Supporting Information for

Dye-enhanced Self-Electrophoretic Propulsion of Light-Driven $\mathbf{T i O}_{2}$-Au Janus Micromotors

Yefei Wu ${ }^{1}$, Renfeng Dong ${ }^{2, *}$, Qilu Zhang ${ }^{1}$, Biye Ren ${ }^{1, *}$
${ }^{1}$ School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
${ }^{2}$ School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Corresponding authors. E-mail: dongrenfeng@126.com, mcbyren@scut.edu.cn

Tel.: +86-20-87112708

Videos

Video S1 The motion of TiO2-Au Janus micromotors in $10^{-5} \mathrm{~g} \mathrm{~L}^{-1}$ Methyl Blue (MB), $10^{-4} \mathrm{~g}$ L^{-1} Cresol Red (CR), $10^{-4} \mathrm{~g} \mathrm{~L}^{-1}$ Methyl Orange (MO) aqueous solutions and pure water, respectively

Video $\mathbf{S 2}$ The moving direction of $\mathrm{TiO}_{2}-\mathrm{Au}$ Janus micromotors under UV in MB aqueous solution

Video $\mathbf{S 3}$ The motion of TiO_{2}-Au Janus micromotors in different concentration of MB aqueous solution

Video $\mathbf{S 4}$ The motion of TiO_{2} - Au Janus micromotors in different concentration of CR aqueous solution

Video $\mathbf{S 5}$ The motion of TiO_{2}-Au Janus micromotors in different concentration of MO aqueous solution

Video S6 Directional control of $\mathrm{Au}-\mathrm{Ni}-\mathrm{TiO}_{2}$ Janus micromotors in MB aqueous solution

Video $\mathbf{S 7}$ The motion of $\mathrm{Au}-\mathrm{Ni}-\mathrm{TiO}_{2}$ Janus micromotors in MB aqueous solution

Fig. S1 The motion speeds of $\mathrm{Au}-\mathrm{TiO}_{2}$ motors (red) and pure TiO_{2} spheres (black) in $10^{-5} \mathrm{~g}$ L^{-1} Methyl Blue (MB), $10^{-4} \mathrm{~g} \mathrm{~L}^{-1}$ Cresol Red (CR), $10^{-4} \mathrm{~g} \mathrm{~L}^{-1}$ Methyl Orange (MO), respectively.

Fig. S2 Tafel plots of Au (black lines) and TiO_{2} (red lines) under UV light in $(\mathrm{A})-(\mathrm{H})$ $10^{-1} \sim 10^{-8} \mathrm{~g} \mathrm{~L}^{-1} \mathrm{MB}$ aqueous solutions, respectively

Fig. S3 Absorption-concentration standard curve of MB, CR and MO in aqueous solutions
The absorption intensity A of MB, CR, and MO in aqueous solutions were proportional to their concentrations C. The working curves were obtained by linearly fitting the data of A and C. The obtained linear equations are below:

$$
\begin{align*}
& A(M B)=0.0281 C+0.0095\left(\mathrm{r}^{2}=0.9999\right) \tag{1}\\
& A(\mathrm{CR})=0.0605 C+0.0049\left(\mathrm{r}^{2}=0.9999\right) \tag{2}\\
& A(\mathrm{MO})=0.0687 C+0.0227\left(\mathrm{r}^{2}=0.9998\right) \tag{3}
\end{align*}
$$

