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Highlights

• A new sandwich-like NiCo2O4/rGO/NiO heterostructure is prepared by using a facile process via a three-step

hydrothermal method.

• This sandwich-like heterostructure exhibits a specific capacitance up to 2644 mF cm-2 and shows enhanced

electrochemical performance.

Abstract A kind of sandwich-like NiCo2O4/rGO/NiO

heterostructure composite has been successfully anchored on

nickel foam substrate via a three-step hydrothermal method

with successive annealing treatment. The smart combination

of NiCo2O4, reduced graphene oxide (rGO), and NiO

nanostructure in the sandwich-like nano architecture shows a

promising synergistic effect for supercapacitors with greatly

enhanced electrochemical performance. For serving as

supercapacitor electrode, the NiCo2O4/rGO/NiO

heterostructure materials exhibit remarkable specific capac-

itance of 2644 mF cm-2 at current density of 1 mA cm-2,

and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a

promising electrode material for high-performance supercapacitors.

Keywords NiCo2O4 � Reduced graphene oxide (rGO) � NiO � Heterostructure � Supercapacitors

1 Introduction

Supercapacitors have attracted wide attention because of

their ultra-high power density, long cycling stability, fast

charge/discharge rate, and bridging function for the power

and energy gaps between batteries and traditional dielectric

capacitors [1, 2]. Generally, the electrode materials used

for supercapacitors can be divided into two categories

based on the different energy storage mechanisms: elec-

trical double-layer capacitors (EDLCs) and pseudo-
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capacitors (PCs) [3]. In fact, PCs exhibit much larger

capacitance values and energy density than EDLCs due to

their fast and reversible redox reaction [4]. Therefore,

considerable efforts have been focused on improving the

performance of PCs. It has been recognized that the most

used PCs’ electrode materials, including RuO2, NiO,

Co3O4, and MnO2, possess multiple oxidation states/

structures, which enable rich redox reactions on the surface

of the electrodes and provide high specific capacitance.

However, the poor conductivity and cycling stability of

these materials restrict their applications [5–8].

More recently, mixed transition-metal oxides (MTMOs),

such as single-phase ternary metal oxides with two dif-

ferent metal cations, typically in a spinel structure (donated

as AxB3-xO4, A, B = Co, Ni, Zn, Mn, Fe, and so on), have

captured much attention as promising electrode materials

in electrochemical energy conversion and storage systems

[9, 10]. Among the MTMOs, compared with NiO and

Co3O4, the spinel nickel cobaltite (NiCo2O4) exhibits better

electrical conductivity and higher electrochemical activity

[9, 11]. However, the relatively weak conductivity and

small specific surface area make the capacity greatly lower

than the theoretical value. Therefore, numerous efforts

have been made to optimize the supercapacitors perfor-

mance of NiCo2O4 via various methods, including control

of microstructures, crystallinity, and electrical conductivity

[12–14].

Rationally designed electrode materials with well-

defined micro-/nanostructures are attractive methods to

enhance the performance of PCs [15–18]. For example,

Zhang et al. [15] reported Co3O4@NiCo2O4 nanowire

arrays for PCs with an improved specific capacitance (2.04

F cm-2 at 5 mV s-1) with respect to pure Co3O4. Liu et al.

[16] synthesized a binder-free hierarchical NiCo2O4/NiO

nanowire array using a facile hydrothermal method, and the

composites exhibited superior pseudocapacitive perfor-

mance with high specific capacitance (2220 F g-1 at 1 A

g-1). Cai et al. [17] constructed a one-dimension (1D)

CNT@NiCo2O4 core–shell structural nanocable for PCs

with a high capacitance of 1038 F g-1 at 0.5 A g-1.

In addition, graphene has been widely used as electrode

materials due to its excellent electrical, optical, and

chemical properties [19–22]. Zhang et al. [20] showed that

flower-like NiCo2O4/3D graphene foam exhibited a speci-

fic capacitance of 1402 F g-1 at 1 A g-1. Liu et al. [21]

prepared a mesoporous NiCo2O4 nanoneedle grown on

graphene networks and the composite delivered a high

specific capacitance of 970 F g-1 at 20 A g-1.

