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Highlights

• Introduction of graphene improves photovoltaic properties of perovskite solar cells (PSCs).

• Graphene can be used as a conductive electrode, carrier transporting material, or stabilizer material.

• Graphene enhances the electrical properties and stability of PSCs.

Abstract Perovskite solar cells (PSCs) have raised

research interest in scientific community because their

power conversion efficiency is comparable to that of tra-

ditional commercial solar cells (i.e., amorphous Si, GaAs,

and CdTe). Apart from that, PSCs are lightweight, are

flexible, and have low production costs. Recently, graphene

has been used as a novel material for PSC applications due

to its excellent optical, electrical, and mechanical proper-

ties. The hydrophobic nature of graphene surface can

provide protection against air moisture from the sur-

rounding medium, which can improve the lifetime of

devices. Herein, we review recent developments in the use

of graphene for PSC applications as a conductive electrode,

carrier transporting material, and stabilizer material. By

exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device per-

formance and stability before it can be commercialized in

the photovoltaic market in the near future.

Keywords Perovskite solar cells � Graphene � Conductive
electrode � Carrier transporting material � Stabilizer
material � Performance and stability
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1 Introduction

Global climate change [1] and rapidly rising energy

demand [2] require society to move toward sustainable and

renewable energy resources. Among all sustainable and

renewable energy resources, solar energy has potential to

fulfill these needs because it is free and clean. Therefore,

photovoltaic cells are extremely important for the conver-

sion of solar energy into electricity. According to the latest

survey, 90% of the photovoltaic products in the world

market are based on first-generation crystalline

(monocrystalline and polycrystalline) silicon (Si) wafers

with power conversion efficiency (PCE) between 15 and

20% on the module level of 1.6 m2 [3]. However, these

cells are expensive due to the high cost of the processing

and raw material of Si [4]. On the other hand, second-

generation solar cells based on amorphous Si, cadmium

telluride (CdTe), and copper indium gallium selenide

(CIGS) did not repeat the success of the crystalline Si solar

cells due to technological problems and the module sta-

bility issues [5, 6].

To overcome these problems, researchers need to

explore new materials for next-generation photovoltaics.

At present, perovskite solar cells (PSCs) have generated

broad interest because of their rapid PCE improvement

from 3.8% in 2009 to 22.1% in 2016 [7], as shown in

Fig. 1a [8–14]. In addition, PSCs have the merits of low-

cost processing, easy fabrication, and compatibility with

flexible plastic substrates for large-area production

[15, 16]. It should be noted that the certified efficiency of

16.0 ± 0.4% has been achieved for the minimodule PSC

with the aperture area of 16.29 cm2 [17]. Thus, PSCs have

been considered as promising energy conversion candi-

dates for carbon-free energy production in the next few

years.

To date, several strategies such as electrode modifica-

tion [18–21], metal-doping cathode buffer layer [22–25],

surface modified perovskite layer [26–28], plasmonic

nanoparticles [29–32], and introducing graphene-based

materials within the device layers [33–37] have been car-

ried out to boost the performance and stability of PSCs. In

particular, integration of graphene into PSCs has attracted

attention because graphene provides promising device

designs with its potential low cost of production, high

chemical stability, and appropriate energy level [38]. It

should be noted that the efficiency of PSCs of over 18%

has been achieved by using graphene-based materials (the

highest reported efficiency of graphene PSCs to date) [39],

indicating that graphene is a promising candidate for the

development of PSCs. Graphene was discovered in 2004

by Russian-born scientists Andre Geim and Konstantin

Novoselov utilizing, in the widely accepted terminology,

the ‘‘Scotch tape method’’ [40].

