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HIGHLIGHTS

• Various MOF materials were synthesized and investigated as ZIB cathodes.

• A long‑term stable ZIF‑8@Zn anode was proposed by coating ZIF‑8 material on the surface of zinc foils.

• High‑performance aqueous ZIBs were constructed using the Mn(BTC) cathode and the ZIF‑8@Zn anode.

ABSTRACT Rechargeable aqueous zinc‑ion batteries (ZIBs) have been gaining increas‑
ing interest for large‑scale energy storage applications due to their high safety, good 
rate capability, and low cost. However, the further development of ZIBs is impeded by 
two main challenges: Currently reported cathode materials usually suffer from rapid 
capacity fading or high toxicity, and meanwhile, unstable zinc stripping/plating on Zn 
anode seriously shortens the cycling life of ZIBs. In this paper, metal–organic frame‑
work (MOF) materials are proposed to simultaneously address these issues and realize 
high‑performance ZIBs with Mn(BTC) MOF cathodes and ZIF‑8‑coated Zn (ZIF‑8@
Zn) anodes. Various MOF materials were synthesized, and Mn(BTC) MOF was found 
to exhibit the best  Zn2+‑storage ability with a capacity of 112 mAh g−1.  Zn2+ storage 
mechanism of the Mn(BTC) was carefully studied. Besides, ZIF‑8@Zn anodes were prepared by coating ZIF‑8 MOF material on Zn 
foils. Unique porous structure of the ZIF‑8 coating guided uniform Zn stripping/plating on the surface of Zn anodes. As a result, the 
ZIF‑8@Zn anodes exhibited stable Zn stripping/plating behaviors, with 8 times longer cycle life than bare Zn foils. Based on the above, 
high‑performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF‑8@Zn anodes, which displayed an excel‑
lent long‑cycling stability without obvious capacity fading after 900 charge/discharge cycles. This work provides a new opportunity for 
high‑performance energy storage system.
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1 Introduction

Lithium‑ion batteries have been widely used in modern soci‑
ety [1]. However, security problems and increasing produc‑
tion cost pose challenges for their large‑scale applications 
in the field of electric vehicles [2–4]. Researchers are com‑
mitted to seeking alternative electrochemical energy storage 
systems to lithium‑ion batteries. Many new‑type recharge‑
able batteries using multivalent metal ions (e.g.,  Zn2+,  Mg2+, 
and  Al3+) as charge carriers have been proposed successively 
[5–7]. Among them, rechargeable aqueous zinc‑ion batteries 
(ZIBs) have been considered as highly promising candidate 
for the next‑generation energy storage system, because they 
are safe, low cost, and environmental benign [5]. In order 
to meet the demands of common energy consumption, two 
main issues should be addressed for the ZIBs. One is explor‑
ing suitable cathode materials for the reversible intercala‑
tion/extraction of zinc‑ions [8, 9], and the other is exploring 
stable zinc metal anodes because this is essential for ZIBs 
to realize a long cycle life [10–13].

To find high‑performance cathode materials for ZIBs, 
many attempts have been made [14]. Up to now, several types 
of ZIB cathode materials have been reported, including Mn‑
based materials [15–22], V‑based materials [23–29], Prussian 
blue analogs [30–32], and some other cathode materials such 
as  Mo6S8 [33], quinone [34], and poly(benzoquinonyl sulfide) 
[35]. Mn‑based materials, especially manganese oxides, 
possess the advantages such as low cost and environmen‑
tal friendliness, but they suffer from the problems of rapid 
capacity fading and poor rate performance [36]. V‑based 
cathode materials generally exhibit superior  Zn2+‑storage 
ability [37, 38], whereas serious toxicity limits their large‑
scale applications for ZIBs [10]. The  Zn2+‑storage capacity 
of Prussian blue analogs is only about 50 mAh g−1, which 
determines that the Prussian blue analogs may be not quali‑
fied to construct high‑energy ZIBs [30]. In view of the above 
discussion, developing high‑performance cathode materials 
for ZIBs is still a challenge. Furthermore, metallic Zn elec‑
trode owns an ultrahigh volumetric capacity and low redox 
potential (− 0.76 V vs. standard hydrogen electrode), which 
enable it to be a promising anode for ZIBs [5, 39, 40]. How‑
ever, in practical applications, repeated deposition/dissolution 
of Zn inclines to form zinc dendrites/protuberances, leading 
to severe polarization and a short circuit of the batteries [41]. 
Some modification strategies such as introducing additives, 

employing gel electrolyte, using 3D current collectors, and 
creating the protection layer have been proposed to regulate 
Zn stripping/plating behaviors and realized dendrite‑free zinc 
metal anodes [11, 12, 42, 43]. In a word, stabilizing zinc 
anodes is also critical to realize long‑life ZIBs.

