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Abstract Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic

process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of

controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which

cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled

via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to

300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic

condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as

succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in

the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent

dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such

as bioimaging and photothermal therapy.
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1 Introduction

In past decades, gold nanostructures have attracted signif-

icant interest due to their potential applications in diverse

fields, such as surface-enhanced Raman scattering, pho-

tothermal therapy, catalysis, electronics, sensing, and

imaging, etc. [1–9]. Since the properties of gold nanos-

tructures can be well controlled by sizes, shapes, and

crystal orientations, numerous efforts have been made to

fabricate gold nanostructures with various morphologies,

including nanoplates, nanowires, nanorods, nanocubes,

nanoclusters, etc. [6, 10–13]. Among them, gold nanoplates

have attracted increased attention due to their excellent

localized surface plasmon resonance properties assigned

from their sharp corners and edges. So far, many synthetic

strategies were developed to synthesize gold nanoplates,

such as seeded-growth method [11, 14, 15], thermal

reduction approach [16], electrochemical approach [17],

and photocatalytic approach [18]. Notably, Zhang et al.

have reported monodispersed triangular gold nanoplates

with very high morphological yield ([90 %) using a rapid

one-pot seedless growth progress, in which iodide ions not

only selectively bind to the Au {111} facets but also

selectively remove other less stable shape impurities

through oxidative etching by forming triiodide ions, thus

facilitating the formation of nuclei with dominant planar

structure [19]. However, gold nanoplates synthesized by

chemical approaches have serious limitations in biomedical

applications due to the toxic surfactants, the complexity,

and high cost of reducing agents and surfactants [20–22].

Hence, it is necessary for greener and more accessible

synthesis of gold nanoplates with high morphological yield

[23–29].

Biosynthesis of gold nanostructures has many advan-

tages such as environment-friendly, energy efficiency,

biocompability, and low cost [30, 31]. Till now, several

strategies, including microorganisms and plants, have been

used for the biosynthesis of gold nanoparticles [31].

Comparing with the method using microorganisms, there

exist a primary factor limiting the use of plant species in

the biosynthesis of gold nanoparticles, in which excess use

of plant species may pose a risk and imbalance to the plant

diversity [32]. So far, many microorganisms such as Rhi-

zopus oryzae [32, 33], Neurospora crassa [34], and Tri-

choderma harzianum [35, 36] have been reported to

successfully synthesize gold nanoparticles. The biosyn-

thesis of gold nanoparticles using microorganisms is

mainly divided into two approaches: intracellular and

extracellular. As to the former, it has been demonstrated

that enzymes in the microorganisms can transfer electrons

from reductants to gold ions, which results in the reduction

of gold ions and formation of gold particles. But because
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the reduction happens in cell, it is difficult to get gold

nanoparticles separately, thus hindering the direct appli-

cation in next steps. As to the latter, the gold ion is reduced

by the metabolites of microorganisms. Thus it is conve-

nient to separate Au products using this approach. But it is

sometimes inevitable that gold ions may be uptaken by the

cell and bound out of the intracellular membrane, which

causes the reduction on the surface of the microorganism.

In this case, the separation between gold products and

microorganisms is also difficult. Among many microor-

ganisms for biosynthesis of gold particles, yeast has lots of

advantages because of its abundance, and more importantly

its high yield. Yeasts are easy to handle in laboratory

conditions, to synthesize high amount of enzymes and

grow rapidly employing simple nutrients [37]. However,

methods using yeast to prepare gold nanoparticles also

have common issues like other biosynthesis methods, that

is, the size and morphology are uncontrollable and

nonuniform. This is mainly due to the fact that biomedium

is too complex to be fully understood and therefore inter-

ferences from invalid metabolites and nutrients can hardly

be controlled [38–40].

Herein, metabolites of yeast were used to synthesize

gold nanoplates. Various morphologies of gold nanoplates

(triangle, truncated triangle, and hexagonal nanoplates)

with uniform size were fabricated successfully. The water

solubility and evolution of gold nanoplates were explored.