In this paper, we prepared a sandwich-like NiCo2O4/rGO/

NiO heterostructure composite on nickel foam (NF) via a

facile hydrothermal method and subsequent annealing in the

air. In the designed sandwich-like structure, the components

were assembled into a uniform structure and each component

could partially retain its individual traits to improve electro-

chemical properties. When it was used as electrode materials,

it showed a much higher specific capacitance than those of

materials such as NiCo2O4, NiO, and NiCo2O4/NiO. We

propose that the smart combination among NiO, rGO, and

NiCo2O4 nanostructures may provide a synergistic effect for

supercapacitors to enhance the electrochemical performance.

2 Experimental Section

2.1 Preparation of NiO on NF

Prior to the synthesis, the NF substrate was carefully

cleaned with acetone, ethanol, and deionized (DI) water in

an ultrasound bath to remove surface impurities. In a typ-

ical procedure, the cleaned NF (approximately 1 9 1 cm2

for each piece) and 40 mL DI water were put into a 50-mL

Teflon-lined stainless autoclave and heated at 200 �C for

24 h. The precursor products were washed with ethanol

and DI water, and dried at 80 �C for 6 h. Then, the prod-

ucts were annealed at 350 �C for 2 h in air to obtain NiO

on NF. The load mass of NiO is 0.6 mg cm-2.

2.2 Preparation of rGO/NiO Composite on NF

Graphene oxide (GO) was synthesized by a modified

Hummer’s method which is described in detail in our

previous work [22]. The rGO/NiO composites were pre-

pared according to the following process. (i) The as-

synthesized GO (40 mg) was added into DI water (40 mL)

and dispersed for 2 h with an aid of ultra-sonication. (ii)

Several pieces of NiO on NF were put into the above GO

dispersion, followed by soaking for 2 h. (iii) The mixture

was then transferred into a 50 mL Teflon-lined stainless

autoclave, and maintained at 200 �C for 24 h. (iv) As the

autoclave cooled down to room temperature, the products

were washed for several times with DI water and ethanol,

and dried at 60 �C for 4 h in vacuum to obtain the rGO/

NiO composites on NF. The load mass of rGO/NiO was 0.6

mg cm-2 (the mass of rGO was too small to be weighed

out).

2.3 Preparation of Sandwich-like NiCo2O4/rGO/

NiO Heterostructure Composites on NF

The typical synthesis process of sandwich-like NiCo2O4/

rGO/NiO heterostructure composites on NF is as follows.

Firstly, 0.5 g urea, 1 mmol Co(NO3)2�6H2O, and 0.5 mmol

Ni(NO3)2�6H2O were dissolved into 40 mL DI water, and

stirred for 30 min to form a uniform solution. Then, a piece

of rGO/NiO on NF was put into the above solution and

soaked for 2 h. The mixture was transferred into a 50 mL
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Teflon-lined stainless autoclave, and maintained at 120 �C
for 6 h. As the autoclave cooled down to room tempera-

ture, the precursor products were washed for several times

with DI water and ethanol, and dried at 60 �C for 4 h under

vacuum. Finally, the precursors were annealed at 350 �C
for 2 h to obtain sandwich-like NiCo2O4/rGO/NiO

heterostructure on NF. The NiCo2O4 or the NiCo2O4/NiO

composite on NF were fabricated under identical condi-

tions, in which the substrate was changed into NF or NiO

on NF. The load mass of the NiCo2O4/rGO/NiO, NiCo2O4/

NiO, and NiCo2O4 are 1.6, 1.4, and 0.9 mg cm-2,

respectively.

2.4 Materials Characterizations

The phase structures of the samples were characterized by

using an X-ray diffraction spectrometer (XRD, D8

Advanced XRD; Bruker AXS, Karlsruhe, Germany) with

Cu Ka radiation. The morphologies of the samples were

observed by using a scanning electron microscope (SEM,

S-4800, Hitachi High-Technologies Corporation, Japan).

