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Highlights

• CNTs-PdAu/Pt trimetallic nanoparticles (NPs, *3 nm) were synthesized using a straightforward physical approach of

RTILs-assisted sputtering deposition.

• As a high-performance nanocatalyst for the methanol oxidation reaction (MOR), CNTs-PdAu/Pt NPs show an

electrocatalytic peak current of up to 4.4 A mgPt
-1 and high stability over 7000 s, which is much superior to those of Pt-

based bimetallic NPs and a commercial Pt/C catalyst. The optimal atomic ratio of Pd/Au/Pt, which has the best

catalytic performance, was found to be 3:1:2.

• Synergistic effects arose from charge redistribution among Pd, Au, and Pt in CNTs-PdAu/Pt NPs may be responsible

for the promotion of the electrocatalytic activity.

Abstract We present a straightforward physical approach

for synthesizing multiwalled carbon nanotubes (CNTs)-

PdAu/Pt trimetallic nanoparticles (NPs), which allows

predesign and control of the metal compositional ratio by

simply adjusting the sputtering targets and conditions. The

small-sized CNTs-PdAu/Pt NPs (*3 nm, Pd/Au/Pt ratio of

3:1:2) act as nanocatalysts for the methanol oxidation

reaction (MOR), showing excellent performance with

electrocatalytic peak current of 4.4 A mgPt
-1 and high sta-

bility over 7000 s. The electrocatalytic activity and sta-

bility of the PdAu/Pt trimetallic NPs are much superior to

those of the corresponding Pd/Pt and Au/Pt bimetallic NPs,

as well as a commercial Pt/C catalyst. Systematic investi-

gation of the microscopic, crystalline, and electronic

structure of the PdAu/Pt NPs reveals alloying and charge

redistribution in the PdAu/Pt NPs, which are responsible

for the promotion of the electrocatalytic performance.
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1 Introduction

Target-oriented design and controlled synthesis of noble-

metal nanoparticles (NPs) have aroused extensive attention

because of important applications in diverse fields, such as

nanocatalysis [1–3], chemical sensing [4, 5], and drug

delivery [6, 7]. In particular, Pt-based NPs are still the most

efficient catalytic materials in clean-energy technologies

such as fuel cells [8–10]. For minimizing Pt consumption

and optimizing catalytic performance of Pt-based NPs,

tremendous efforts have been devoted to synthesize Pt-

based multi-metallic NPs because of their superior selec-

tivity, activity, and/or stability in comparison with their

monometallic counterparts [11–20].

Synergistic effects of Pt-based bimetallic NPs (such as

AuPt [15–17] and PdPt [18–20] NPs) have been well

documented. However, Pt-based trimetallic NPs have not

been sufficiently explored, as the presence of multiple

components increases the complexity of the controlled NP

synthesis and thorough characterization. In-depth probing

into Pt-based trimetallic NPs could provide new insights

into the correlation between the composition, structure, and

catalytic properties of noble-metal nanocatalysts.

Kotaro et al. reported an electrocatalyst comprising Pt

monolayers on PdAu alloy NPs, which exhibited highly

durable and active catalytic performance toward the oxy-

gen reduction reaction (ORR) [21]. Shin et al. synthesized

Au@PdPt core–shell NPs and observed better catalytic

activity than bimetallic core–shell NPs toward the metha-

nol oxidation reaction (MOR) [22]. Zhang et al. proposed a

theoretical model in which the catalytic activity of alloy-

core@Pt NPs varies linearly with the alloy–core compo-

sition [23]. Nevertheless, two great challenges remain in

the experimental study of Pt-based trimetallic NPs. One is

precise control of the compositional ratio of metals by

chemical approaches that involve the different reduction

kinetics of metallic precursors. The other is elucidation of

the dominant synergistic effects in the complex ternary

nanostructures [24, 25].

Room temperature ionic liquids (RTILs)-assisted

sputtering is a straightforward physical approach to

prepare monometallic and bimetallic NPs in an envi-

ronmental-friendly and by-product-free manner [26, 27].