Properties of active molecules in the biomedium were

measured and a postulated synthesis process of nanoplates

in the acid condition is given finally. Extinction spectra and

charge distribution profiles of the three types of nanoplates

are compared by performing finite-difference time-domain

(FDTD) calculations, indicating their potential in surface

plasmon-enhanced applications.

2 Materials and Methods

2.1 Materials

Instant high-sugar dry yeasts were purchased from AB

MAURI. Sucrose, sodium hydroxide (NaOH), and

chloroauric acid hydrated (HAuCl4�4H2O) were purchased

from Sino Pharm Chemical Corporation, analytically pure

and used without any further purification. The deionized

water used was purified by the Simplicity Ultrapure Water

Systems (18.2 MX cm at 25 �C).

2.2 Biological Solution

Firstly, 7.2 g sucrose and 1 g instant dry yeast were dis-

solved in 300 mL deionized water. Then the mixed solu-

tion was co-incubated in a shaker at 35 �C for 48 h. During

this period, the concentration of yeast cells and some

metabolites were produced and increased significantly. The

final pH value of the culture medium was 3.3. Subse-

quently, the obtained culture medium was purified by a

two-step centrifugation of two 15 min centrifugations at

1200 and 8000 rpm, respectively. At the first low speed

step, yeast cells were precipitated and prevented from cell

rupture. While at the second high speed step, hypha and

cell debris were centrifuged as sedimentation. Then the

biomedium will go through half-an-hour’s boiling and the

third centrifugation step of 8000 rpm for 15 min. Finally,

the biological solution was obtained and would serve as

both the reducing agents and the surfactants in the fol-

lowing procedure.

2.3 Synthesis of Gold Nanoplates

Yeast culture medium extract in 10 mL was equally dis-

tributed into two conical flasks. One remained the same,

while the other was adjusted by NaOH (0.5 M) to the pH

value of 4.0. Then the two samples were co-incubated with

500 lL HAuCl4 (2.5 mM) in water bath for 5 h at 30 �C.
The samples went through centrifugation of 3000 rpm for

10 min and re-dispersed in deionized water alternatively to

remove biomass in the reaction solution. The final solutions

were kept in the refrigerator for 1 month at 4 �C.