It is well known that graphene is a name given to a two-

dimensional (2D) sheet of sp2 hybridized carbon atoms

tightly packed into a 2D honeycomb crystal lattice. It can

be stacked to form three-dimensional (3D) graphite, rolled

to form one-dimensional (1D) nanotubes, and wrapped to

form zero-dimensional (0D) fullerenes. Figure 1b illus-

trates graphene and its derivatives [41]. Its outstanding

properties such as high thermal conductivity

(* 5 9 103 W m-1 K-1) at room temperature [42], high

charge carrier mobility (2 9 105 cm2 V-1 S-1) [43], high

optical transparency (it absorbs 2.3% of the incident light

in the range from infrared to violet) [44], large surface-to-

mass ratio (2630 m2 g-1) [45], superior mechanical prop-

erties (i.e., Young’s modulus of * 1 TPa) [46], and high

flexibility have given it the potential to be used in various

applications such as sensors [47], catalysts [48], optical

modulators [49], surface-enhanced Raman spectroscopy

(SERS) platforms [50], and optoelectronic devices (light-
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Fig. 1 a Evolution of PSC efficiencies from 2009 to 2016 [8–14]. b Graphene is a 2D hexagonal lattice of carbon atoms (i). It can be stacked

into 3D graphite (ii), rolled into 1D nanotubes (iii), and wrapped into 0D buckyballs (iv). Reprinted with permission from Ref. [41] Copyright

2012 American Chemical Society
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emitting diodes, solar cells, displays, touch screens)

[51, 52].

Here, we present the successful application of graphene

for high-performance and stable PSCs. Firstly, we intro-

duce the crystal structure and tolerance factor of organic–

inorganic perovskite materials. Secondly, we briefly

introduce the working principle of PSCs. Thirdly, we

highlight the progress of applying graphene for high-per-

formance and stable PSCs. Finally, we provide the outlook

and conclusion on the application of graphene for PSCs.

2 Crystal Structure and Tolerance Factor
of Organic–Inorganic Perovskite Materials

The term ‘‘perovskite’’ is used when referring to a large

compound group that has the same crystal structure as

mineral perovskite CaTiO3 [53]. For perovskite materials

in solar energy applications, the basic building component

is an ABX3 crystal structure, where A represents an organic

and/or inorganic cation such as methylammonium (CH3-

NH3
? or MA?), formamidinium (NH(CH3)2

? or FA?), or

cesium (Cs?), B represents a divalent metal cation (Pb2? or

Sn2?), and X represents a halide anion (Cl-, Br-, or I-)

[13, 54]. The structures of the ABX3 type are shown in

Fig. 2a [55]. For a stable and formable ABX3 perovskite

structure, the tolerance factor, t = (RA ? RX)/

{H2(RB ? RX)} of perovskite materials should be close to

1 (corresponding to a perfectly packed perovskite struc-

ture), where RA, RB, and RX are the effective ionic radii for

A, B, and X ions, respectively.

It has been reported that organic–inorganic hybrid halide

perovskite materials tend to form an orthorhombic struc-

ture if t\ 0.8, cubic structure if 0.8\ t\ 1.0, and

hexagonal structure if t[ 1 [56], as shown in Fig. 2b.

Based on the tolerance factor equation, the effective radii

of Pb2?, Sn2?, Cl-, Br-, and I- are 1.19, 1.18, 1.84, 1.96,

and 2.20 Å [57], respectively. It is suggested that the

organic or inorganic cation A with radius between 1.60 and

2.50 Å can form stable lead and/or tin halide perovskite

structures at 0.8\ t\ 1.0 (see Table 1). Figure 2c shows

the tolerance factor of the series of perovskite materials

[58] that have been used for an absorbing layer in PSC

applications. Other than the tolerance factor, the ionization

energy of the organic–inorganic cation [59], dimensional

phases of perovskite materials [60], chemical stability,

valence band [58], etc., are also important for the forma-

bility and stability of perovskite structures.

