Supplemental Information for

Effect of Al_2O_3 Buffer Layers on the Properties of Sputtered VO_2 Thin Films

Dainan Zhang^{1,2}, Tianlong Wen^{1,*}, Ying Xiong¹, Donghong Qiu¹, Qiye Wen¹

¹State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China

²Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA

*Corresponding author. E-mail: halong@uestc.edu.cn

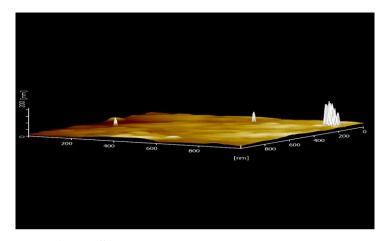
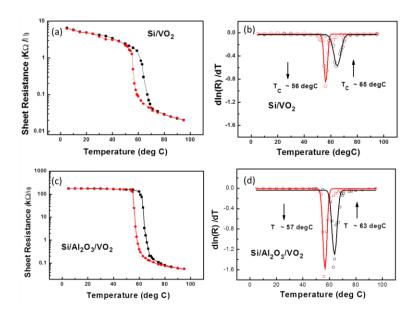
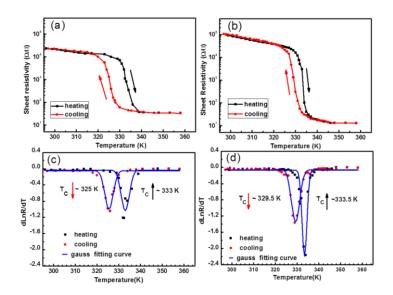




Figure S1 The AFM image of Al₂O₃ thin film

Figure S2 Sheet resistance of **a** Si/VO₂ and **c** Si/Al₂O₃/VO₂ grown under 5% oxygen partial pressure as a function of temperature, **b** and **d** shows the derivatives of the curves in **a** and **c** respectively.

Figure S3 Sheet resistance of **a** Si/VO₂ and **b** Si/Al₂O₃/VO₂ grown under 4% oxygen partial pressure as a function of temperature, **c** and **d** shows the derivatives of the curves in **a** and **c** respectively.