2.4 Characterizations

The morphologies of gold NPs were observed by scanning

electron microscopy (SEM, Carl Zeiss Ultra Plus, Ger-

many) and transmission electron microscopy (TEM, JEM-

2100HT, Japan). Atomic Force Microscope (AFM) images

were acquired using a Multimode Nanoscope V scanning

probe microscopy system (Bruker, USA). The commer-

cially available AFM cantilever tips with a force constant

of 50 N m-1 and resonance vibration frequency of

350 kHz (Bruker, USA) were used. The samples of gold

nanoplates were prepared by centrifugalizing the crude

solution at 10,000 rpm for 10 min to wash out the organics

in the supernatant liquid and then re-dispersed by ultra-

sonic dispersion in aqueous solution for SEM, TEM, and

AFM investigations. FT-IR spectrum was recorded on a

VERTEX 70 spectrometer (Bruker, Germany) with DTGS

or MCT as detector. Protein test was carried out by Coo-

massie brilliant blue-stained SDS-PAGE on Mini-protean

Tetra (Bio-Rad, American) with a ChemiDoc MP imaging

system (Bio-Rad, American). LC-ESI/HRMS was per-

formed on a Waters ACQUITY UPLC system equipped

with a binary solvent delivery manager and a sample

manager, coupled with a Waters Micromass Q-TOF Pre-

mier Mass Spectrometer equipped with an electrospray

interface (Waters Corporation, Milford, MA). The column

Nano-Micro Lett. (2017) 9:5 Page 3 of 13 5

123



used in LC is Acclaim Trinity P1 column (100 9 2.1 mm,

3 lm) (Thermo Scientific, American). Amino acid analysis

(AAA) of biomedium was carried out on an automatic

amino acid analyzer L-8900 (Hitachi Ltd., Japan). In the

simulation, MEEP 49 a FDTD software package was

employed and Drude–Lorentz model was used to represent

the dielectric function of bulk Au. The refractive index of

the surrounding medium was set as 1.33. A plane wave

propagating in the direction perpendicular to the plate was

used as the excitation source in the simulation. The mesh

grid was set as 3.0 nm in size. Charge distribution profiles

were calculated at the top surfaces of the plates and at peak

wavelengths of the extinction spectrum.

3 Results and Discussion

3.1 Controllable Preparation of Gold Nanoplates

at Different pH Conditions

In this work yeast was prior cultured in sucrose-only

medium at pH 3.3. Figure 1a, b show the SEM images of

the gold nanoplates obtained at pH 3.3 and 4.0 condition,

respectively. The acid culture solution was obtained using

the yeast extract directly without any pre-process, while the

basic culture was obtained by adding NaOH solution in the

yeast extract. The gold nanoplates prepared at pH = 3.3

show larger sizes with diagonal lengths of 1300 ± 200 nm

than those prepared at pH = 4.0 with diagonal lengths of

300 ± 100 nm. As shown in Fig. 1a, b, it can be found that

triangle, truncated triangle, and hexagon nanoplates are

coexisting. The ratio of triangles is higher in Fig. 1b than

those of triangles in Fig. 1a, which is consistent with the

report about the transformation between triangles and

hexagons [41].

The ratio of triangle and hexagon depends on the

stacking faults commonly occurred in close-packed lat-

tices. For the face-centered cubic metal, when a single

planar defect (e.g., a twin or a stacking fault) is involved,

hexagonal plates can form in the early stage of growth due

to the six-fold symmetry of a face-centered cubic lattice.

As proposed by previous reports, the presence of a planar

defect can cause the six-sided faces, where the defect plane

ends, to form alternating concave- and convex-type sur-

faces [20]. Because each atomic site only has three nearest

atomic neighbors on the convex-type surface, the stabi-

lization energy for attaching atoms to this surface is rela-

tively low. As a result, the atoms on this surface tend to be

dissolved into solution again, creating a high-energy barrier

for the addition of atoms. In contrast, the concave-type

surface creates a reentrant groove, a self-perpetuating ledge

that increases the number of nearest neighbors for an

adatom and thus the stabilization energy. In this case,

atomic addition becomes favorable. Taken together, in a

crystal with a single planar defect, the fast addition of

metal to the concave sides can cause those very faces to

grow out of existence, leading to a triangular plate whose

side faces are bounded by three convex sides that do not

favor atomic addition.
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Fig. 1 SEM images of a gold nanoplates synthesized at low pH without NaOH, and b small gold nanoplates synthesized at high pH tuned by

NaOH solution. AFM images of: c large and d small nanoplates. The height profile of e large nanoplates, and f small nanoplates
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Hexagonal and triangular gold nanoplates often co-exist

in the aforementioned polymer or surfactant-assisted pro-

cess. Only the presence of a single twin plane in the seed is

expected to direct growth in two dimensions which limits

the final size and pure morphology of the nanoprism, while

the presence of two parallel twin planes would make the

fast growing edges to regenerate one another, allowing

shapes such as hexagonal nanoplates to form [41–43].

Figure 1c, d show the Atomic force microscopy (AFM)

images of the two gold nanoplate samples, and the thick-

nesses of the two kinds of nanoplates are *18 and

*15 nm, respectively.

TEM and HRTEM images were used to investigate the

crystallization of the biosynthesized gold nanoplates, and

the results are shown in Fig. 2. The binding contours across

the gold nanoplates in Fig. 2a is ascribed to high surface

tension [44]. Both the surfaces and the edges in the small

gold nanoplates are rougher than the large ones (Fig. 2b).