Exploring new potential materials such as metal‑organic 
frameworks (MOFs) may open opportunities for addressing 
these problems. MOFs are characterized by highly porous 
structure, designable frameworks, and multifunctionality 
[44–46]. In the past two decades, MOFs have been widely 
used in energy storage systems such as lithium‑ion batter‑
ies [47], supercapacitors [48], and fuel cells [49]. Recently, 
MOFs are attracting increasing interests in the field of ZIBs. 
For instance, a  MnOx/N‑doped carbon cathode material 
was synthesized based on a MOF template and provided a 
 Zn2+‑storage capacity of 305 mAh g−1 even after 600 charge/
discharge cycles [36]. Besides, a MOF‑based single‑ion 
 Zn2+ solid‑state electrolyte with high ionic conductivity, 
high  Zn2+ transference number, and good electrochemical 
stability was designed to achieve dendrite‑free Zn batteries 
[50]. These researches imply that MOFs may provide new 
opportunities to construct high‑performance ZIBs.

Herein, we synthesized five kinds of MOFs materials, 
including Mn(BTC), Mn(BDC), Fe(BDC), Co(BDC), and 
V(BDC) (in which BDC is 1,4‑dicarboxybenzene and BTC 
is 1,3,5‑benzenetricarboxylic acid.) and investigated their 
electrochemical behaviors as ZIB cathodes. Among these 
MOFs materials, Mn(BTC) showed the best  Zn2+ stor‑
age capability.  Zn2+ storage mechanism of the Mn(BTC) 
cathode was then comprehensively studied. Besides, we 
developed a long‑term stable ZIF‑8@Zn anode by coating 
ZIF‑8 material on the surface of zinc foils. Furthermore, 
high‑performance aqueous ZIBs were constructed using 
the Mn(BTC) cathodes and the ZIF‑8@Zn anodes, which 
exhibited an excellent cycling stability with 92% capac‑
ity retention after 900 charge/discharge cycles. This work 
opens up a new door for achieving high‑performance aque‑
ous zinc‑ion batteries based on MOFs materials.

2  Experimental Section

2.1  Synthesis of MOF Materials

To synthesize Mn(BTC), 1225 mg Mn(CH3COO)2·4H2O 
and 300 mg polyvinyl pyrrolidone (PVP) were dissolved 
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in ethanol/H2O (125/125 mL) to get solution A, and mean‑
while, 2250 mg trimesic acid  (H3BTC) was dissolved in 
another ethanol/H2O (125/125 mL) system to get solution 
B. Then, solution B was added slowly into solution A under 
continuous stirring. After 10 min, the reaction mixture 
was aged without interruption for 24 h. The products were 
collected after centrifugation, washing several times with 
ethanol and complete drying in an oven at 60 °C. Fe(BDC), 
Mn(BDC), Co(BDC), and V(BDC) were synthesized 
according to previously reported methods [51–55].

2.2  Preparation of ZIF‑8@Zn Anode

ZIF‑8 was purchased from J&K Scientific Ltd. The as‑
received ZIF‑8 and polyvinylidene fluoride (PVDF) were 
mixed with a mass ratio of 8:2 in N‑methyl‑2‑pyrrolidone 
(NMP) solvent to form a homogeneous slurry. Then, the 
slurry was uniformly coated onto a Zn foil and dried at 80 °C 
overnight in a vacuum to obtain the ZIF‑8‑coated Zn (i.e., 
ZIF‑8@Zn) anodes, in which the mass of the ZIF‑8 coating 
was about 1.1 mg cm−2.

2.3  Material Characterization

Crystallographic and structure analysis was carried out by 
X‑ray diffraction (XRD, Rigaku 2500, Cu Kα radiation, 
λ = 0.154056 nm) with a scan rate of 5° min−1 over 2‑theta 
ranging from 5° to 70°. Field emission scanning electron 
microscopy (FE‑SEM) was performed on a Zeiss Supra55 
scanning electron microscope. Elemental analysis was charac‑
terized by energy‑dispersive X‑ray spectroscopy (EDS) on the 
FE‑SEM. X‑ray photoelectron spectroscopy (XPS, ESCALAB 
250X, Thermo Fisher, United Kingdom) was used for char‑
acterizing the valence variation. Fourier transform infrared 
(FTIR, Thermo Scientific Nicolet iS 50) spectroscopy was 
used to identify functional groups in the MOF materials at 
pristine state and various charge/discharge states. Element 
content in electrolytes was analyzed by inductively coupled 
plasma atomic emission spectrometry (ICP‑AES).