Various bimetallic NPs with different composition can

be synthesized by varying the composition of metal

targets without any chemical additives (such as NaBH4

and citric acid). For example, Au@Ag and Pd@Ag core–

shell NPs, PtNi and AuPd alloy NPs have been suc-

cessfully prepared by RTILs-assisted sputtering on var-

ious nanosupports, such as graphene, carbon nanotubes

(CNTs), and TiO2 NPs [14, 28–30]. However, it is more

challenging to prepare trimetallic NPs using sputtering

due to the increased difficulty in controlling their mor-

phology and composition.

In this report, we prepared uniform PdAu/Pt trimetallic

NPs decorated on CNTs using a RTILs-assisted sputtering

method. CNTs are herein used as the nanosupport, since it

has been reported that the high conductivity and huge

surface area of CNTs are beneficial for electron transfer

and mass transport involved in the MOR [10, 31, 32]. The

composition and the catalytic behavior of CNTs-PdAu/Pt

NPs were controlled by simply varying the sputtering

conditions. The electrocatalytic activity and stability of

CNTs-PdAu/Pt NPs toward the MOR were systematically

investigated and compared with corresponding Pd/Pt and

Au/Pt bimetallic NPs and a commercial Pt/C catalyst.

Synergistic effects in the CNTs-PdAu/Pt NPs were also

discussed.

2 Experimental

2.1 Chemicals and Materials

All chemicals were analytical. Commercial Pt/C (20 wt%)

catalyst, KOH, and methanol were purchased from Alfa

Aesar and used as received. The RTIL, 1-butyl-3-

methylimidazolium tetrafluoroborate ([BMIm][BF4], pur-

ity[ 99%), was purchased from Shanghai Cheng Jie

Chemical and purified under vacuum for 24 h before use.

CNTs with diameters of 30–50 nm were purchased from

Nanjing XFNANO Materials Tech.

2.2 Preparation of CNTs-Supported NPs

All the metal NPs were synthesized by a RTILs-assisted

sputtering approach and then self-decorated on CNTs in

RTILs [14, 28–30]. Firstly, 10 mg of CNTs were com-

pletely dispersed in 2 mL [BMIm][BF4] to form a CNT-

RTIL suspension in a clean stainless-steel pot. Then,

selected metals were sputtered onto the CNT-RTIL sus-

pension using a desktop direct-current sputtering system

(Quorum Technologies, equipped with a quartz microbal-

ance thickness monitor). For all the metals, the metal

deposition rate was kept at about 0.2 Å s-1 and the

working pressure was 0.01 mbar. In order to make a sys-

tematic comparison, monometallic, bimetallic, and

trimetallic NPs of interest were prepared. For monometallic

samples, Au, Pd, and Pt targets were sputtered for 15 min

to synthesize the Au, Pd, and Pt NPs, respectively. For
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bimetallic samples, the Au/Pt NPs were synthesized by suc-

cessively sputtering Au for 10 min and Pt for 5 min; the Pd/Pt

NPs were synthesized by successively sputtering Pd for

10 min and Pt for 5 min; the PdAu NPs were synthesized by

sputtering a PdAu alloy target (with Pd/Au ratio of 1:1) for

15 min. As for trimetallic samples, as illustrated in Scheme 1,

the PdAu/Pt NPs were synthesized by successively sputtering

PdAu alloy and Pt onto the CNT-RTIL suspension. A PdAu

alloy target, with a Pd/Au ratio of 1:3, 1:1, or 3:1, was

sputtered for 10 min. Afterwards, Pt was sputtered for 5 min

onto the suspension containing PdAu. The present design is to

obtain different compositional ratios of Pd/Au/Pt, which is

utilized to study the synergistic effects of multiple metal

components. Finally, all the CNTs-supported NPs were

extracted from [BMIm][BF4] using high-speed centrifugation

and decantation, followed by multiple washing in acetone

aided by bath ultrasonication. The final products were dry

black powder and used as the nanocatalysts.