Selected area electron diffraction (SAED) patterns in

Fig. 2c and regular crystal lattice in Fig. 2e together

demonstrate the well crystallization of the synthesized gold

nanoplates. Three sets of characteristic spots marked by

square, triangle, and circle in Fig. 2c represent 1/3{422},

{220}, and {422} crystal planes, respectively. The

1/3{422} super lattice pattern occurs when the gold

nanoplate contains a {111} twin plane [45]. Figure 2d

shows typical patterns of polycrystal, and the correspond-

ing HRTEM image in Fig. 2f shows abundant crystal

defections [21, 46, 47]. The regions marked with red arrow

A and B reveal the representative fracture and vacancy of

the gold nanoplates, respectively. The growth process of

the gold nanoplates is displayed in Fig. S1. At the first

stage of the reaction, only gold nanoparticles are synthe-

sized. Along with the time, gold nanoplates grow by

accumulation and integration of small gold nanoparticles

but not completely merge together.

The pH-dependent biosynthesis of gold nanostructures is

further explored in the neutral and base condition. When

the pH of the biomedium is tuned by NaOH solution, a

mixture of nanoplates and nanoflowers, nanoflowers, and

small nanoparticles were obtained at the pH values of 5.0,

7.0, and 10.0, respectively (Fig. S2).

Fig. 2 a, c, e corresponding TEM, SAED, and HRTEM images of large gold nanoplates synthesized at low pH without NaOH. b, d,
f Corresponding TEM, SAED, and HRTEM images of small gold nanoplates synthesized at high pH tuned by NaOH
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3.2 Morphological Evolution of Gold Nanoplates

in Aqueous Solution

The morphological evolution was studied in order to

observe the stability of the gold nanoplates. The gold

products including all the gold nanoplates and nanoparti-

cles were dispersed in deionized water and then kept for a

month. It was found that both the gold nanoplates and

nanoparticles changed their morphologies, which may be

due to the slow recrystallization and rearrangement of gold

atoms. According to the Kelvin equation [48], the solid

solubility (C) in the solution is a function of the solid size,

as shown in Eq. 1,

ln
Cr

Cr0

� �
¼ 2rM

RTq
1

r
; ð1Þ

where Cr and Cr0 are the solubility of nanoparticles with

diameter r and r0 (r[ r0), respectively, q is the density of

gold nanoparticles, M is the relative atomic mass, R is the

ideal gas constant, and T is absolute temperature. Based on

the above equation, it can be calculated that the equilibrium

saturation concentrations of the large-sized nanoplates are

much lower than those of the small-sized nanoparticles.

After being re-dispersed in deionized water, the saturation

equilibrium is further deviated, and the surface protection

is weakened. Thus it can be seen that gold nanoplates grow

larger to multi-layered ones, as a trade-off between the

different equilibrium saturation concentrations. In the same

way, gold nanoparticles are gradually etched. The struc-

tures of nanoplates would gradually change in order to

adapt to the increasing surface tension. As a result, the

formation of sub-grains in the nanoplates and the increase

of proportion of spiral gold nanoplates will happen in order

to release the high surface tension.

The proof of bending contours and sub-grains is con-

firmed in TEM and HRTEM images (Fig. 3a, b). SAED

patterns of the gold nanoplate in Fig. 3c clearly present its

structure: (1) the strong 1/3{422} diffraction indicates that

there are lots of {111} micro-twinning structures in the

nanoplate; (2) the diffraction circles of {111} and {200}

reveal the existence of the attached nanoparticles; (3)

splitting spots in the circular direction shown in the

diffraction patterns (Fig. 3c) reveal diffraction spots of

rotated sub-grains. The schematic illustration in Fig. 3d

shows how small angles contribute to the contrast of con-

tours. The contrast stripes change their position when the

specimen is tilted along the X-axis (Fig. 3e–l), also indi-

cating inconsistent lattice orientation in the gold nanoplate.