3 Working Principle of PSCs

In general, the perovskite layer is composed of organic

materials such as organic cations (i.e., methylammonium,

ethylammonium, formamidinium) and inorganic materials

such as metal cations (i.e., Pb2?, Sn2?, and Ge2?) and

halide anions (i.e., I-, Cl-, and Br-). As a result, the

working principle of PSCs has raised a number of questions

(b)
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Fig. 2 a Basic ABX3 perovskite crystal structure, reprinted with permission from [55] � 2008 American Physical Society. b Relationship

between the tolerance factor, t, and the crystal structure of perovskite materials, reprinted with permission from [56] � 2016 American Chemical

Society. c Tolerance factor of the different perovskite materials for perovskite solar cells applications, reprinted with permission from Ref. [58]

Copyright 2015 The Royal Society of Chemistry

Table 1 Estimation of A cation radii based on lead and/or tin tri-

halides perovskite materials, ABX3

RB (Å) RX (Å) RA
# (Å) at t = 0.8 RA

# (Å) at t = 1.0

Pb2? (1.19) Cl- (1.84) 1.59 2.44

Br- (1.96) 1.60 2.49

I- (2.20) 1.63 2.59

Sn2? (1.18) Cl- (1.84) 1.58 2.43

Br- (1.96) 1.59 2.48

I- (2.20) 1.62 2.58

#RA (Å) = t({H2(RB ? RX)}) - Rx (Å)
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because the optical absorption of the perovskite layer

cannot be distinguished. It should be noted that at the

beginning of its discovery, PSCs were TiO2-sensitized

solar cells, using MAPbI3 and MAPbBr3 as sensitizers [8].

The free electrons excited after photon absorption by the

sensitizer would be injected into the conduction band of the

wide band gap TiO2 inorganic semiconductor, followed by

electron extraction to the transparent conductive oxide

(TCO). The electrons would flow through the external

circuit to the platinum (Pt) anode and then into the iodide

electrolyte. The electrolyte would regenerate and transport

the electrons back to the dye molecules. Therefore, it has

been proposed that dye-sensitized solar cells (DSSCs) can

be used as a model to explain the working mechanism of

PSCs. Because of the dissolution issues of halides in a

liquid electrolyte that could influence the stability of PSCs

[9], the liquid electrolyte was replaced by a solid-state hole

transporting material (i.e., Spiro-OMeTAD) [10].

In the case of PSCs, the perovskite material itself is an

intrinsic (neither p-type nor n-type) semiconductor. Owing

to the low binding energy of perovskite materials

(2–55 meV [61, 62]), the free charge carriers (free elec-

trons and free holes) formed inside the perovskite layer

after photon absorption [61] can be quickly injected into

electron/hole transporting materials with very slow charge

carrier recombination and result in large values of the

diffusion length [63]. Finally, the electrons/holes are

extracted to the cathode/anode. Figure 3 illustrates the

basic working mechanism of PSCs.

4 Discussion

4.1 Graphene as Conductive Electrode

Recently, graphene has been successfully used as a con-

ductive electrode for PSC applications [35, 64–67]. This

was first reported by Yan et al. [65] using the lamination

method for the chemical vapor deposition (CVD) produced

graphene. Due to the high sheet resistance

(* 1050 ± 150 X sq-1) of single-layer CVD-produced

graphene films, a thin layer (* 20 nm) of poly-(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PED-

OT:PSSS) solution doped with fluorosurfactant Zonyl-

FS300 together with D-sorbitol was spin-coated on top of

the graphene surface to (1) reduce the graphene sheet

resistance (2) act as an adhesion layer during the lamina-

tion process, and (3) induce more hole doping to the gra-

phene electrode, since the Fermi level of PEDOT:PSS is

higher than the graphene Dirac point. After optimizing the

processing condition, the device performance with double-

layer graphene films could achieve up to 12.37% effi-

ciency, which is relatively high compared to that of the

reported semitransparent TCO-free PSCs [68, 69]. The

superior performance and high Jsc of the champion device

originated from the low sheet resistance (Fig. 4a) and

higher conductivity of graphene electrode after it was

coated with PEDOT:PSS, as well as the high transmittance

of the thin films in the visible spectral region (T[ 90%,

see Fig. 4b) [65].