Raman spectra were measured in a laser scanning confocal

micro-Raman spectrometer (LabRAM HR, HORIBA,

France).

2.5 Electrochemical Measurement

The electrochemical tests were performed in a 6 M KOH

aqueous electrolyte solution at room temperature. The

electrochemical properties of the samples were evaluated

using a CHI660D Electrochemical Working Station in a

three-electrode system, wherein the samples on NF func-

tion as the working electrode (WE), platinum functions as

the counter electrode, and saturated calomel electrode

(SCE) electrode functions as the reference electrode.

The specific capacitance (C) was calculated from the

slope of each discharge curve, according to the equation

C ¼ ðI � DtÞ=ðDV � SÞ; where I is the constant discharge

current; Dt is the discharge time; DV is the voltage dif-

ference in discharge (exclude IR drop); and S is the area of

each active materials [19, 23]. Electrochemical impedance

spectroscopy (EIS) measurements were made in the fre-

quency range of 0.1–100,000 Hz by applying an AC

voltage with 5 mV perturbation.

3 Results and Discussion

The general preparation process and the resulting novel

supercapacitors electrode heterostructure materials are

schematically illustrated in Fig. 1. A multi-step

hydrothermal method followed by a calcination process

was employed to prepare the sandwich-like NiCo2O4/rGO/

NiO heterostructure composite.

The XRD patterns of as-prepared samples are shown in

Fig. 2a, in which the samples are NF, NiO, rGO/NiO,

NiCo2O4, NiCo2O4/NiO, and NiCo2O4/rGO/NiO, respec-

tively. As the active materials directly grew on the surface

of NF, the strong typical peaks were ascribed to NF sub-

strate. The diffraction peaks of NiCo2O4 and NiO were also

observed clearly. However, the diffraction peak of rGO

was not identified due to the low mass content of rGO. In

the Raman spectra of the samples as shown in Fig. 2b, the

peaks of rGO were clearly observed at 1349.8 and

1590.2 cm-1, which are corresponding to the D and G

band of rGO. The peaks located at 151.6, 457.6, 455.2,

505.7, 656.6, and 1096.4 cm-1, respectively, correspond to

F2g, Eg, LO, A1g, and 2 LO modes of NiCo2O4, while the

peak located at 501.3 cm-1 belongs to NiO. These results

are well consistent with the previously reported literatures

[18, 21, 24].

Figure 3 shows the top-view SEM images of the sam-

ples of NF, NiO, rGO/NiO, NiCo2O4, NiCo2O4/NiO, and

NiCo2O4/rGO/NiO. Comparing with original NF, the NF

surface is covered with the NiO nanoplates after the first

hydrothermal treatment (see Fig. 3b). And then an rGO

layer was observed on the surface of the NiO nanoplates

after the second hydrothermal treatment, as shown in

Fig. 3c. Figure 3d–f indicates that NiCo2O4 nanoneedles

are directly grown on the surfaces of the NF, NiO, and

rGO/NiO, respectively. Obviously, the morphology of

NiCo2O4 is not affected by the substrates. The cross-

H2O GO solution Ni, Co ion
Hydrothermal Hydrothermal Hydrothermal

GO so ut o
y rot erma Hy rot erma Hy rot erma

Fig. 1 Schematic illustration of the preparation process of the sandwich-like NiCo2O4/rGO/NiO heterostructure
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section SEM image of the sandwich-like NiCo2O4/rGO/

NiO heterostructure composite is shown in Fig. 4, in which

the NiCo2O4 nanoneedle, NiO nanoplate, and NF substrate

appear obviously. The rGO thin film was too thin to be

observed here.