2.4  Electrochemical Measurements of MOF Cathodes

The electrochemical performance of various MOF cathodes 
was evaluated in CR2032 coin cells with zinc foil anode, 
air‑laid paper separator, and 2 M  ZnSO4 aqueous electro‑
lyte. To prepare the MOF cathodes, the synthesized MOF 
powder was mixed with acetylene black and PVDF with a 
weight ratio of 7:2:1 in NMP solvent and then coated onto a 
stainless‑steel current collector and dried at 80 °C overnight. 
The mass loading of MOF materials on current collectors is 
about 1.0 mg cm−2. For the assembled cells, cyclic voltam‑
metry (CV) tests were carried out on a VMP3 multichannel 
electrochemical station (Bio‑Logic Science Instruments SA) 
at a sweep rate of 0.5 mV s−1, and galvanostatic charge–dis‑
charge (GCD) tests were performed on a LAND CT2001 
battery tester at current density of 50 mA g−1.

2.5  Electrochemical Measurements of ZIF‑8@Zn 
Anodes

Electrochemical behaviors of the ZIF‑8@Zn anodes were 
characterized through ZIF‑8@Zn||ZIF‑8@Zn symmetri‑
cal cells, in which both the negative and positive electrodes 
were a ZIF‑8@Zn disk (with diameter of 12 mm), air‑laid 
paper was used as the separator, and 2 M  ZnSO4 (or 2 M 
 ZnSO4 + 0.1 M  MnSO4) aqueous solution was used as the 
electrolyte. For comparison, Zn||ZnSO4||Zn symmetrical cells 
were also assembled, in which pure Zn foils served as Zn 
electrodes. Electrochemical stability of these symmetric cells 
was evaluated by GCD tests at different current densities of 
0.25–2 mA cm−2 and different charge/discharge capacities of 
0.05–0.4 mAh cm−2 on a LAND CT2001 battery tester. The 
impedance measurements of symmetrical cells were taken on 
a VMP3 multichannel electrochemical station (Bio‑Logic Sci‑
ence Instruments SA) between 300 kHz and 0.01 Hz.

2.6  Construction and Electrochemical tests 
of Mn(BTC) Cathode//ZIF‑8@Zn Anode ZIBs

The MOF//ZIF‑8@Zn ZIBs were constructed based on 
the Mn(BTC) cathode, ZIF‑8@Zn anode, an air‑laid paper 
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separator, and 2 M  ZnSO4 (or 2 M  ZnSO4 + 0.1 M  MnSO4) 
electrolyte. CV and GCD measurements were taken on the 
Bio‑Logic VMP3 electrochemical station and the LAND 
CT2001 battery tester, respectively.

3  Results and Discussion

3.1  Material Characterization and Electrochemical 
Properties of MOF Cathodes

Structure and morphology of the as‑synthesized MOF mate‑
rials including Mn(BTC), Mn(BDC), Fe(BDC), Co(BDC), 
and V(BDC) were characterized by X‑ray diffraction (XRD) 
and scanning electron microscope (SEM). Figures 1a–e and 
S1 display that the Mn(BTC) and Fe(BDC) are composed 
of spherical and octahedral particles with size of 1–10 μm, 
respectively, and the other three MOF samples have irreg‑
ular‑shaped micromorphologies. As shown in Fig. 1f and 
Fig. S2, the XRD patterns of the synthesized MOF materials 
are consistent with previously reported literature [51–55], 
indicating that Mn(BTC), Mn(BDC), Fe(BDC), Co(BDC), 
and V(BDC) MOFs were successfully synthesized. The 
crystalline structures of these MOF materials are depicted 
in Fig. S3.

To evaluate  Zn2+‑storage ability of the above MOF mate‑
rials as ZIB cathodes, cyclic voltammetry (CV) and galva‑
nostatic charge–discharge (GCD) tests were conducted in 
2 M  ZnSO4 aqueous electrolyte. These MOF materials are 
selected as ZIB cathodes because the transition metal centers 
of Mn, Fe, Co, and V have proved to be active sites in elec‑
trochemical energy storage systems [56–60]. Meanwhile, 
BDC and BTC ligands are conventional ligands for MOF 
materials, and their lightweight feature is beneficial for the 
MOF materials to achieve a higher theoretical capacity con‑
sidering that ligands usually cannot be redox sites for metal‑
ion storage [61]. Corresponding CV curves are shown in 
Fig. 2a–e. For the Mn(BTC) cathode, it can operate in a volt‑
age window of 1.0–1.9 V (vs.  Zn2+/Zn), and reversible redox 
peaks are observed on the CV curves (Fig. 2a), preliminarily 
demonstrating effective  Zn2+ storage in the Mn(BTC). For 
the CV curves of the Mn(BDC) and Fe(BDC) MOF cathodes 
in Fig. 2b, c, there also emerge 1–3 pairs of reversible redox 
peaks, but the peak currents of the Fe(BDC) MOF are much 
smaller. The redox peaks in the CV curves of the Co(BDC) 
and V(BDC) are not obvious, and response currents are 
very small (Fig. 2d, e), suggesting a poor  Zn2+‑storage 
ability. Figure 2f displays charge/discharge curves at a cur‑
rent of 50 mA g−1 of the five MOF cathode materials. The 

