
ARTICLE

Regulating Charge and Exciton Distribution in High-Performance
Hybrid White Organic Light-Emitting Diodes with n-Type
Interlayer Switch

Dongxiang Luo1 . Yanfeng Yang1 . Ye Xiao1 . Yu Zhao1 . Yibin Yang1 . Baiquan Liu2,3

Received: 28 December 2016 / Accepted: 26 January 2017 / Published online: 17 March 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Highlights

• The n-type interlayer was demonstrated to achieve a high efficiency, high color rendering index (CRI), and low voltage

trade-off. The device exhibits a maximum total efficiency of 41.5 lm W-1 and a low turn-on voltage of 2.5 V

([1 cd m-2).

• High CRIs (80–88) at practical luminances (C1000 cd m-2) were obtained, with a CRI of 88 being the highest among

hybrid WOLEDs.

Abstract The interlayer (IL) plays a vital role in hybrid

white organic light-emitting diodes (WOLEDs); however,

only a negligible amount of attention has been given

to n-type ILs. Herein, the n-type IL, for the first time,

has been demonstrated to achieve a high efficiency, high

color rendering index (CRI), and low voltage trade-off.

The device exhibits a maximum total efficiency of

41.5 lm W-1, the highest among hybrid WOLEDs with

n-type ILs. In addition, high CRIs (80–88) at practical

luminances (C1000 cd m-2) have been obtained, satisfy-

ing the demand for indoor lighting. Remarkably, a CRI of

88 is the highest among hybrid WOLEDs. Moreover, the

device exhibits low voltages, with a turn-on voltage of only

2.5 V ([1 cd m-2), which is the lowest among hybrid

WOLEDs. The intrinsic working mechanism of the device

has also been explored; in particular, the role of n-type ILs

in regulating the distribution of charges and excitons has

been unveiled. The findings demonstrate that the intro-

duction of n-type ILs is effective in developing high-per-

formance hybrid WOLEDs.
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1 Introduction

White organic light-emitting diodes (WOLEDs) have been

aggressively explored for display and solid-state lighting

applications because of their excellent characteristics such

as high efficiency, low power consumption, fast switching,

and flexibility [1–5]. In general, there are three types of

WOLEDs depending on the employed emissive material,

which are all-phosphorescent, all-fluorescent, and hybrid

WOLEDs. Among WOLEDs, the utilization of phospho-

rescent (P) emitters is desirable as phosphors can allow for

an up to 100% efficiency in converting injected charges

into emitted photons (both singlet and triplet excitons are

harvested), resulting in a theoretical internal quantum

efficiency of unity [6–10]. Unfortunately, until now, no

appropriate blue P material could be obtained in terms of

lifetime and color stability, restricting the development of

all-phosphorescent WOLEDs.

To solve the above issue, researchers have devoted their

attention to pursuing hybrid WOLEDs, which combine

fluorescent (F) blue emitters with P green–red/orange

emitters to generate white emission as blue F emitters can

exhibit long lifetimes and stable colors [11, 12]. To date,

two approaches had been used to create hybrid WOLEDs

according to the triplet energy (T1) of blue F emitters. One

is composed of blue fluorophores with triplet energies,

which are higher than that of complementary phosphors

[13–19]. Although this approach can simplify the struc-

tures, it is still difficult to synthesize blue F emitters with a

high T1 [20, 21]. In addition, the lifetime of this type of

hybrid WOLED is unsatisfactory. Conversely, hybrid

WOLEDs can be fundamental to blue fluorophores with

triplet energies, which are lower than that of complemen-

tary phosphors. Previously, the latter kind of hybrid

WOLED had been demonstrated to have the potential to

possess many merits, including high efficiency, low-effi-

ciency roll-off, low voltage, stable color, high color ren-

dering index (CRI), and long lifetime [11, 22–34].

Therefore, it is beneficial to further enhance the perfor-

mance of the latter kind of hybrid WOLED because of their

peculiar advantages.

