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Abstract We report the development of a novel visible response BiVO4/TiO2(N2) nanotubes photoanode for photoelec-

trocatalytic applications. The nitrogen-treated TiO2 nanotube shows a high carrier concentration rate, thus resulting in a

high efficient charge transportation and low electron–hole recombination in the TiO2–BiVO4. Therefore, the BiVO4/

TiO2(N2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm-2 (at 1 V vs. Ag/AgCl) and

a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray

diffractometry, energy-dispersive X-ray spectrometer, and UV–Vis absorption spectrum were conducted to characterize the

photoanode and demonstrated the presence of both metal oxides as a junction composite.

Graphical Abstract Visible-light response BiVO4/TiO2(N2) naontubes photoelectrode was fabricated for photoelectro-

chemical water splitting and organic degradation in this paper.
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1 Introduction

The extreme shortage of natural resources and severe

environmental problems caused by burning fossil fuels are

pressing global concerns. In the past decades, many efforts
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were made to explore alternate energy sources. Photo-

electrocatalytic (PEC) technology is widely recognized as

an alternative energy source because it provides a highly

efficient and eco-friendly route to produce renewable

energy, and it degrades organic pollutants by the direct use

of sunlight [1–4]. It can be achieved using a semiconductor

photoanode/liquid junction, which drives an oxidation

reaction. Therefore, in most PEC cells, the overall perfor-

mance is primarily determined by the photoanode. How-

ever, it is still a challenge to synthesize a photoanode

material that is chemically stable and has reasonably high

incident light-to-current conversion efficiency in the visible

range.

In recent years, Bi3?-based complex oxides that could

absorb visible light effectively and with the advantage of

price beneficial have been produced as alternative energy

materials [5–8]. BiVO4 is a promising high efficient pho-

toanode and photocatalysis material, with advantages of

small optical band gaps (2.4 eV) and high stability, and

low conduction band edges that overcome traditional

photoanode materials, such as ZnO, TiO2, WO3, and Fe2O3

[9–13]. However, BiVO4 has the shortages of poor carrier

transport properties and a substantially less efficient

physical photoconversion rate [8].

One approach for alleviating these limitations is to use

another semiconductor as support material to form a

heterojunction that not only facilitates carrier transport but

also enhances light absorption. Among various semicon-

ductors, TiO2 has been intensively studied as a promising

photoanode because it is stable, cost-effective, and has a

negative flat band potential (*0.2 V vs. RHE) (RHE,

reversible hydrogen electrode) [14–18]. Recently, Xie et al.

[19] found an unusual spatial transfer of visibly excited

high-energy electrons of BiVO4 to TiO2, which indicated

enhanced photoactivity in the heterojunction of BiVO4/

TiO2 nanoparticles. Li et al. [20] demonstrated that a

proper facet contact between BiVO4 and TiO2 nanoparti-

cles was the key to improving the photoactivity of BiVO4.

Recently, we studied one-dimensional (1D) nanostructured

TiO2 coupled with a BiVO4 heterojunction with straight

channels for electron transportation that reduced carrier

diffusion lengths and improved charge collection efficien-

cies [21]. However, TiO2 has an intrinsically low mobility

that limits the enhancement of photoactivity of the BiVO4–

TiO2 heterojunction. Therefore, increasing the carrier

concentration and also the conductivity in TiO2 is crucial to

constructing a BiVO4–TiO2 heterojunction for a high-per-

formance PEC cell.

In this study, we pre-treated TiO2 nanotubes in the

nitrogen gas (TiO2(N2) NTs) and then coupled them with

BiVO4 to form a BiVO4/TiO2(N2) NTs heterojunction. We

find that the photocurrent is increased by approximately

30 % compared to those obtained by previously reported

BiVO4/TiO2 NTs heterojunction [21]. Our PEC experi-

ments further demonstrate the improved performance in the

degradation of dyes. These results are attributed to the high

carrier concentration of TiO2 NTs after annealing in a non-

oxidizing atmosphere, as observed by Mott–Schottky

spectra. In this case, the defects presented in the TiO2(N2)

NTs increase the charge transfer kinetics, along with the

reduced recombination losses due to trap filling. Thus, the

charge transport between BiVO4 and TiO2 is enhanced to

produce a higher photoactivity. This heterojunction pro-

vides useful insight into the design and fabrication of

BiVO4-based photoanodes for potentially cost-effective

and highly efficient PEC applications in large-scale

applications.