On the other hand, Choi et al. [35] investigated a single-

layer graphene-coated glass substrate acting as a transpar-

ent bottom anode. The authors discovered that the perfor-

mance of the device with a structure of graphene-coated

glass substrate/PEDOT:PSS/MAPBI3/C60/BCP/LiF/Al

could not be evaluated (see Fig. 5a) because neither

PESOT:PSS nor perovskite solutions could wet the

hydrophobic graphene surface to form a uniform thin film

(see Fig. 5b). Through interfacial engineering by incorpo-

rating 2 nm of molybdenum trioxide (MoO3) hole trans-

porting material (HTM) on top of the graphene electrode

surface, the device performance could be improved to

achieve efficiencies of up to 17.1%. The dramatic increase

in the device performance was attributed to (1) the use of

MoO3 HTM, which provided hydrophilicity to the gra-

phene surface (see Fig. 5c) and (2) the formation of

desirable energy level alignment between the MoO3/-

graphene electrode and PEDOT:PSS (see Fig. 5d, e).

Later, Choi et al. [67] used the same structure on a

flexible polyethylene naphthalate (PEN) substrate (PEN/-

graphene/MoO3/PEDOT:PSS/MAPbI3/C60/BCP/LiF/Al)and

evaluated its operational stability against repeated bending.

Under strain-free conditions, the device with a graphene
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Fig. 3 General working mechanism of PSCs. Free charge carriers

formed in the perovskite layer drift to the carrier transporting material

(black arrow line), followed by charge extraction to the electrode

(blue arrow line). (Color figure online)
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conductive electrode exhibited a PCE of 16.8%, which was

kept within * 90% of the initial value after it had been

bent 1000 times at R = 6, 4, and 2 mm (see Fig. 6a). This

can be attributed to the use of the graphene-based

conductive electrode; as a result, no signs of damage were

observed on the graphene or perovskite thin film surfaces

under bending conditions (see Fig. 6b). In contrast,

indium-doped tin oxide (ITO)-based flexible PSCs [70, 71]
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showed a rapid decrease in PCE after they had been bent

more than 250 times at R = 4 mm (see Fig. 6c); this was

mainly attributed to the emergence of cracks on the brittle

ITO surface, which later diffused into the perovskite thin

films (see Fig. 6d). In comparison with the PEN/ITO sub-

strate (sheet resistance Rsheet = 13.3 ± 1.3 X sq-1), the

graphene-MoO3/PEN substrate showed a higher sheet

resistance of 552.0 ± 24.2 X sq-1, which could reduce the

charge collection efficiency of the device, leading to a high

series resistance, low shunt resistance, and low the fill

factor (FF). However, both devices showed similar Jsc
values; this can be attributed to the use of the graphene-

based substrate exhibiting higher transmission (* 97%

transmittance) compared to the PEN/ITO-based substrate

(* 89% transmittance) over the visible wavelength region.

On the other hand, Liu et al. [72] demonstrated a flexible

PSC with a poly(3-hexylthiophene-2,5-diyl) P3HT HTM-

coated graphene transparent electrode on top of a 20-lm-

thick polyethylene terephthalate (PET) substrate. P3HT

was used as HTM because its highest occupied molecular

orbital (HOMO) level of & - 5.2 eV is much closer to the

valence band of MAPbI3 (& - 5.4 eV) than that of con-

ventional HTMs such as PEDOT:PSS (& - 5.0 eV),

which can facilitate hole transfer to the anode. Further-

more, it can also enhance the device stability owing to the

hydrophobic nature of P3HT that does not absorb moisture

in air [73, 74]. After optimizing the processing conditions

by introducing * 2-lm cross-linkable olefin-type polymer

(ZEOCOATTM) as an interlayer prior to transferring the

graphene layer, the device exhibited higher performance

(11.5%) compared to a control device (10.4%), suggesting

that the ZEOCOATTM interlayer reduced the surface

roughness of the PET substrate. In addition, it was found

under strain conditions that flexible devices can operate at

different bending radii (R = 0.670, 0.365, 0.175, and

0.130 cm) with 14% degradation in device performance at

the bending radius of 0.175 cm after 500 cycles [66]. Later,

Heo et al. [64] demonstrated that gold chloride (AuCl3)-

doped graphene anode surface could extend the diffusion

length of holes to the graphene electrode from * 210 nm

(control device) to * 370 nm (champion device), where

the champion device performance was enhanced by 42.1%

compared to the control device.

