. The device shows a Voc of 1.285 V, a Jsc of

5.695 mA cm-2, a FF of 0.645, reaching a PCE of 4.72%.

Measuring the steady-state power output directly at a given

bias is also feasible to estimate the PCE. As shown in

Fig. 6b, we recorded the photocurrent density of the device

held at a forward bias of 0.85 V near its maximum output

power as a function of time, so as to monitor the stabilized

power output under working conditions. The photocurrent

density stabilizes within seconds to approximately

3.17 mA cm-2, yielding the stabilized power conversion

efficiency around 2.65% measured after 300 s. Here, the

decay of Jsc toward the steady current is ascribed to the

capture of build-up holes in surface states associated with

Table 1 Photovoltaic performance of the TiO2/CsPbBr3/CuPc/car-

bon devices and TiO2/CsPbBr3/carbon devices measured under sim-

ulated AM 1.5G (100 mW cm-2) condition

Cell configuration VOC (V) JSC (mA cm-2) FF PCE (%)

TiO2/CsPbBr3/CuPc/carbon

Champion 1.26 6.62 0.74 6.21

Average 1.17 5.83 0.66 4.47

TiO2/CsPbBr3/carbon

Champion 1.23 4.50 0.69 3.80

Average 1.16 3.87 0.63 2.81
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recombination [86], similar to that occurred in traditional

organic–inorganic hybrid PSCs [34, 87].

Long-term stability is a critical concern for practical

applications of PSCs. Figure 6c presents the room-tem-

perature stability test of the CuPc-based CsPbBr3 PSCs in

comparison with the HTM-free CsPbBr3 devices and the

classical CH3NH3PbI3/carbon devices. The devices without

encapsulation were stored in dark with a humidity of

30–40% RH. Both the CuPc-based CsPbBr3 PSCs and

HTM-free CsPbBr3 PSCs exhibit excellent stability beyond

2000 h, while the organic ones start degrading at 800 h.

Thermal stability of the devices was further evaluated in a

harsh environment (the humidity of 70–80% RH and the

temperature of 100 �C), as shown in Fig. 6d. Obviously,

the performance of CH3NH3PbI3/carbon devices decays

rapidly, since the high humidity and high storing temper-

ature accelerate the degradation of CH3NH3PbI3 perovskite

light absorber. The HTM-free CsPbBr3 devices also show a

PCE loss of 37% after 944 h, similar to the previous

research [35]. However, the CuPc-based CsPbBr3 devices

show an outstanding thermal stability (without evident

decay) during the whole testing period. The organic CH3-

NH3
? cation is more vulnerable to moisture and has higher

volatility than the inorganic Cs? cation, leading to rapid

degradation of the CH3NH3PbI3 devices under relatively

high RH and temperature environment [35]. The intro-

duction of the CuPc film and carbon film, which can act as

shields to prevent the deliquescing of the underlying per-

ovskite layer, obtains the best hydrophobicity and thus

results in the best stability of CuPc-based CsPbBr3 PSCs.

4 Conclusion

In summary, cost-effective p-type material CuPc was

introduced as HTM layer in the carbon-based CsPbBr3
inorganic PSCs. The deposited CuPc layer exhibits a

nanorods morphology and an intimate contact with the

perovskite layer, preventing direct contact between the

perovskite layer and carbon electrode. The CuPc layer can

effectively extract the photon-generated carriers and

accelerate the hole-diffusion process, obtaining a decent

PCE (6.21%) with high reproducibility. Compared with

HTM-free CsPbBr3/carbon devices, the enhanced PCE may

be ascribed to a more efficient charge transfer and a more

suppressed charge recombination. Moreover, the newly

developed devices demonstrate a dramatically enhanced

durability under ambient atmosphere and a promising
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thermal stability in relatively harsh condition. The

enhanced PCE and excellent stability of our devices offer a

new device designing strategy and promise a reality of

commercial application for PSCs with cost-effective, mass

manufacturing solar technology that is compatible with

current large-scale printing infrastructure.
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