When the lattice in the crystalline structure is hetero-ori-

ented, small angles arise between crystal planes of the

same family [49].

Figure 4 presents large nanoplates with several layers.

The centers of the multi-layered spiral nanoplates in

Fig. 4a have a stack of irregular gold nanostructures, due to

the supply of gold atoms in the growth process. Figure S3

shows that the gold nanoparticles integrated with gold

nanoplates have a tendency to be linearized, while other

gold nanoparticles change from sphere-like nanoparticles

to irregular polyhedron ones with crystal planes of lower

energy exposed. TEM image in Fig. 4c of multi-layered

spiral gold nanoplate shows Moiré fringes, indicating the

orientation mismatches between different layers [50].

However, the orientation mismatches caused by disloca-

tions or cracks between different lamellas are too tiny to be

detected in the corresponding SAED patterns. The SAED

image shows a typical super lattice patterns, implying that

the multi-layered nanoplates are well crystallized and grow

in a critical growth periodicity.

Figure 5 shows the spiral nanoplates with several layers

growing along edges. In the restructuring of gold atoms,

multi-layered growth may be generated in two ways: one is

caused by dislocations (Fig. 5c); the other owes to high

interface tension cracks (Fig. 5d) [51]. When the sub-

boundary stretches to surface or particles stack at the edge,

dislocations are generated on the edge (Fig. 5e) [41].

Evidence of nanoplate cracks due to the excessive surface

tension is shown in Fig. S4. The schematic stage-based

growth routine is given in Fig. 6, corresponding to SEM

images of spiral nanoplates at different ripening stage. The

evolution belongs to an Ostwald ripening procedure to

reduce the system energy. At the beginning, stages are

generated due to high surface tension crack or nucleated

dislocations by false stacking or sub-boundary stretching.

Subsequently, the curved new edge is linearized to

polygonal line parallel to the native edges [49]. All the

layers of the gold nanoplates are growing, of which the

growth direction is pointed by red arrows. Eventually, the

monolayer nanoplates with larger sizes and layer numbers

are formed.

3.3 Possible Mechanism for the Biosynthesis of Gold

Nanoplates

In order to detect the reactive species in the synthesis of

gold nanoparticles, both the composition and the micro-

scopic process in the reaction solution have been studied

with sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis (SDS-PAGE) and amino acid analysis (AAA)

measurement. As shown in Fig. S5, no protein was detected

in the fermentation liquor in the synthesis of gold

nanoparticles. So proteins hardly make any contributions in

the synthesis progress. Table S1 displays the other species,

which mainly are multi-amino acid. It can be seen that

glutamic acid (Glu) has the highest concentration. To

identify the compositions more comprehensively, the fer-

mentation liquor goes through high-performance liquid
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chromatography–electrospray ionizer/high resolution mass

spectrometer (LC-ESI/HRMS). Succinic acid, lactic acid,

and malic acid, which show high concentrations in the LC-

ESI/HRMS, are products of Kreb’s cycle, providing the

culture medium with a low pH (Fig. 7). Glutathione (GSH)

with amino groups is of high concentration which plays an

important role in preventing cells from dying and being

oxidized under harsh conditions. All the species in the

biosynthesis medium are organic molecules generated in

metabolism induced by sucrose-only medium. In addition,

the nutrient-induced condition can trigger the cell autoly-

sis, reducing the effect of specific expression and improve

the repeatability. It is also worth mentioning that, although

the specific expression can be interrupted by the slight

change of the surroundings, the autolysates of the cell are

alike, ensuring that the experiment be repeated easily.