A crucial feature of preparing the latter kind of hybrid

WOLED is the use of an interlayer (IL), located between

the blue F emitter and complementary P emitter, which can

(1) prevent the Förster energy transfer from F blue emitters

to red–green/orange P emitters, (2) eliminate the Dexter

energy transfer from red–green/orange P emitters to F blue

emitters, (3) tune the emission colors, and (4) prolong the

lifetime [11, 22–34]. In fact, a large number of materials

have been used as effective ILs to realize hybrid WOLEDs,

such as the most widely used 4,4-N,N-dicarbazolebiphenyl

(CBP) [11, 22–24], 4,40,400-tri(9-carbazoyl) triphenylamine

(TCTA): 2,20,200-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-
benzimidazole) (TPBi) used by Leo group [25, 26], and

bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp2)

(TCTA) [27, 28], N,N0-di(naphthalene-1-yl)-N,N0-diphe-
nyl-benzidine (NPB) [29, 30] and 1-bis[4-[N,N-di(4-toly-

l)amino]phenyl]-cyclohexane (TAPC) used by Ma group

[31]. It is noted that most publications are focused on

bipolar or p-type ILs; however, only a negligible amount of

attention has been given to n-type ILs. As a result, the

performance (i.e., efficiency, CRI, and driving voltage) of

hybrid WOLEDs with n-type ILs lags far behind their

counterparts [32–34]. For instance, maximum power effi-

ciencies (PEs) of only 18.8, 3.0, and 20.9 lm W-1 have

been obtained in Ho’s [32], Xia’s [33], and our [34] hybrid

WOLEDs with the n-type IL, respectively. In addition, the

introduction of n-type ILs to regulate charges and excitons,

which helps to boost performance, is not well understood.

Moreover, the comparison of bipolar, p-type, and n-type

ILs, which can be very helpful in understanding the role of

ILs in hybrid WOLEDs, is not clear. Therefore, is it pos-

sible to further enhance the performance of hybrid

WOLEDs with n-type ILs?

In this paper, the hybrid WOLED based on n-type ILs,

for the first time, has been demonstrated to achieve a high

efficiency, high CRI, and low voltage trade-off. The opti-

mized device exhibits a maximum total efficiency of

41.5 lm W-1, the highest value among hybrid WOLEDs

with n-type ILs. In addition, high CRIs (80–88) at practical

luminances (C1000 cd m-2) have been obtained, satisfy-

ing the demand for indoor lighting. Remarkably, a CRI of

88 is the highest among hybrid WOLEDs. Moreover, the

device exhibits low voltages, with a turn-on voltage of only

2.5 V ([1 cd m-2), which is the lowest among hybrid

WOLEDs. The intrinsic working mechanism of the device

has also been explored; in particular, the role of n-type ILs

in regulating the distribution of charges and excitons has

been unveiled. The findings demonstrate that the intro-

duction of n-type ILs is effective in developing high-per-

formance hybrid WOLEDs.

2 Experimental

As depicted in Fig. 1, the configuration of the hybrid

WOLED with n-type ILs (device W1) is ITO/HAT-CN

(100 nm)/NPB (20 nm)/NPB: Ir(dmppy)2(dpp) (20 nm,

1.5%)/Bepp2 (3.5 nm)/Bepp2: Ir(ppy)3: Ir(piq)3 (15 nm, 1:

6%: 1.3%)/Bepp2 (35 nm)/LiF (1 nm)/Al (200 nm). ITO is

indium tin oxide (the anode), HAT-CN is 1,4,5,8,9,11-

hexaazatriphenylene hexacarbonitrile [the hole injection

layer], the 20-nm NPB functions as the hole transport layer

(HTL), bis(2-phenyl-4,5-dimethylpyridinato)[2-(biphenyl-
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3-yl)pyridinato] iridium(III) (Ir(dmppy)2(dpp), a yellow

emitter) was doped into the NPB host as emitting layer-I

(EML-I), the 3.5-nm Bepp2 acts as the n-type IL, tris

(2-phenylpyridinne)iridium(III) [Ir(ppy)3] and tris(1-

phenylisoquinolinolato-C2,N) iridium(III) [Ir(piq)3] were

co-doped into the Bepp2 host as the EML-II, the 35-nm

Bepp2 acts as the electron transport layer (ETL) because of

its high electron mobility of 10-4 cm2 (Vs)-1 [28], LiF is

the electron injection layer, and Al is the cathode. The

detailed fabrication and measurement of the devices follow

well-established processes, as reported in another paper

[31].