2 Experimental Procedures

2.1 Preparation of BiVO4/TiO2(N2) NTs

Photoanodes

TiO2 NTs were prepared by a template method in which

ZnO nanowires (NWs) were transformed during a liquid-

phase deposition (LPD) process. ZnO NWs were synthe-

sized on FTO glass (2 9 2 cm2) after a hydrothermal

treatment [22]. Next, a LPD treatment was conducted by

placing ZnO NW substrates in a mixed solution of 50 mm

(NH4)2TiF6 and 150 mm H3BO3 for 20 min at 25 �C [23].

After the LPD treatment, the sample was further annealed

at 500 �C for 2 h in nitrogen gas, and nitrogen-treated TiO2

NTs were obtained and marked as TiO2(N2) NTs. For the

fabrication of the BiVO4/TiO2(N2) NTs photoanode, a

yellow precursor solutions of 300 mM Bi(NO3)3 and

300 mM NH4VO3 in 2 M HNO3 were deposited on the

TiO2 NTs by spin coating [24]. Finally, the samples were

sintered at 450 �C for 2 h in room air and yielded a yellow

BiVO4/TiO2(N2) NTs film. For the control, the TiO2 NTs

annealed in room air were used to prepare the BiVO4/TiO2

NTs photoanodes and bare BiVO4/FTO photoanodes were

also prepared using the same procedure without the TiO2

NTs substrate.

2.2 Structural Characterization

The morphologies of the samples were characterized using

field emission scanning electron microscopy and a micro-

scope equipped with an energy-dispersive X-ray spec-

trometer (EDX) (FEI, Sirion200) and TEM (JEM-2100F,

JEOL, Japan). The crystalline phase of the samples was

characterized by X-ray diffractometry (XRD) (AXS-8

Advance, Bruker, Germany). X-ray photoelectron spec-

troscopy (XPS) measurements were performed on an

ESCALAB250 XPS measuring system with a Mg Ka
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X-ray source. Optical absorption measurements were con-

ducted in a Lamda 750 UV–Vis–IR spectrophotometer

using an integrating sphere.

2.3 Photoelectrochemical Measurements

The photo responses of the BiVO4/TiO2 NTs photoanode

were conducted using a three-electrode system with the

Ag/AgCl electrode as the reference, platinum foil as the

auxiliary electrode, and the samples as the working elec-

trode. The working electrode potential and current were

controlled by an electrochemical workstation (CHI 660c,

CH Instruments Inc., TX, USA). A 350-W Xe lamp was

used as a simulated light source, without further descrip-

tion, and all experiments were conducted under visible

light (light intensity, 100 mW cm-2). The electrolyte was a

0.1 M Na2SO4 solution. The linear sweep voltammograms

(LSV) were conducted under chopped light irradiation. The

scan rate for the linear sweep voltammetry was 10 mV s-1.

Photoluminescence (PL) measurements were conducted

using an OmniPL-LF325 system with a 325 nm laser at

room temperature. The incident photon-to-charge conver-

sion efficiency (IPCE) was measured by a system com-

prising a monochromator (Zolix, P.R. China), a 500-W

xenon arc lamp, a calibrated silicon photodetector, and a

power meter. Mott–Schottky (impedance) spectra were

recorded in 0.2 M Na2SO4 without light at a frequency of

1 kHz and a scan rate of 10 mV s-1.