Based on the analysis of the compositions of the bio-

medium, a schematic illustration of the synthesis approach

is demonstrated in Fig. 8. Before the addition of HAuCl4,

metabolites with thiol and amino groups are dispersed in

(a) (b)

(d)

(e)

(i)

(f)

(j) (k) (l)

(g) (h)

(c)
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Subboundaries

Bending contours

B
A

Bend plane

TEM image

Fig. 3 a TEM, b magnified TEM images, and c SAED patterns of the same nanoplate are depicted without tiling the sample holder. d Schematic

illustration of the contours with small angles. The incident beam is exactly parallel to the crystal planes at A and directly transmitted, while the

orientation of B meets Bragg relationship and diffracted electron beam of B tends, resulting in bright contrast in A and dark contrast in B on the

objective aperture. e–l Bright-field TEM images of the same nanoplate depicted when X-axis of the sample holder tiled every 5� from -15� to
20�
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the culture medium. As amino groups have a strong ten-

dency to be protonated in the acid condition, molecules

with these groups are positively charged. When the nega-

tive auric chloride acid complexes are introduced into the

reaction system, the gold ions are entrapped by the bio-

molecules. It was observed in the reaction that once the two

kinds of transparent reaction solutions were mixed toge-

ther, the mixture got turbid and light colored [52]. There

are still some metabolites with stronger reducibility in the

reaction system, such as reductive sugar and sodium

citrate, further reducing Au(I) to Au(0). In addition, ionized

metabolites with a long chain, such as some phospholipid

Fig. 4 a SEM image of representative nanoplates. b The zoomed up image of the nanoplate core. c TEM, and d the corresponding SAED images
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First stage

A

C

C

Top
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Side
view
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(c)(a)

(d)(b)
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Fig. 5 Schematic illustration a top view, and b side view of stage-induced spiral nanoplate. Two kinds of the stage origin: c dislocation and

d tension crack. e SEM image of the small particles attaching at the edge of the nanoplate, as a proof of the edge-based growth process
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[53] and organic acids [54] can serve as surfactants. With

the addition of NaOH, molecules with amino and thiol

groups will become anionic and such anions are strongly

nucleophilic, hence attacking and reducing Au(III) to form

Au(I) coordination complex. Thus, there are more sites for

nucleation and the final size of the product becomes

smaller [55–57]. Besides, when gold nanoplates are re-

dispersed in the base condition, gold nanoclusters with

fluorescence are acquired (Fig. S6).

FT-IR spectrum plays a key role in probing organics and

analyzing the reaction phenomenon. In Fig. 9 and

Table S2, the band at 1407 cm-1, and the three typical

bands at 1703, 2931, and 3377 cm-1 of curve I are

assigned to the amide I (mainly C=O stretching) and amide

II (mainly N–H stretching) absorption due to C=O and N–

H stretching vibrations, respectively. In general, amide I

and amide II bonds are sensitive to the change of the

accepting and donating group of adjacent parts. In spec-

trum II, the blue shift of the band from 1705 to 1654 cm-1

and the red shift of the band from 2931 to 2939 cm-1

imply that gold has a certain effect on the amine in the

culture medium. Moreover, compared with the peaks at

674, 1064, 1604, and 3377 cm-1 in spectrum I, peaks in

spectrum II at 682, 1069, 1571, and 3377 cm-1 weaken

sharply, suggesting that the corresponding bond, C–N

(amine), plays an important role in the bio-reduction of

AuCl4
-1. Besides, most of the bonds have shifts such as

from 674 to 682, 1064 to 1049, and 1604 to 1571 cm-1.

This suggests the mutual effect between gold nanoplates

and the bio-reductants.