4.2 Graphene as Carrier Transporting Material

Graphene has also been used as a carrier transporting

material for PSC applications. For example, Chandrasekhar

et al. [75] demonstrated that the PCE of ZnO-based PSCs

could be enhanced by 47.5% from 7.01 ± 0.66% up to

10.34 ± 0.18% after graphene has been doped into the

ZnO electron selective contact layer (ESCL). According to

the authors, the increase in the device performance up to

48.0% can be attributed to the formation of a superior

perovskite thin film (larger grains size with low surface

roughness, see Fig. 7a–d) on the graphene network in the

ZnO nanocrystal, which enhanced the charge carrier

mobility by reducing the charge carrier recombination at
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the defect and trap states within the perovskite layer [76].

On the other hand, Snaith et al. [77] employed graphene

nanoflakes/TiO2 nanocomposite as the ESCL and demon-

strated the enhancement of the device performance

(PCE = 15.6%) by 56.0% compared to the device with

pure TiO2 thin films (PCE = 10.0%).

To evaluate the role of graphene addition into TiO2

layers, the authors performed impedance spectroscopy

characterization under working cell conditions and

observed that the addition of graphene into TiO2 thin films

could effectively reduce the series resistance of the device

(see Fig. 7e) and charge carrier recombination rate (see

Fig. 7f). In addition to binary oxides (ZnO and TiO2),

Wang et al. [78] demonstrated a graphene-doped ternary

oxide-based PSC with a structure of glass/fluorine-doped

tin oxide (FTO)/TiO2/graphene-SrTiO3/MAPbI3/Spiro-

OMeTAD/Ag. The authors showed that graphene could

enhance the electron transfer rate. As a result, the opti-

mized device exhibited a PCE of 10.49%, which was

enhanced by 53.1% compared to that of a control device

with a PCE of 6.85%.

To date, the highest efficiency of graphene-based PSCs

has been 18.19%, which was reported by Agresti et al. [34],

with an architecture of FTO-coated glass substrate/compact

TiO2/graphene-doped mesoporous TiO2/MAPbI3/graphene

oxide/Spiro-OMeTad/gold. The high efficiency of the

device was mainly attributed to the improved charge carrier

injection/extraction and the device stability [39].

4.3 Graphene as Stabilizer Material

In addition, it is well known that perovskite thin films can

be easily hydrolyzed and decomposed from dark brown

into yellowish thin films under humid air environment (see

Fig. 8a, b). The degradation process and decay mechanism

can be described with the following equations [79]:

CH3NH3PBI3 þ H2O $ CH3NH3PBI3 � H2O ð1Þ
CH3NH3PBI3 � H2O $ PBI2 þ CH3NH3Iþ H2O ð2Þ

In order to solve the problem, deposition of an addi-

tional layer on top of the perovskite layer was proposed,

using either a graphene layer [80] or doped with ESCL [81]
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/holes selective contact layer (HSCL) [82]. This is because

the hydrophobic nature of graphene results in the weak

affinity to moisture, and therefore, the layer can prevent the

perovskite thin films from reacting with moisture in air. As

a result, the diffusion of halide ions from the perovskite

layer to the top electrode (Ag or Au electrode) can be

inhibited [81]. The lattice parameter of 2D graphene is

0.246 nm [83], which is much smaller than the diameters

of all halide anions (see Table 1). Therefore, graphene can

also block the diffusion of Ag or Au atoms from the metal

electrode to the perovskite thin films through the hole

transporting layer [84, 85] during the thermal treatment

process at ambient environment. As a result, the accord-

ingly fabricated devices showed very good thermal and

optical stabilities.