Intensity modulated photocurrent spectroscopy (IMPs)

was determined using an electrochemical workstation

(ZENNIUM, ZAHNER-elecktrik GmbH & Co. KG, Ger-

many) equipped with a controlled intensity modulated

photospectroscopy setup (CIMPS, PP211, ZAHNER-

elecktrik GmbH & Co. KG, Germany) after a two-elec-

trode configuration. A white light lamp (WLC02, ZAH-

NER-elecktrik GmbH & Co. KG, Germany) was used as

the light source. The modulated light in the frequency

range of 0.1 Hz–1 kHz superimposed on a steady dc light

with an intensity of 60 mW cm-2 was also used as a light

source.

2.4 Organics Compounds Degradation

The PEC degradation of the methylene blue (MB) experi-

ment was conducted under the following conditions: visi-

ble light irradiation (100 mW cm-2), vigorous stirring,

1.0 V (vs. Ag/AgCl) of electric bias, pH 7, and 0.1 M

sodium sulfate as the supporting electrolyte. Before

degradation test, the nitrogen was bubbled to remove

oxygen from the solution. The initial concentration of MB

solution was 10 mg L-1 and the reaction solution was

20 mL during the experiment. The degradation rates of the

dyes were analyzed with an UV–Vis spectrophotometer

(UV2102 PCS, UNICO, Shanghai).

3 Results and Discussion

The main fabrication strategies for the BiVO4/TiO2(N2)

NTs photoanodes are conducted in three steps as illustrated

in Fig. 1. First, the ZnO NW template is grown on the FTO

substrate through a hydrothermal method. Second, the

template is transformed to TiO2 NTs after an LPD treat-

ment which involves hydrolysis of ammonium hexafluo-

rotitanate, and leads to the deposition of TiO2 as well as

mild etching of ZnO from the formation of HF. Third,

BiVO4 is deposited on the TiO2 NTs to form a photoactive

composite layer.

Figure 2 shows the top and cross-sectional SEM images

of optimized TiO2(N2) NTs and BiVO4/TiO2(N2) NTs,

respectively. As shown in Fig. 2a, b, the obtained TiO2(N2)

NTs have a vertical geometric shape, although the treat-

ment of the NWs leads to partial connectivity among the

constituent wires due to the surface tension during the

evaporation of the solvent (Fig. 2a). Compared with the

nitrogen-treated TiO2 NTs, the geometry for the air-an-

nealed TiO2 NTs remains unchanged (not presented here).

The TiO2 NTs are approximately 400 nm in length with a

relatively rough surface (Fig. 2b). The top view SEM

images of the BiVO4/TiO2(N2) NTs reveal that the

TiO2(N2) NTs are completely covered by BiVO4 (Fig. 2c).

Likewise, the side view also confirms the formation of the

heterojunction of the BiVO4/TiO2(N2) NTs heterojunction

(Fig. 2d). The thickness of the junction is approximately

600 nm, which is thicker than that of pure BiVO4 pho-

toanode (Fig. S1). As shown in Fig. S2, the TEM images

also demonstrate the heterojunction structure, where the

BiVO4 nanoparticles are clearly observed on the TiO2 NTs.

LPD
treatment

BiVO4 depostion

FTO
ZnO
TiO2

BiVO4

Fig. 1 Schematic diagram of the main processes for the fabrication

of the BiVO4/TiO2 NTs photoanodes
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The elemental composition of the BiVO4/TiO2(N2) NTs

was also analyzed and their characteristic elements were

identified using an EDX detection spectrometer. As shown

in Fig. S2, the elements of Bi and V have almost the same

percentage of atoms (%), indicating the formation of

BiVO4. XRD also measured the crystalline phases of

BiVO4 and BiVO4/TiO2 NTs, and the results are shown in

Fig. 3. For all samples, the prominent peaks for BiVO4 are

likely derived from the monoclinic phase of BiVO4 (PDF

14-0688). The typical peaks at 25.3� and 27.4� are assigned

to the (101) and (110) planes of anatase and rutile phases,

respectively. In Fig. 3a, the annealed composite has ana-

tase phase and a large amount of rutile phase from the

integrated intensity of the peaks associated with the (101)