2.3 Characterization Techniques

The compositional ratio of the metal components was

measured using inductively coupled plasma atom emission

spectroscopy (ICP-AES, Vista-MPX). The microscopic

structure of the CNTs-supported NPs was characterized

using high-resolution transmission electron microscopy

(HRTEM, FEI Tecnai G2) and high-angle annular dark-

field scanning TEM (HAADF-STEM). The crystalline

structure of the CNTs and the CNTs-supported NPs was

analyzed by X-ray diffraction (XRD, PANalytical Empyr-

ean) with Cu Ka radiation (k = 1.5418 Å). The electronic

structure of the CNTs-supported NPs was probed by X-ray

photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD)

under ultra-high vacuum and X-ray absorption near-edge

spectroscopy (XANES) at the Taiwan Light Source (TLS).

2.4 Electrochemical Measurements

Cyclic voltammetry (CV) and chronoamperometry (CA)

measurements were taken using a CHI660E electrochemi-

cal workstation with glassy carbon (GC), Ag/AgCl, and a

Pt wire as the working, reference, and counter electrodes,

respectively. Prior to being coated by the nanocatalysts, the

GC electrode was polished using alumina slurry, washed

ultrasonically in ethanol and water, and then dried at room

temperature (27 �C). The as-prepared nanocatalysts (1 mg)

were dispersed in a mixture of 500 lL ethanol and 5 lL

Nafion solution (5 wt%) under ultrasonication for 30 min.

Afterwards, 10 lL of the suspension was coated onto the

GC electrode surface. Prior to electrochemical measure-

ments, the nanocatalysts were activated in 1 M KOH to

remove any dissolved oxygen and release active sites. CV

tests for the MOR were performed between –0.7 and 0.3 V

(vs. Ag/AgCl) at room temperature (27 �C) in an elec-

trolyte containing 1 M KOH and 1 M CH3OH.

3 Results and Discussion

3.1 Morphology, Composition, and Structure

of CNTs-PdAu/Pt NPs

The composition and content of CNTs-PdAu/Pt NPs can be

controlled by adjusting the sputtering conditions. The ele-

mental contents of Pd, Au, and Pt determined by ICP-AES

are listed in Table 1. One can see that the measured

compositional ratios, for both the trimetallic NPs and the

compared bimetallic NPs, closely match the experimen-

tally designed ones.

Figure 1 shows the TEM and HRTEM images of the

CNTs-PdAu/Pt NPs with different Pd/Au/Pt ratios as well

as the size distribution of NPs. Regardless of Pd/Au/Pt

ratio, all of the PdAu/Pt NPs show a similar interplanar

spacing of about 0.23 nm, which matches the (111) planes

of a face-centered cubic (fcc) lattice of no matter Au, Pd, or

Pt [13, 18]. The mean size and variance of the NPs were

calculated from measured data of *400 randomly picked

NPs in the TEM images for each sample. It can be seen that

the NPs are decorated and dispersed uniformly on the

nanotubes, and the size of NPs varies with the ratio of Pd/

Au/Pt. For PdAu/Pt NPs with Pd/Au/Pt ratio of 1:3:2 [de-

noted as PdAu/Pt (1:3:2)], the mean size is 3.95 nm,

whereas, for PdAu/Pt (2:2:2) and PdAu/Pt (3:1:2) NPs, the

mean size is, respectively, 3.53 and 3.44 nm. The size

dependence on Pd/Au/Pt ratio may be related to the inter-

action between the different metals and the CNTs [27, 29],

PdAu Alloy

RTIL-Assisted Sputtering: Hight Compositional Controllability

Pt

Scheme 1 Process used to prepare CNTs-PdAu/Pt NPs
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as a strong interaction would prevent small-sized NPs from

aggregation and coalescence. The decreased size with

increased Pd content in Fig. 1 may result from a stronger

interaction between Pd and the CNTs, compared with that

between Au and the CNTs. Our previous works demon-

strated that CNTs-Pd monometallic NPs are typically

smaller than CNTs-Au NPs prepared by the present sput-

tering approach [27–29]. In addition, CNTs-Pd/Pt

bimetallic NPs also possess smaller size compared with

CNTs-Au/Pt NPs, as demonstrated in Fig. S1.

