Supporting Information for

Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving

Wei Wang¹, Liang Wang¹, Gaole Dai¹, Wei Deng¹, Xiujuan Zhang¹, Jiansheng Jie^{1, *}, Xiaohong Zhang¹

¹ Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123, People's Republic of China

*Corresponding author. E-mail: jsjie@suda.edu.cn

Fig. S1 Molecular structure of the C10-BTBT and corresponding cross-polarized microscope image of ribbon arrays by using dip-coating method

Fig. S2 Fluorescence microscope images of a BPEA and b TIPS-PEN nanoribbon arrays on the SiO₂/Si substrates formed at a coating speed of 120 μ m s⁻¹

Fig. S3 Typical transfer characteristics ($V_{DS} = -50$ V) of the OFETs based on BPEA nanoribbon arrays fabricated at different coating speeds of 10, 30, and 80 µm s⁻¹ (**a**, **b**, **c**), respectively, on the SiO₂/Si substrates. **d-f** The corresponding statistical diagrams of mobilities. The OFETs use u as *S* and *D* electrodes and have *L* of 40 µm

Fig. S4 Typical transfer characteristics ($V_{DS} = -50$ V) of OFETs based on TIPS-PEN nanoribbon arrays fabricated at different coating speeds of 10, 60, and 80 µm s⁻¹ (**a**, **b**, **c**), respectively, on the SiO₂/Si substrates. **d-f** The corresponding statistical diagrams of mobilities. The OFETs use Au as *S* and *D* electrodes and have *L* of 40 µm

Fig. S5 Optical microscope images of the OFETs based on a-f TIPS-PEN nanoribbon arrays and g-l BPEA nanoribbon arrays fabricated at coating speeds of 80 μ m s⁻¹, respectively, with different channel lengths

Fig. S6 Average charge-carrier mobility of the OFETs fabricated from BPEA (**a**) and TIPS-PEN (**b**) nanoribbon arrays at a coating speed of 80 μ m s⁻¹ with different channel lengths. The typical transfer characteristics ($V_{\rm DS} = -50$ V) of OFETs based on the BPEA (**c**) and TIPS-PEN (**d**) nanoribbon arrays fabricated at a coating speed of 80 μ m s⁻¹ with different metallic *S* and *D* electrodes

Fig. S7 Cycle stability of BPEA (a) and TIPS-PEN (b) nanoribbon array-based OFETs with a continuous ON ($V_G = -60$ V) and OFF ($V_G = 38$ V) cycles