and (110) planes. However, for the BiVO4/TiO2(N2) NTs

sample, it contains mostly anatase (Fig. 3b). These results

are in accord with the reports by Jin et al. [25] and Mahajan

et al. [26], who studied the effects of the atmosphere on the

crystalline phase of TiO2 nanotube arrays in the annealing

process. Also, the peaks at 26.4� and 37.6� for both sam-

ples are ascribed to the FTO substrate. To further study the

surface composition and chemical state of TiO2(N2), XPS

analysis was also conducted, and the results are illustrated

in Fig. 4. The full survey indicates the presence of Sn, O,

Ti, and N (Fig. 4a). Figure 4b–d shows the high-resolution

XPS spectra of the elements, respectively. For the O 1s

(Fig. 4b), the peak at 531.0 eV corresponds to the lattice

oxygen, which is related to the Ti–O or Sn–O chemical

bonding in the SnO2 or TiO2. Two distinct peaks located at

464.5 and 458.7 eV in Fig. 4c are assigned to the binding

energy of Ti 2p1/2 and Ti 2p3/2, respectively, indicating the

presence of Ti3?. The peak at 400.1 eV could ascribe to c-
N state, which is molecularly chemisorbed N2 [27].

The optical absorption spectra of the TiO2 NTs, TiO2(-

N2) NTs, BiVO4/TiO2 NTs, and the BiVO4/TiO2(N2) NTs

are shown in Fig. 5. The TiO2 NTs show an absorption

edge at *360 nm, whereas, the TiO2(N2) NTs with an

Fig. 2 Top view and cross-sectional SEM images of TiO2(N2) NTs (a, b), and BiVO4/TiO2(N2) NTs (c, d)
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absorption tails extend into the visible wavelength regions.

The long absorption tail indicates the presence of addi-

tional energy states within the band gap of TiO2. The

energy may have resulted from the presence of oxygen

vacancies or non-stoichiometric TiO2 due to annealing in a

non-oxidizing atmosphere. On the other hand, the pure

BiVO4 film displayed absorption within the visible region

of the spectrum with the edge at *516 nm, which corre-

sponded to the band gap energy of 2.4 eV and further

demonstrated the formation of monoclinic phase BiVO4

[28]. After the deposition of BiVO4, both the BiVO4/TiO2

NTs and the BiVO4/TiO2(N2) NTs had very similar band

gap absorption compared to BiVO4, although they had

enhanced intensities in the visible region. The enhanced

absorption intensity was attributed to the thicker BiVO4

film in the heterojunction as observed in the SEM images.

Figure 6 presents the LSV characteristics of the TiO2

NTs, TiO2(N2) NTs, BiVO4,BiVO4/TiO2NTs, and the

BiVO4/TiO2(N2)NTs, respectively. The TiO2 NTs sample

exhibited a pretty low photocurrent under visible irradia-

tion due to its large band gap, whereas the TiO2(N2) NTs

sample had a slight photocurrent. The photocurrent for pure

BiVO4 increased steadily with the increasing potential of

the working electrode, and a photocurrent density of

1.36 mA cm-2 (1.0 V vs. Ag/AgCl) was obtained. Com-

pared to that of pure BiVO4, a significant enhancement in

photocurrent, ca. 2.06 mA cm-2 (1.0 V vs. Ag/AgCl), by

the BiVO4/TiO2 NTs was observed. The photocurrent was

further enhanced by approximately 30 % when using the

BiVO4/TiO2(N2) NTs, which obtained the photocurrent of

2.73 mA cm-2 (1.0 V vs. Ag/AgCl). The BiVO4/TiO2(N2)

with the cyclic voltammetry test also shows a stable pho-

tocurrent in the measuring range (Fig. S4).