For example, Hu et al. [80] reported that CVD-produced

graphene on top of perovskite/Spiro-OMeTAD thin films

could retain[ 94% of its original efficiency after it has

been kept in 45% humidity air for 96 h or after thermal

annealing at 80 �C for 12 h, even though graphene itself

might reduce the hole extraction to the anode because of its

lower work function of * 4.2 eV [35] compared to that of

Spiro-OMeTAD (* 5.2 eV) [65]. The Jsc, Voc, FF, and

PCE of the devices with (without) graphene on top of the

perovskite/Spiro-OMeTAD thin films are 21.1 (21.6)

mA cm-2, 1.09 (1.07) V, 0.682 (0.718), and 15.7 (16.6) %,

respectively. Bi et al. [81] reported that graphene-doped

PCBM-based PSCs could achieve stable efficiencies of

over 15% during a thermal aging test at 85 �C for 500 h or

light soaking under AM 1.5 G illumination for 1000 h. Cao

et al. [82] reported that graphene-doped perthiolated tri-

sulfur-annulated hexa-peri-hexabenzocoronene, TSHBC,

could retain 90% of its original efficiency after the device

has been stored in air with a relative humidity of * 45%

for 10 days.

5 Outlook and Conclusions

In conclusion, graphene has been used as a conductive

electrode, carrier transporting material, and stabilizer

material for PSC applications (Table 2). So far, CVD has

been a common method to produce graphene thin films.

This is because the CVD method can produce large-area

graphene films and can transfer graphene onto a target

substrate either by a roll-to-roll process or spin-coating

method to form a conductive electrode even though it

involves high-vacuum processing.

In comparison with conventional TCO-based electrodes

such as FTO and indium-doped tin oxide (ITO), graphene

electrodes show high flexibility and good physical, chem-

ical, and thermal stability. Therefore, the PCE and lifetime

of the devices based on graphene electrodes are much

better than those of the devices based on TCO electrodes.

Apart from that, graphene can enhance the electrical

properties of the devices and crystallinity of the perovskite

films if graphene is n-doped into metal oxide layers to act

as a carrier transporting material.

To further improve the stability of PSCs, it is suggested

to add a layer of graphene on top of the perovskite/hole

transporting layer thin film. We believe that graphene will

play an important role in PSCs in the near future. There-

fore, development of novel layered graphene in different

layer designs of PSCs with a controlled mechanism will be

needed.

We propose to utilize oxidized or reduced graphene, in

addition to pristine graphene, for PSC applications. We

Fig. 8 Photograph images of perovskite thin films a before and b after decaying. Reprinted with permission from Ref. [79] Copyright 2016

Nature Publishing Group
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believe that, by optimizing the deposition process in terms

of time, temperature, solvent, precursor selection, etc., new

designs of PSCs with good performance and stability can

be developed. Once graphene-based materials have proved

to be useful in photovoltaic technologies, low-cost PSCs

can be realized and commercialized in the market. Further,

other optoelectronic devices will be designed follow this

trend, initiating the era of low-cost optoelectronic devices.
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16. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C.

Krebs, Roll-to-roll fabrication of polymer solar cells. Mater.

Today 15(1–2), 36–49 (2012). https://doi.org/10.1016/S1369-

7021(12)70019-6

17. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.

Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency

tables (version 50). Prog. Photovolt. Res. Appl. 25, 668–676

(2017). https://doi.org/10.1002/pip.2909

18. N. Cheng, P. Liu, F. Qi, Y. Xiao, W. Yu, Z. Yu, W. Liu, S.S.

Guo, X.Z. Zhao, Multi-walled carbon nanotubes act as charge

transport channel to boost the efficiency of hole transport material

free perovskite solar cells. J. Power Sources 332, 24–29 (2016).

https://doi.org/10.1016/j.jpowsour.2016.09.104

19. J.-I. Park, J.H. Heo, S.-H. Park, K. Il Hong, H.G. Jeong, S.H. Im,

H.-K. Kim, Highly flexible InSnO electrodes on thin colourless

polyimide substrate for high-performance flexible CH3NH3PbI3
perovskite solar cells. J. Power Sources 341, 340–347 (2017).

https://doi.org/10.1016/j.jpowsour.2016.12.026

20. W. Zhang, J. Xiong, S. Wang, W. Liu, J. Li, D. Wang, H. Gu, X.

Wang, J. Li, Highly conductive and transparent silver grid/metal

oxide hybrid electrodes for low-temperature planar perovskite

solar cells. J. Power Sources 337, 118–124 (2017). https://doi.org/
10.1016/j.jpowsour.2016.10.101

21. C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Effective

improvement of the photovoltaic performance of carbon-based

perovskite solar cells by additional solvents. Nano-Micro Lett. 8,
347–357 (2016). https://doi.org/10.1007/s40820-016-0094-4

22. F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsu

et al., Enhanced electronic properties in mesoporous TiO2 via

lithium doping for high-efficiency perovskite solar cells. Nat.