The elemental spatial distributions of Au, Pd, and Pt on

the CNTs are shown in Fig. 2. Au, Pd, and Pt are uniformly

dispersed on the CNTs, suggesting atomic intermixing of

Pd, Au, and Pt despite of two-step sputtering [33–35].

Previous reports demonstrated that the successive RTILs-

assisted sputtering of two noble metals formed bimetallic

alloyed NPs [36, 37].

The XRD patterns of CNTs trimetallic, bimetallic,

monometallic NPs, and pristine CNTs are shown in Fig. 3a

and Fig. S2 for comparison. The diffraction peak at 26.2� is

corresponding to the (002) plane of CNTs [10, 29], and the

NP decoration does not affect the crystallinity of the CNTs.

The diffraction peaks of CNTs-Au NPs at 38.2�, 44.4�,
64.6�, 77.8�, and 81.8� can be assigned to Au (111), (200),

(220), (311), and (222), respectively [14, 17]. However, the

peaks of CNTs-Pd and CNTs-Pt NPs are rather weak and

have a broad full-width at half-maximum (FWHM), as

shown in Fig. 3b which is a magnified view of the pristine

CNTs, CNTs-Pd, and CNTs-Pt samples in Fig. 3a. This

may be due to lower crystallinity of the Pd and Pt

ensembles arising from their small size and partial surface

oxidation [32, 37]. Significantly, upon increasing the Pd

content in CNTs-PdAu/Pt NPs, the Au (111) peak gradu-

ally broadens and slightly shifts toward larger 2h (Fig. 3a),

implying alloy formation to a large extent in the PdAu/Pt

NPs [37, 38].

For an in-depth understanding of the synergistic effects

in CNTs-PdAu/Pt NPs, the electronic structure of CNTs

trimetallic, bimetallic, and monometallic NPs was inves-

tigated by XPS and XANES. Figure 4a presents the Au

4f XPS spectra of the samples. It can be noticed that the Au

4f peaks shift slightly toward higher binding energy in

CNTs-Au/Pt NPs compared with CNTs-Au NPs, which is a

result of electron transfer from Au to Pt [39–41]. The

opposite situation was observed in CNTs-PdAu-alloyed

NPs with a negative shift of the Au 4f peaks, as Au gains

electrons from Pd [13, 42]. In the case of CNTs-PdAu/Pt

NPs, increasing the Pd content results in a gradual shift of

the Au 4f peaks toward lower binding energy. As evident

from Fig. 4a, the Au 4f peaks of PdAu/Pt (2:2:2) NPs are

located between those of CNTs-Au NPs and CNTs-PdAu

NPs, indicating the concurrence of Au–Pd and Au–Pt

interactions in the CNTs-PdAu/Pt NPs.

To further probe the electronic structure of Au, Fig. 4b

shows the Au L3-edge XANES spectra of the samples, with

an inset of a magnified view of the white line region around

11,925 eV (2p-to-5d transition) [28, 37, 40, 41]. The nor-

malized white line intensity reflects the density of Au d-

band holes, and a higher intensity corresponds to more d-

band holes [42]. The XANES spectra indicate that Au–Pt

interactions increase the Au white line intensity (Au d-band

holes increase due to electron transfer from Au to Pt),

while Au–Pd interactions do the contrary (Au d-hole

depletion due to electron transfer from Pd to Au). For the

CNTs-supported trimetallic NPs, the Au white line inten-

sity decreases with increase in the Pd content. The PdAu/Pt

(3:1:2) NPs show the lowest white line intensity, which

results from that, at this Pd/Au/Pt ratio, Au is surrounded

by Pd and thus gains a number of electrons from Pd. The

trend revealed by the XANES results is well consistent

with the XPS analysis: electron transfer occurs from Au to

Pt and from Pd to Au, and this electron redistribution is

dependent on compositional ratio of the CNTs-PdAu/Pt

NPs.