Incident photon-to-current efficiency was measured in

order to ascertain the light conversion efficiency of

heterojunction of the BiVO4/TiO2(N2) NTs and was com-

pared to the BiVO4/TiO2 NTs, BiVO4, and TiO2 in Fig. 6b.

Due to a large band gap, both the TiO2 NTs and TiO2(N2)

NTs had low efficiencies below 400 nm, although the

TiO2(N2) NTs exhibited better performances. The IPCE of

BiVO4 was comparatively at *20 % at 410 nm, whereas

heterojunction BiVO4/TiO2 NTs had a higher IPCE at

nearly 28 % at 410 nm. Comparably, the IPCE of BiVO4/

TiO2(N2) NTs further increased to 44 % at 410 nm, which
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d XPS spectra for TiO2(N2) NTs
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was more than 100 % higher than the IPCE of bare BiVO4.

This again suggests that the rectifying electron transfer

from BiVO4 to TiO2 likely inhibits the fast recombination

and increases the solar energy conversion efficiency of the

junction. The IPCE was nearly zero at 550 nm, which is

consistent with the optical absorption of the samples.

The PEC properties of the BiVO4/TiO2(N2) NTs were

investigated by treating the organic dye (MB) under visible

light illumination. It can be seen that almost no MB or little

MB can be directly degraded by only applying electrocat-

alytic or photolytic reaction, and the TiO2 NTs only

resulted in a removal ratio of only 14.1 % within 80 min,

whereas the TiO2(N2) NTs had a higher efficiency of

27.2 % under the same conditions. The limited improve-

ment in degradation of MB by TiO2 NTs was due to a large

band gap that limited the use of visible light. Compared to

the TiO2 NTs, the BiVO4 electrode degraded 52.4 % of the

MB within the same time because of good absorption in the

visible region. For the BiVO4/TiO2 NTs, the removal rate

increased to 76.7 % due to fast electron transfers between

the BiVO4 and TiO2 NTs. However, it is easily observed

from Fig. 7a that the BiVO4/TiO2(N2) NTs obtained the

removal rate of 91.8 % under the same conditions. The

recycle performance of the BiVO4/TiO2(N2) NTs for PEC

degradation of MB was investigated in five PEC cycles,

and the results are shown in Fig. 7b. These results further

suggested that the BiVO4/TiO2 NTs were stable for PEC

applications, such as treating organic wastewater [29–31].

During all the process in PEC, we use 1 cm2 photoanode

under visible light illumination to react.

As previously discussed, the BiVO4/TiO2(N2) NTs

exhibited a significant enhancement in photoactivity as

verified by higher photocurrent as well as a higher PEC

efficiency in the degradation of dyes. Apparently, the

TiO2(N2) NTs played an important role in the promotion of

the charge transfers in the electrode. We concluded that the

carrier concentration in the TiO2 NTs could be increased

after annealing in a nitrogen atmosphere. To make sure the

impacts of the TiO2(N2) NTs, impedance measurements

were carried out at a frequency of 1 kHz on both the

TiO2(N2) NTs and TiO2 NTs electrodes in 0.2 M Na2SO4

electrolytes in the dark. The results are demonstrated by the

Mott–Schottky plots in Fig. 8a. From the linear portion of

the Mott–Schottky plots, charge carrier densities are cal-

culated using the relation

ND ¼ 2

eee0m0 ð1Þ

where ND is the charge carrier density, e is the elementary

electron charge (e = 1.6 9 10-19 C), e is the dielectric

constant (e = 48), e0 is the permittivity in vacuum

(e0 = 8.85 9 10-12 F m-1), and m is the slope of the 1/C2

versus potential plot. A charge carrier density of

2.9 9 1018 cm-3 was determined for the TiO2 NTs, but

was 2.1 9 1019 cm-3 for the TiO2(N2) NTs. These results

indicated that the charge carrier concentration of the TiO2
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NTs was indeed increased after calcination in the non-ox-

idizing atmospheres. The higher defect density of the

nitrogen-annealed sample also involved a higher electrical

conductivity [32] and rapid charge transfer.

