Supporting Information for

Dye-enhanced Self-Electrophoretic Propulsion of Light-Driven TiO₂-Au Janus Micromotors

Yefei Wu¹, Renfeng Dong^{2,*}, Qilu Zhang¹, Biye Ren^{1,*}

¹ School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China

² School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China

*Corresponding authors. E-mail: <u>dongrenfeng@126.com</u>, <u>mcbyren@scut.edu.cn</u>

Tel.: +86-20-87112708

Videos

Video S1 The motion of TiO₂-Au Janus micromotors in 10^{-5} g L⁻¹ Methyl Blue (MB), 10^{-4} g L⁻¹ Cresol Red (CR), 10^{-4} g L⁻¹ Methyl Orange (MO) aqueous solutions and pure water, respectively

Video S2 The moving direction of TiO₂-Au Janus micromotors under UV in MB aqueous solution

Video S3 The motion of TiO₂-Au Janus micromotors in different concentration of MB aqueous solution

Video S4 The motion of TiO₂-Au Janus micromotors in different concentration of CR aqueous solution

Video S5 The motion of TiO₂-Au Janus micromotors in different concentration of MO aqueous solution

Video S6 Directional control of Au-Ni- TiO2 Janus micromotors in MB aqueous solution

Video S7 The motion of Au-Ni- TiO2 Janus micromotors in MB aqueous solution

Fig. S1 The motion speeds of Au-TiO₂ motors (red) and pure TiO₂ spheres (black) in 10^{-5} g L⁻¹ Methyl Blue (MB), 10^{-4} g L⁻¹ Cresol Red (CR), 10^{-4} g L⁻¹ Methyl Orange (MO), respectively.

Fig. S2 Tafel plots of Au (black lines) and TiO₂ (red lines) under UV light in (A)-(H) 10^{-1} ~ 10^{-8} g L⁻¹ MB aqueous solutions, respectively

Fig. S3 Absorption-concentration standard curve of MB, CR and MO in aqueous solutions

The absorption intensity A of MB, CR, and MO in aqueous solutions were proportional to their concentrations C. The working curves were obtained by linearly fitting the data of A and C. The obtained linear equations are below:

$$A (MB) = 0.0281C + 0.0095 (r^2 = 0.9999)$$
(1)

$$A (CR) = 0.0605C + 0.0049 (r2 = 0.9999)$$
⁽²⁾

$$A (MO) = 0.0687C + 0.0227 (r2 = 0.9998)$$
(3)