Fig. 6 Schematic illustration of growth of the multi-layered spiral

nanoplate (the upper row) and the corresponding SEM images (the

lower row). From left to right are morphologies of different growth

stages and gradually matured. Red arrows stand for the growth

direction

No.
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Composition
Succinic acid
Desoxyribose
Malic acid
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Citric acid
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Fig. 7 LC-ESI/HRMS spectrum of biomedium. The insert column

lists specific compositions that may contribute to the biosynthesis of

gold nanoplates. For molecules are tested in the negative ion mode

(M–H), the measured molecule mass in the insert table is equal to the

exact mass deducted which is the weight of 1 hydrogen atom

R−S−H or N−NH2−H3

Phospholipids
Organic acids

Gold lons
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Growth of Nanoplate in Acid Condition
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Fig. 8 Schematic illustration of the growth of nanoplate, the gold ions have an evolution of nanoclusters, nanoparticles, and nanoplates, while

the reverse reaction will occur when changing the pH of the solution later
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3.4 Plasmonic Properties of Gold Nanoplates

In order to reveal the plasmonic properties, triangular,

truncated triangular, and hexagonal nanoplates with the

same thickness (15 nm) are chosen for FDTD calculation.

The triangular nanoplate is modeled as a triangle with three

edges of equal length of 400 nm. For the truncated triangular

nanoplates, the length of the truncated edge is set as 80 and

150 nm, respectively. The edge length of the hexagonal

nanoplate is 200 nm. The length between the opposite apexe,

400 nm, is the same for the four shapes of the nanoplates so

that the nanoplates are kept at a similar size.

Figure 10 shows the calculated results. For the four gold

nanoplates, a common prominent peak is found at about

1600 nm in the extinction spectra, revealing the dipole

oscillation mode of the nanoplates. As the nanoplates are

15 nm in thickness and 400 nm in length, the aspect ratio is

approximately 26, which determines that the dipole reso-

nances are located in the infrared region. Compared with

recent report about gold nanoplates synthesized by chemical

method, the gold nanoplates show in-plane dipolar plasmon

peak with red shift, which is in agreement with the previous

finding that the aspect ratio increase of gold nanoplates leads

to red shifts in the in-plane dipolar plasmon peak [51]. It can

be clearly observed in the charge distribution profiles

(Fig. 10, right panels) that the dipole modes are associated

with the charge oscillation which mainly belongs to the

opposite apexes of the nanoplates. In the near-infrared and

visible region, several additional minor peaks can be iden-

tified in the extinction spectrum, which are attributed to

quadrupolar and higher-ordered oscillation modes. These

modes can be clearly revealed by the charge distribution

profiles at their corresponding peakwavelengths. It is usually

found that the intensity of an oscillationmode decreases with

its order. Moreover, in contrast to the dipole mode, the high-

ordered oscillation modes are found to be very sensitive to

the shape evolution of the nanoplate. When the shape per-

forms an evolution from triangular to truncated triangular

and finally to hexagonal nanoplates, intensities of the high-

ordered modes gradually decrease. This suggests that along

with the hexagonization of triangle nanoplates, the order of
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rotational symmetry of the nanoplate increases so that there

is less room for the higher-ordered oscillation modes.

Therefore, for the hexagonal nanoplate, only two modes, a

dipole and a high-ordered one, can be found in the extinction

spectra.

4 Conclusions

One-pot biosynthesis of gold nanoplates with controllable

morphology and size has been demonstrated by bioreducing

of HAuCl4 in yeast metabolism. Gold nanoplates can be

obtained under acid conditions, while nanoflowers and

nanoparticles were obtained under basic condition. It is

interestingly found that, after being re-dispersed and main-

tained in the deionized water, nanoplates change their struc-

tures and morphologies to multi-layered spiral nanoplates.

When the nanoplates were re-dispersed in NaOH solution,

they were partially dissolved with generating photolumines-

cent gold nanoclusters. By detecting the composition of the

nutrient-induced biomedium, it demonstrates that thiol and

amino groupswith the reversible reaction in the acid and basic

condition play the key role of protonation of the organic

groups in the biosynthesis of nanoplates. Besides, FDTD

simulation shows that the gold nanoplates have prominent

extinction spectra peak at about 1600 nm, demonstrating

great potential in surface plasmon-enhanced applications or

the infrared thermotherapy. This work is expected as an

example in point to overcome problems of traditional chem-

ical synthesis and pioneer a new way of controllable biosyn-

thesis depending on fermentation industry.
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