To further confirm enhanced charge transfers between

BiVO4 and the TiO2(N2) NTs in the heterojunction mate-

rial, the transit time (sd) of the majority carriers in the

BiVO4/TiO2 NTs electrode and the BiVO4/TiO2(N2) NTs

electrode was measured by IMPS, respectively. The transit

time sd was the average time that the photogenerated

charges took to transfer to the back contact, and were

estimated from the equation sd = (2p�fmin (IMPS))-1,

where fmin is the frequency at the minimal value in the

IMPS plot. The transit time reflects the recombination

probability of the photogenerated electrons and holes in the

photoelectrode [33]. Figure 8b shows the IMPS plots of the

BiVO4/TiO2 NTs electrode and the BiVO4/TiO2(N2) NTs

electrode, respectively. According to the previous equation,

the transit time sd for the BiVO4/TiO2 NTs was 11.9, and

3.82 ms for BiVO4/TiO2(N2) NTs electrode, which indi-

cated that the transport speed of the majority of

photogenerated charges in the BiVO4/TiO2(N2) NTs elec-

trode was three times faster than that of the BiVO4/TiO2

electrode. In other words, the BiVO4/TiO2(N2) NTs

heterojunction could facilitate the majority of the photo-

generated charges transported to the counter electrode and

likewise, the transport of photogenerated electrons to the

electrolyte is enhanced.

The transportation of electrons between the two mate-

rials was also certified by PL measurement as shown in

Fig. 8c. We observed strong emission from bare TiO2 NTs

and BiVO4, whereas the BiVO4/TiO2 heterojunction

resulted in a near 90 % reduction in the emission intensity.

The obvious quenching of luminescence of BiVO4 is

characteristic of charge transfer between the BiVO4 and

TiO2 NTs, implying a strong indication of the efficient

reduction in recombination of charge carriers in the 1D

heterojunction material. In consequence, the separation

efficiency of photogenerated electron–hole pairs in BiVO4/

TiO2(N2) NTs heterojunction could be improved.

Based on the experiments, We concluded that the

improved performance of the BiVO4/TiO2(N2) NTs was
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primarily due to enhanced optical absorption and specific

TiO2(N2) NTs. The nanotube structure provides larger

surface area than the planar structure so that more BiVO4

photocatalyst was loaded for absorbing more visible light.

On the other hand, the presence of oxygen vacancies or

non-stoichiometric TiO2 in the TiO2(N2) NTs significantly

enhanced the carrier density which favors the separation of

photo-introduced electron–hole pairs verified by IMPS test.

Thus, the higher photocurrent was obtained. The whole

PEC system is shown in Fig. 9. Upon excitation by visible

light, electrons were photoexcited from the valence band of

BiVO4 to its conduction band. Then electron differences in

the positions of the conduction bands which drove to

photoelectrons generated in BiVO4 to the tubular TiO2(N2)

NTs, where electrons were rapidly separated and directed

to the Pt counter electrode via the external circuit. Con-

sequently, the photogenerated electrons were scavenged by

hydrogen ions on the Pt foil, and formed hydrogen gas,

while the photogenerated holes oxidized water or organics

on the surface of the BiVO4. Overall, the BiVO4/TiO2(N2)

NTs heterojunction offered remarkable photoconversion

efficiency.

4 Conclusions

A visible light response BiVO4/TiO2(N2) NTs photoelec-

trode was fabricated for photoelectrochemical (PEC)

organic degradation. Mott–Schottky plots and IMPS

demonstrated the increased carrier concentration in the

TiO2(N2) NTs, which enhanced electron transfers between

BiVO4 and TiO2. A photoelectrochemical measurement

confirmed that the photocurrent was increased approxi-

mately 100 % using the heterojunction when compared to

bare BiVO4 under 100 mW cm-2 visible light illumination.

Due to its excellent photoactivity and stability, the BiVO4/

TiO2(N2) NTs show a promising future in PEC applications.
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