Commun. 7, 10379 (2016). https://doi.org/10.1038/ncomms10379

23. X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao et al., Aluminum-

doped zinc oxide as highly stable electron collection layer for

perovskite solar cells. ACS Appl. Mater. Interfaces. 8(12),
7826–7833 (2016). https://doi.org/10.1021/acsami.6b00520

24. Y. Bai, Y. Fang, Y. Deng, Q. Wang, J. Zhao, X. Zheng, Y. Zhang,

J. Huang, Low temperature solution-processed Sb: SnO2

nanocrystals for efficient planar perovskite solar cells. Chem-

suschem 9(18), 2686–2691 (2016). https://doi.org/10.1002/cssc.

201600944

25. B.-X. Chen, H.-S. Rao, W.-G. Li, Y.-F. Xu, H.-Y. Chen, D.-B.

Kuang, C.-Y. Su, Achieving high-performance planar perovskite

solar cell with Nb-doped TiO2 compact layer by enhanced elec-

tron injection and efficient charge extraction. J. Mater. Chem. A

4(15), 5647–5653 (2016). https://doi.org/10.1039/C6TA00989A

26. X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin,

M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance

and stability of perovskite solar cells by crystal crosslinking with

alkylphosphonic acid x-ammonium chlorides. Nat. Chem. 7(9),
703–711 (2015). https://doi.org/10.1038/nchem.2324

27. C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X.-Z. Zhao, B. Xu,

Efficient and stable perovskite solar cells prepared in ambient air

based on surface-modified perovskite layer. J. Phys. Chem. C

121(12), 6546–6553 (2017). https://doi.org/10.1021/acs.jpcc.

7b00847

28. Y. Zhang, J. Wang, J. Xu, W. Chen, D. Zhu, W. Zheng, X. Bao,

Efficient inverted planar formamidinium lead iodide perovskite

solar cells via post improve perovskite layer. RSC Adv. 6(83),
79952 (2016). https://doi.org/10.1039/C6RA15210D

29. S.S. Mali, C.S. Shim, H. Kim, P.S. Patil, C.K. Hong, In situ

processed gold nanoparticle-embedded TiO2 nanofibers enabling

plasmonic perovskite solar cells to exceed 14% conversion effi-

ciency. Nanoscale 8(5), 2664–2677 (2016). https://doi.org/10.

1039/C5NR07395B

30. A.E. Shalan, T. Oshikiri, H. Sawayanagi, K. Nakamura, K. Ueno,

Q. Sun, H.-P. Wu, E.W.-G. Diau, H. Misawa, Versatile plas-

monic-effects at the interface of inverted perovskite solar cells.

Nanoscale 9(3), 1229–1236 (2017). https://doi.org/10.1039/

C6NR06741G

31. M. Long, Z. Chen, T. Zhang, Y. Xiao, X. Zeng, J. Chen, K. Yan,

J. Xu, Ultrathin efficient perovskite solar cells employing a

periodic structure of a composite hole conductor for elevated

plasmonic light harvesting and hole collection. Nanoscale 8(12),
6290–6299 (2016). https://doi.org/10.1039/C5NR05042A

32. K. Chan, M. Wright, N. Elumalai, A. Uddin, S. Pillai, Plasmonics

in organic and perovskite solar cells: optical and electrical

effects. Adv. Opt. Mater. 5(6), 1600698 (2017). https://doi.org/

10.1002/adom.201600698

33. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Highly

efficient and stable planar perovskite solar cells with reduced

graphene oxide nanosheets as electrode interlayer. Nano Energy

12(12), 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.

022

34. A. Agresti, S. Pescetelli, L. Cinà, D. Konios, G. Kakavelakis, E.
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