Fig. 1  SEM images of the synthesized MOF materials: a Mn(BTC), b Mn(BDC), c Fe(BDC), d Co(BDC), and e V(BDC), f XRD patterns of 
the samples
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Mn(BTC) exhibits several voltage plateaus in its discharge 
curve and delivers the highest  Zn2+‑storage capacity of 
112 mAh g−1. Specific capacity of the Mn(BDC) cathode is 
about 48 mAh g−1. In contrast, the other three MOF cathodes 
including Fe(BDC), Co(BDC), and V(BDC) are incapable of 
effectively storing  Zn2+, which is reflected by their very low 
capacities of less than 10 mAh g−1. Obviously, for the above 
MOF samples, only Mn(BTC) is promising to be utilized 
as a high‑performance cathode material for ZIBs. Despite 
this, the Mn(BTC) shows a modest cycling stability during 
repeated  Zn2+ storage‑release processes (Fig. S4). This issue 
needs to be resolved based on the reveal of  Zn2+‑storage 
mechanism of the Mn(BTC) cathode.

3.2  Energy Storage Mechanism of the Mn(BTC) 
Cathode

Zn2+‑storage mechanism of the Mn(BTC) cathode in 
 ZnSO4 electrolyte is further investigated. Evolution of the 
phase composition and micromorphology of the Mn(BTC) 
electrode during  Zn2+ storage‑release processes were char‑
acterized by XRD and SEM, as shown in Fig. 3. When the 
fresh Mn(BTC) cathode is charged to 1.9 V at 50 mA g−1, 
“nanof lower‑like” and “rod‑like” particles appear 

(Fig. 3b). The “nanoflower” particles densely distribute 
on the surface of the electrode. Energy‑dispersive X‑ray 
spectroscopy (EDS) analysis in Fig. S5 points out that the 
“nanoflower” particles contain Mn and O elements, and 
the main composition elements of the “rod‑like” particles 
are C, O, and Zn. When the Mn(BTC) cathode is then 
discharged to 1.0 V (Fig. 3c), the “rod‑like” particles still 
exist, but the “nanoflower‑like” particles disappear, and 
meanwhile, some large flakes form. The XRD results of 
the cathode at different charge–discharge states are shown 
in Fig. 3d. Compared with the original state, XRD pat‑
tern of the Mn(BTC) cathode at the fully charged state 
(i.e., 1.9 V) shows obvious differences. The main peaks 
(at 10.4°, 20.8°, 29.4°, 38.0°, and 42.4°) of the Mn(BTC) 
disappear, and some new peaks emerge (at 17.5°, 18.6°, 
21.9°, 26.4°, 27.0°, and 35.5°), which means that there 
arises a phase transition reaction and new phases form 
undergoing charging. XRD pattern at the fully discharged 
state (i.e., 1.0 V) shows the characteristic diffraction peaks 
of  ZnSO4·3Zn(OH)2·5H2O (denoted as BZSP). Therefore, 
the above‑mentioned large flakes in Fig. 3c are considered 
as BZSP. Besides, from the fully charged state to the fully 
discharged state, some diffraction peaks (e.g., at 17.5°, 
18.6°, 26.4°, 27.0°, and 35.5°) of the cathode remain 
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unchanged positions. No PDF cards of  MnO2 can match 
well with these diffraction peaks, and they still remain 
their positions at the fully discharged state, so these dif‑
fraction peaks do not belong to  MnO2. These diffraction 
peaks are thought to originate from the “rod‑like” particles 
that are observed in Fig. 3b, c.