The electrochemical properties of the samples were

measured by various techniques involving cyclic voltam-

metry (CV), galvanostatic charge/discharge (GCD), and

EIS in a three-electrode system. Figure 5a illustrates the

CV curves of the sandwich-like NiCo2O4/rGO/NiO

heterostructure electrode at various scan rates of 1–10 mV

s-1 in the potential range of 0–0.6 V versus SCE. A couple

pair of redox peaks was observed in the CV curves, indi-

cating that the measured capacitance was mainly based on

the redox mechanism [25].

In fact, during the charging–discharging process, there

exist valence state changes of Co3?/Co4?, as well as M2?/

M3? (M = Co or Ni) on the surface of the electrode

materials, where fast and reversible Faradaic reactions

occur. The Faradaic reactions of NiCo2O4 in the alkaline

electrolyte would proceed according to the following

reaction equations [25, 26],
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Fig. 2 a XRD patterns, and b Raman spectra of the NF, NiO, rGO/NiO, NiCo2O4, NiCo2O4/NiO, and NiCo2O4/rGO/NiO. (Color figure online)

Fig. 3 SEM morphology of the samples: a NF, bNiO, c G/NiO, d NiCo2O4, e NiCo2O4/NiO, and f NiCo2O4/rGO/NiO
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NiCo2O4 þ OH� $ NiOOH þ 2CoOOH þ 2e� ð1Þ
CoOOH þ OH� $ CoO2 þ H2O þ e�: ð2Þ

For NiO, the surface Faradaic reactions in the alkaline

electrolyte will proceed according to the following equa-

tions [27, 28],

NiO þ OH� $ NiOOH þ e� ð3Þ

However, the electrochemical redox potentials of the

M2?/M3? and Co3?/Co4? transitions are so close that the

observed redox peaks are overlapped [26, 27].

With the increasing scan rate, the redox peaks maintain

stable, indicating excellent kinetic reversibility at a large

scan rate. To further calculate the specific capacitance and

understand the rate capability of the NiCo2O4/rGO/NiO

composite electrode, the charge/discharge measurements

were performed. Figure 5b gives the discharge curves of the

NiCo2O4/rGO/NiO electrode at various current densities.

The corresponding specific capacitance was calculated to be

2644 mF cm-2 at a low current density (1 mA cm-2), and

1821.6 mF cm-2 at a high current density (100 mA cm-2).

In order to confirm the outstanding electrochemical per-

formance of the sandwich-like NiCo2O4/rGO/NiO

heterostructure composite, the electrochemical properties of

the NiO, rGO/NiO, NiCo2O4, and NiO/NiCo2O4 were also

tested. For comparison, CV curves of the NiO, rGO/NiO,

NiCo2O4, NiCo2O4/NiO, and NiCo2O4/rGO/NiO at a scan

rate of 5 mV s-1 are illustrated in Fig. 6a. Clearly, the

enclosed area of the sandwich-like NiCo2O4/rGO/NiO

heterostructure material is much larger than those of other

samples, indicating that the NiCo2O4/rGO/NiO has a lager

areal capacitance. Figure 6b shows the discharge capaci-

tance of NiO, rGO/NiO, NiCo2O4, NiCo2O4/NiO, and

NiCo2O4/rGO/NiO at a current density of 1 A cm-2. Simi-

larly, the sandwich-like NiCo2O4/rGO/NiO heterostructure

material delivers a higher specific capacitance than others.

Figure 6c illustrates specific capacitance as a function of

current density of NiO, rGO/NiO, NiCo2O4, NiCo2O4/NiO,

and NiCo2O4/rGO/NiO. Within the current density range of

1–100 mA cm-2, the area-specific capacitance of the

samples has the order of NiO\ rGO/NiO\NiCo2O4\
NiCo2O4/NiO\NiCo2O4/rGO/NiO. Since the area-

specific capacitances of NiO and rGO/NiO are too small at

a high current density of 100 mA cm-2, the data are not

presented in Fig. 6c. The area-specific capacitances of the

NiO, rGO/NiO, NiCo2O4, NiCo2O4/NiO, and NiCo2O4/

rGO/NiO were 374, 516.8, 975.5, 2092, and 2644 mF cm-2

at a low current density (1 mA cm-2), respectively.