3 Discussion and Results

The CE and PE of device W1, which depends on the

luminance, are clearly shown in Fig. 2. A maximum for-

ward-viewing CE and PE of 19.4 cd A-1 and 24.4 lm W-1

are obtained, respectively. As illumination sources are

typically characterized by their total emitted power [11],

the maximum total PE is 41.5 lm W-1, which is the

highest value among hybrid WOLEDs with n-type ILs. In

fact, the efficiency (41.5 lm W-1) is also higher than that

of recent hybrid WOLEDs [35–42], indicating that n-type

ILs are effective in achieving high-efficiency WOLEDs.

The maximum total external quantum efficiency (EQE) of

W1 is 13.8%. In addition, as displayed in the inset in

Fig. 2a, W1 exhibits high CRIs (80–88) at practical lumi-

nances (C1000 cd m-2), indicating that W1 can satisfy the

demand for indoor lighting [3]. Remarkably, a CRI of 88 is

among the highest in hybrid WOLEDs. Moreover, W1

exhibits very low voltages, as shown in Fig. 2b. For

example, the turn-on voltage is only 2.5 V (for a luminance

of [1 cd m-2), which is the lowest among hybrid

WOLEDs. At 100 and 1000 cd m-2, the voltages are 3.0

and 3.95 V, respectively. As it is still a challenge for
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Fig. 1 Top schematic layer structure of the WOLED. Bottom chemical structure of emitters
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Fig. 2 a Forward-viewing current and power efficiencies as a

function of luminance. Inset EL spectra of W1 at various luminances

(CIE is the Commission International de l’Eclairage coordinates).

b Current density–voltage–luminance curves of W1
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WOLEDs to achieve low driving voltages for practical use

(e.g., \3 V for onset and \4 V at 100 cd m-2 for

portable displays) [43], it is clear that our device can

effectively alleviate this difficulty. It is important to note

that a much higher efficiency and lower voltage can be

expected if a p-i-n structure is used. In brief, W1 suc-

cessfully achieves a high efficiency, high CRI, and low

voltage trade-off, which cannot be realized by previous

hybrid WOLEDs with n-type ILs.

Motivated by this excellent performance, we subse-

quently performed a detailed study on the intrinsic working

mechanism of W1, which will make it easier to understand

hybrid WOLEDs with n-type ILs, in particular the role of

n-type ILs in regulating the distribution of charges and

excitons.

First, four emitters have been used to generate white

emission, guaranteeing high CRIs. By using the double

EMLs, four clear emission peaks can be observed, where

the peaks of approximately 440, 510, 560, and 620 nm

originate from NPB, Ir(ppy)3, Ir(dmppy)2(dpp), and

Ir(piq)3, respectively. More specifically, the blue and yel-

low emissions are generated from NPB and Ir(dmppy)2
(dpp) in EML-I, respectively, while the green and red

emissions are from Ir(ppy)3 and Ir(piq)3 in EML-II,

respectively. To verify the above analyses, two devices

with a single EML corresponding to each EML of W1 have

been fabricated, where the structures are ITO/HAT-CN

(100 nm)/NPB (20 nm)/NPB: Ir(dmppy)2(dpp) (20 nm,

1.5%)/Bepp2 (35 nm)/LiF (1 nm)/Al (200 nm) and ITO/

HAT-CN (100 nm)/NPB (15 nm)/TCTA (5 nm)/Bepp2:

Ir(ppy)3: Ir(piq)3 (20 nm, 1: 6%: 1.3%)/Bepp2 (35 nm)/LiF

(1 nm)/Al (200 nm) for the EML-I-based device (W21)

and the EML-II-based device (W22), respectively. As

shown in Fig. 3, the NPB and Ir(dmppy)2(dpp) emissions

are clearly observed in W21, while the Ir(ppy)3 and Ir(piq)3
emissions can be clearly observed in W22, indicating that

the white emissions originate from NPB, Ir(ppy)3,

Ir(dmppy)2(dpp), and Ir(piq)3. To further understand the

energy transfer properties from the hosts to the dopant

phosphors, the photoluminescent (PL) characteristics of the

doping films based on the NPB and Bepp2 host and cor-

responding dopants have been measured, as shown in

Fig. 3. For the NPB: Ir(dmppy)2(dpp) film, the PL emission

peaks from NPB and Ir(dmppy)2(dpp) can be clearly

observed, indicating that the energy transfer from NPB to

Ir(dmppy)2(dpp) is incomplete. For the Bepp2: Ir(ppy)3:

Ir(piq)3 film, only the PL emission peaks from Ir(ppy)3 and

Ir(piq)3 can be observed, with no Bepp2 emission visible,

indicating that the energy transfer from Bepp2 to the

dopants is efficient. Hence, the above facts further

demonstrate that the white emissions originate from the

NPB, Ir(ppy)3, Ir(dmppy)2(dpp), and Ir(piq)3.