On the other hand, Pd 3d XPS spectra for the same

CNTs-PdAu/Pt NPs are illustrated in Fig. 5, where the

corresponding spectrum of CNTs-Pd NPs is shown as a

reference. As Pd may be partially oxidized, both metallic

Pd0 and oxidized Pdx? features were observed in the XPS

spectra. Using the Pd 3d5/2 peak as an example, the Pd0 and

Pdx? components are at binding energies of about 335.5

and 337.5 eV (Fig. 5), respectively [35, 43]. With reducing

Table 1 Elemental content of

Pd, Au, and Pt in CNTs-

supported nanocatalysts as

determined by ICP-AES

measurements

CNTs-supported nanocatalyst Pd (mg L-1) Au (mg L-1) Pt (mg L-1) Atomic ratio

PdAu/Pt (3:1:2) 4.36 3.15 5.82 2.95:1.07:2

PdAu/Pt (2:2:2) 2.98 5.49 5.59 1.95:1.95:2

PdAu/Pt (1:3:2) 1.55 9.77 5.61 1.01:3.45:2

Pd/Pt 4.20 0 3.86 2.00:1

Au/Pt 0 11.62 4.40 2.62:1

48 Page 4 of 10 Nano-Micro Lett. (2017) 9:48

123



the Pd content, the relative intensity of the Pdx? component

gradually decreases and the Pd0 one becomes dominant;

this can be ascribed to the significantly improved oxidation

resistance of Pd upon alloying with Au [14, 28].

Significantly, a similar evolution is present in the Pt 4f7/2

XPS spectra (Fig. 6a) for CNTs trimetallic, bimetallic, and

monometallic NPs, where the binding energies of metallic

Pt0 and oxidized Ptx? features are about 71.6 and 72.8 eV,

respectively [29, 43], whereas, for CNTs-Pt monometallic

NPs, the Pt 4f peaks have a large FWHM and the Ptx?

component appears to dominate the spectrum. This is

presumably due to the small size effect and partial surface

oxidation of the CNTs-Pt NPs [32, 44]. With adding Pd

and/or Au, the Pt0 component emerges and gradually

becomes dominant upon further increasing the Pd content.

This is in good agreement with the electronic structure

results for Au and Pd, indicating that Pt gains electrons and

has enhanced stability against surface oxidation in the

CNTs-PdAu/Pt NPs. This hypothesis is verified by the Pt

L3-edge XANES spectra (Fig. 6b), in which the white line

related to the 2p-to-5d transition is located around

11,566 eV [3, 41]. The white line intensity decreases dra-

matically with adding Pd and/or Au, which can be a result

of electron transfer from Pd and/or Au to Pt. Furthermore,

the extent of electron loss is larger for Pd than that for Au,

as the trimetallic NPs with the highest Pd content [PdAu/Pt

(3:1:2)] show the lowest white line intensity. Based on

these results, we conclude that significant charge redistri-

bution occurs in CNTs-PdAu/Pt NPs due to alloying of the

metals, which is expected to have a great influence on their

catalytic properties.

3.2 Catalytic Performance of CNTs-PdAu/Pt

Trimetallic NPs

The catalytic performance of CNTs-supported trimetallic,

bimetallic, and monometallic NPs for the MOR was eval-

uated under alkaline conditions, and a commercial Pt/C
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catalyst was used as a reference. As shown in Fig. 7a, b, Pt-

mass-normalized CV curves exhibit the oxidation peaks in

both forward and reverse scans. The oxidation peak current

density in forward scan (If) gives an indication of elec-

trocatalytic activity toward the MOR, with a larger If value

corresponding to higher activity [32, 35]. Firstly, If for the

PdAu/Pt (3:1:2) trimetallic NPs (4.4 A mgPt
-1) is much

larger than those for the corresponding Pd/Pt (2.4 A mgPt
-1)