In general, EIS is usually used to investigate the per-

formance of electrochemical capacitors, such as internal

Fig. 4 SEM cross-section view of NiCo2O4/rGO/NiO
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resistance and capacity [18, 19]. The EIS data were com-

monly analyzed by using Nyquist plots, in which the fre-

quency response of the electrode/electrolyte system and the

plots of the imaginary component (Z00) of the impedance

against the real component (Z0) are presented [29]. As

shown in Fig. 6d, the EIS curves exhibit similar forms with

inconspicuous semicircle in the high-frequency region and

an almost straight sloping line in the low-frequency region.

The inconspicuous semicircle region indicates low faradaic

resistance of the materials and good electrical conductivity

between the samples and NF [30, 31].

Cycling stability is another critical factor in evaluating

the electrochemical properties of supercapacitors. The

cycling stability of the sandwich-like NiCo2O4/rGO/NiO

heterostructure was evaluated by the repeated GCD mea-

surement at a current density of 30 mA cm-2, as shown in

Fig. 7. Obviously, the specific capacitance of the NiCo2O4/

rGO/NiO composite slightly decreases to 97.5% for the

first cycle after 3000 time’s tests, demonstrating the

excellent cycling stability.

The morphology of the sandwich-like NiCo2O4/rGO/

NiO heterostructure after cycling test was further investi-

gated (see Fig. 8).Obviously, the morphology and structure

of the NiCo2O4/rGO/NiO are well-preserved even after

3000 time’s cycling. As shown in Fig. 8b, the NiCo2O4

nanoneedles could be seen obviously even after 3000

time’s charge–discharge test. However, compared with the

initial morphology (shown in Fig. 8a), some tips of the

NiCo2O4 nanoneedles are broken during the charge–

discharge process. This may reduce the specific capacitance.
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All the above results confirm that the sandwich-like

NiCo2O4/rGO/NiO heterostructure can improve the elec-

trochemical performance for supercapacitor application.

The possible mechanism may be ascribed as follows:

(i) NiCo2O4 is a kind of p-type semiconductor material. If

it is coupled with other semiconductors, it will introduce

impurity band effect which can greatly enhance the elec-

trical conductivity as electrode materials [32–34]. The

unique structure characteristics of the NiCo2O4/rGO/NiO

composite present a promising candidate for high-

performance supercapacitors electrode materials. (ii) The

2D NiO nanoplates, 1D NiCo2O4 nanoneedles, and 2D rGO

film constructed to 3D porous structure on NF, allow

completely exposing to the electrolyte, and thus optimize

the electrochemical accessibility [26, 27]. (iii) The hierar-

chical architecture which directly grew from the current

collector avoids the use of binders and substantially reduces

the dead volume in the electrode, and therefore would be

favorable for themigration of hydrated ions in the electrolyte

to the surface of the electrode [15, 35]. (iv) The existence of

graphene enhances the conductivity, and therefore enhances

the specific capacitance. Also the flexible graphene between

NiO and NiCo2O4 could buffer against the local volume

change during the charge–discharge process, as well as

alleviate the pulverization and aggregation of the electrode

material [36–38]. (v)Moreover, the synergistic effect of each

component would lead to fast ion/electron transfer and

enhance flexibility, which finally results in the improvement

of electrochemical performance.

4 Conclusions

The sandwich-like NiCo2O4/rGO/NiO heterostructure

composites with high electrochemical performance were

synthesized on NF directly via a three-step hydrothermal

strategy. The as-fabricated heterostructure composites

exhibit excellent electrochemical performance including

high specific capacitance, good electrochemical stability,

and excellent rate capability. Its remarkably enhanced

electrochemical performance is attributed to the unique

hierarchical sandwich-like structure and the synergistic

effects among NiCo2O4, rGO, and NiO. The results suggest

that the sandwich-like NiCo2O4/rGO/NiO heterostructure

composites will be promising electrode materials for high-

performance sustainable energy storage devices.
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