As the generation of blue emission is the essential

device for engineering hybrid WOLEDs, the role of n-type

ILs in regulating the distribution of charges and excitons

can be revealed by analyzing the blue emission intensities

[4, 44]. For the blue emission of W1, although the T1 of

NPB (2.3 eV) is higher than that of Ir(dmppy)2(dpp)

(\2.25 eV) [4], the energy transfer from the NPB host to

the Ir(dmppy)2(dpp) guest in EML-I is incomplete because

of the relatively low Ir(dmppy)2(dpp) concentration of

1.5% (as demonstrated above), leading to the fact that the

NPB host can generate blue fluorescence emission [14]. In

addition, by using NPB as the emitter, (1) the heterojunc-

tion that exists between the HTL and EML-I is eliminated,

which is beneficial to the low voltage and long lifetime

[45]; (2) the number of evaporation sources used in the

fabrication process is reduced as there is no need to prepare

another source for the HTL. To ensure that enough excitons

can be harvested for the strong blue intensity and high

performance, the n-type IL is essential. Before demon-

strating the importance of the n-type IL, the main exciton

generation zone of W1 was clarified.

As Bepp2 is an n-type material, electrons injected from

the cathode can be feasibly transported to the NPB/Bepp2
interface although a small part of them may be trapped by

Ir(ppy)3 and Ir(piq)3. Meanwhile, holes injected from the

anode can easily arrive at the NPB/Bepp2 interface because

of the strong hole injecting/transporting ability of HAT-

CN/NPB [4]. As a result, the main exciton generation zone

of W1 is located at the NPB/Bepp2 interface, resulting in

the formation of both singlet and triplet excitons at this

interface with a ratio of 1:3 [1], as shown in Fig. 4a.

However, it should be noted that some holes can reach the

EML-II region where the electrons are located as (1) the

highest occupied molecular orbital (HOMO) barrier

between NPB and Bepp2 is not too high (only 0.3 eV),
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Fig. 3 EL spectra of W21 and W22 at 1000 cd m-2, PL spectra of

the NPB: Ir(dmppy)2(dpp) (30 nm, 1.5%) film and the Bepp2:

Ir(ppy)3: Ir(piq)3 (30 nm, 1: 6%: 1.3%) film
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indicating that holes may overcome this barrier upon

obtaining enough energy; (2) Bepp2 may not totally block

the transport of holes considering that excitons can be

formed for the device using a [20-nm Bepp2 as the

EML/hole blocking layer [41]. As a result, some of the

excitons can be directly generated on the Bepp2 host or

guests, increasing the green and red emissions, although

this is not the main exciton generation zone. Therefore,

without effective ILs, the triplets generated in EML-II can

be quenched by NPB as the T1 of NPB is lower than that of

Ir(ppy)3 (2.4 eV) and Bepp2 (2.6 eV) [11, 28], leading to a

low efficiency. The Bepp2 IL indicates that the main

exciton generation zone of W1 is located at the NPB/Bepp2
interface, guaranteeing that a sufficient number of singlets

can be harvested by NPB to generate blue emission;

otherwise, only a poor blue intensity can be produced.

However, it should be noted that the efficiency roll-off

problem can occur at the NPB/Bepp2 interface, which may

be alleviated if bipolar blue emitters are used because

bipolar materials can broaden the excitation zone.

To further verify the significance of the Bepp2 IL, a

device (W3) with the bipolar IL, by co-doping TCTA and

Bepp2 (with a ratio of 1:1, 3.5 nm), has been fabricated,

while the other layers are similar to those of W1 except for

the IL. TCTA is selected because its hole mobility is

almost identical to the electron mobility of Bepp2 [28],

which can effectively balance the charge transport in the

IL. By inserting the bipolar IL, the main exciton generation

zone of W3 is different from that of W1, as shown in

Fig. 4b. As TCTA is a p-type material, holes are more

easily transported to EML-II, whereas it is difficult for

electrons to arrive at EML-I in W3 compared with W1,

leading to the formation of additional excitons in EML-II

but less in EML-I. Thus, it is reasonable that strong green/

red emissions but poor blue emission are observed in W3,

as shown in Fig. 5. Although the main exciton generation

zone of W3 is relatively wide, the maximum CRI of W3 is

only 82 because of the poor blue intensity, lower than that

of W1, indicating that the n-type IL is more effective than

the bipolar IL in guaranteeing high CRIs in our device,

which is unlike previous reports [27, 28].