and Au/Pt (2.2 A mgPt
-1) bimetallic NPs. The CV results

demonstrate the far superior electrocatalytic activity of the

trimetallic NPs. It should be noted that the CNTs-supported

trimetallic and bimetallic NPs are highly active, since If for
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the commercial Pt/C catalyst is only 0.6 A mgPt
-1. Sec-

ondly, If for the CNTs-PdAu/Pt NPs is dependent on the

Pd/Au/Pt ratio. With increasing the Pd content, If increases

from 3.2 to 4.2 then to 4.4 A mgPt
-1 for the PdAu/Pt (1:3:2),

(2:2:2), and (3:1:2) NPs, respectively. The Pt-mass-nor-

malized If value of 4.4 A mgPt
-1 is among the best perfor-

mance reported for the MOR nanocatalysts [10, 20, 32].

Therefore, precise control of the compositional ratio is

crucial for catalytic applications of these trimetallic NPs (a

volcano plot of If for the nanocatalysts with different

compositional ratio is shown in Fig. S3).

The durability measurements for the nanocatalysts are

presented in Fig. 7c, d; all of which show a similar trend in

If change. Regarding the trimetallic NPs, If is relatively

stable up to 500 CV cycles, with 76%, 69%, and 61%

retention for the PdAu/Pt (3:1:2), (2:2:2), and (1:3:2) NPs,

respectively. However, If is reduced to 59%, 56%, and 47%

of the initial values for the corresponding Pd/Pt and Au/Pt

bimetallic NPs, and a commercial Pt/C catalyst, respec-

tively. Moreover, Fig. 8a, b shows Pt-mass-normalized CA

curves at –0.2 V versus Ag/AgCl for the MOR. The CNTs-

supported trimetallic NPs exhibit superior catalytic stabil-

ity over 7000 s compared with their bimetallic counterparts

and a commercial Pt/C catalyst, and the trimetallic NPs

with the highest Pd content [PdAu/Pt (3:1:2)] show the

greatest catalytic stability.

By combining the comprehensive characterization and

catalytic testing results, we can understand the synergistic

effects in the CNTs-PdAu/Pt NPs. On the one hand,

alloying in the CNTs-PdAu/Pt NPs may create a number of

tiny Pt ensembles, whose surfaces will act as catalytically

active sites for the MOR [13]. On the other hand, adding

Au stabilizes Pt against surface oxidation, and adding Pd

induces significant electron transfer from Pd to Pt. The

latter effect is critical to the modification of electronic

structure of Pt, where gaining electrons from Pd is expected

to cause a downshift in Pt d-band center relative to the

Fermi level [22, 45]. As a consequence, the reduced density

of empty states in Pt d-band will weaken the interaction

between Pt and the MOR intermediates (such as CO), thus

suppressing the CO poisoning of the trimetallic nanocata-

lysts [13, 28]. This combination of the effects explains well

the observation that the CNTs-supported PdAu/Pt (3:1:2)

NPs, with the highest Pd content (corresponding to the

most electron gain for Pt), possess the highest catalytic

activity and stability toward the MOR.

4 Conclusion

A successive RTILs-assisted sputtering technique was

utilized to synthesize CNTs-supported PdAu/Pt trimetallic

NPs with a small size and tunable composition. With an

optimal Pd/Au/Pt ratio of 3:1:2, the PdAu/Pt NPs achieve

an electrocatalytic peak current of up to 4.4 A mgPt
-1 and

high stability over 7000 s toward the MOR, which is much
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superior to those of bimetallic control samples and a

commercial Pt/C catalyst. The excellent electrocatalytic

performance of this ternary nanocatalyst is ascribed to the

synergistic effects arising from favorable charge redistri-

bution among the Pd, Au, and Pt ensembles. Adding Au

improves the stability of the catalytically active Pt surface,

and adding Pd enhances its resistance to the CO poisoning.

The approach presented here offers a simple strategy to

predesign and tailor the composition of CNTs-supported

trimetallic NPs for catalysis and energy applications.
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