To further understand the distribution of charges and

excitons, which can be regulated by the IL switch, as well

as systematically compare the effect of different kinds of

ILs, a device (W4) with a 3.5-nm TCTA as the p-type IL

was fabricated, while the other layers are similar to those of

W1 except for the IL. Because an energy barrier exists

between TCTA and Bepp2 together with the fact that

TCTA and Bepp2 are p-type and n-type materials, respec-

tively, the main exciton generation zone of W4 is located at

the TCTA/Bepp2 interface, as shown in Fig. 4c. For W4,

only a small amount of electrons can pass through the

3.5-nm TCTA to reach EML-I because of the higher lowest

unoccupied molecular orbital (LUMO) and very weak

electron mobility of TCTA (2.3 eV) [28]. As a result, fewer

excitons can be formed in EML-I. Thus, even at a high

luminance/voltage, almost no blue emission can be

observed in W4, leading to no white emission, as shown in

Fig. 6.

Moreover, to better illustrate the role of ILs in regulating

the distribution of charges and excitons, the maximum CRI

of devices using various ratios of TCTA and Bepp2 as the

ILs was measured, as shown in Fig. 7. As a certain amount
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of blue emission is required to ensure a high CRI, excitons

should be harvested by NPB as much as possible. The

lowest CRI of 65 is obtained only when the TCTA IL is

used as almost no excitons can be harvested by NPB to

generate blue emission, as mentioned above. Conversely,

the highest CRI of 88 is obtained only when Bepp2 is used

as a sufficient number of excitons can be confined to EML-

I to be harvested by NPB because of the n-type IL. As the

ratio of Bepp2 increases, the CRI increases, indicating that

the n-type IL is essential in guaranteeing a sufficient

amount of blue emission for a high CRI.

Finally, it should be noted that the T1 of ILs has been

demonstrated to be significant to hybrid WOLEDs [34]. In

our devices, both Bepp2 and TCTA possess high T1 values

(i.e., 2.6 and 2.8 eV for Bepp2 and TCTA, respectively)

[44], which would not quench the generated triplets. As

shown in Fig. 1, because Bepp2 functions as the IL, the

host of EML-II and ETL in W1, only three organic layers

exist, which is much less than those of previous multi-EML

hybrid WOLEDs and even less than those of single-EML

hybrid WOLEDs [14, 15]. Thus, the structure of W1 with

the n-type IL is more simplified than that of W3 with the

bipolar IL or W4 with the p-type IL. In addition, the

heterojunction that exists between the IL and EML-II and

the heterojunction that exists between EML-II and ETL are

eliminated because of the multifunctional role of Bepp2,

which cannot be realized by the bipolar or p-type IL-based

devices. Moreover, the number of evaporation sources used

in the fabrication process is reduced in W1 compared to

W3 or W4 as there is no need to prepare another source for

the IL. Therefore, the n-type IL, which was previously

overlooked, has been demonstrated to possess many

advantages in our device structures. In brief, the n-type IL

can (1) regulate the distributions of charges and excitons,

(2) simplify the device structure, (3) eliminate the hetero-

junctions, and (4) reduce the number of evaporation

sources.

4 Conclusions

We have demonstrated that the hybrid WOLED with

n-type ILs can achieve a high efficiency, high CRI, and low

voltage trade-off. The device can exhibit (1) an unprece-

dented efficiency of 41.5 lm W-1 for hybrid WOLEDs

with n-type ILs, (2) high CRIs (80–88) at practical lumi-

nances (C1000 cd m-2), and (3) low voltages (i.e., 2.5 V

for[1 cd m-2). The intrinsic working mechanism of the

device has also been explored. Particularly, the role of

n-type ILs in regulating the distribution of charges and

excitons has been unveiled. The findings demonstrate that

the introduction of n-type ILs is effective in developing

high-performance hybrid WOLEDs, which may guide the

rational design of both the material and device structure of

WOLEDs in emerging display and lighting applications.
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