To figure out what the “rod‑like” and “nanoflower‑like” 
compounds (Fig. 3b, c) are, X‑ray photoelectron spectros‑
copy (XPS) and Fourier transform infrared spectroscopy 
(FTIR) were further carried out in Fig. 4. The high‑reso‑
lution Mn 2p XPS spectrum of the Mn(BTC) cathode at 
fully charged state (Fig. 4a) shows that the Mn 2p3/2 and 
Mn 2p1/2 peaks situate at 642.1 and 653.8 eV, respectively, 
with the peak separation of 11.7 eV. These values are con‑
sistent with the reported parameters for  MnO2 [62–65]. 
Considering that these “nanoflower‑like” particles con‑
tain Mn element while “rod‑like” particles do not (as dis‑
cussed in Fig. S5a), the “nanoflower‑like” particles are 
determined to be  MnO2. In Fig. 4b, peak separation of Mn 
3s orbit decreases from 6.4 eV for the original Mn(BTC) 
cathode to 4.7 eV for the fully charged Mn(BTC) cath‑
ode, indicating the increase in the Mn oxidation state after 

charging process [19]. The O 1s core‑level spectrum in 
Fig. 4c can be divided into four main peaks. Especially, 
the peak centered at 529.7 eV is in accord with the typical 
bond of Mn–O–Mn [66].

FTIR spectra of the Mn(BTC) cathode at original, charg‑
ing, and discharging states are presented in Fig. 4d. In 
the FTIR spectrum of the original Mn(BTC), the absorp‑
tion peaks of O–H at 3082 cm−1 and C=O at 1720 cm−1 
from 1,3,5‑benzenetricarboxylic acid disappear, while 
the asymmetric stretching vibrations of –COO– and sym‑
metric stretching vibrations of –COO– are detected in the 
regions of 1612–1545 and 1433–1372 cm−1, respectively. 
This is an evidence that the manganese ions have been 
successfully coordinated with the 1,3,5‑BTC ligands in the 
Mn(BTC) material [56]. When the Mn(BTC) is charged 
to 1.9 V, the asymmetric stretching vibration of –COO– at 
1612 cm−1 shifts to a new band at 1628 cm−1. Meanwhile, 
the symmetric stretching vibration of –COO– at 1372 cm−1 
shifts to a new band at 1383 cm−1. They are coordina‑
tion characteristic bands of Zn(BTC) MOF materials [67]. 
These suggest that zinc‑ion substitute manganese‑ion to 
be coordinated with ‑COOH to form Zn(BTC). When the 
Mn(BTC) cathode is then discharged to 1.0 V, there is no 

Fig. 3  SEM images of Mn(BTC) cathode at different states: a original state, b charge to 1.9 V and c discharge to 1.0 V. Inset in b is a high‑
resolution SEM image of the encircled zone. d XRD patterns of the cathode at the above states
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distinct change for these typical bands, suggesting that 
Zn(BTC) remains stable during discharge process.

Based on the above analysis, we speculate possible reac‑
tion paths of the Mn(BTC) cathode during charge–discharge 
processes. During the first charge process, there occurs a 
transformation from Mn(BTC) to Zn(BTC), and  Mn2+ dis‑
solves into electrolyte. These  Mn2+ is oxidized to  MnO2 on 
the cathode surface through a normal manganese deposi‑
tion reaction as the charging process proceeds. The reaction 
paths were further confirmed by plasma atomic emission 
spectrometry (ICP‑AES) tests. As shown in Table S1, Mn 
element concentration in electrolyte was detected when the 
cathode was charged/discharged to various states. Mn ele‑
ment concentration in electrolyte is 6.15 and 4.62 mg L−1 
when the cathode is charged to 1.8 and 1.9 V, respectively. 
Decrease in Mn concentration in electrolyte is attributed to 
manganese deposition reaction. Subsequently, the deposited 
 MnO2 serves as a host for  Zn2+ and  H+ storage in the fol‑
lowing charge/discharge processes, which is the reason that 
we detected the formation of BZSP during charge/discharge 
processes (Fig. 3c, d) [68]. It worth noting that the BTC 
organic ligands of Mn(BTC) cathodes are not involved in 

the Zn‑storage redox process, not only because the BTC 
ligands have been proved to be redox‑innocent ligands [61] 
but also because they are always detected during charge/
discharge processes of our ZIB systems (which means that 
BTC would not directly participate in Zn‑storage reactions). 
However, BTC ligand is an indispensable part of Mn(BTC) 
because it constructs the three‑dimensional framework of 
MOF materials. Interestingly, as shown in Fig. S6, Zn(BTC) 
particles seem to be the main by‑product in this system and 
the formation of BZSP by‑product is suppressed in this sys‑
tem compared with previously reported  MnO2 cathode [68]. 
Unlike densely arranged BZSP flakes generated in  MnO2//
Zn ZIBs [68], these rod‑like Zn(BTC) particles (generated 
in Mn(BTC)//Zn ZIBs) do not impede the direct contact 
between electrolyte and electrode materials, which is ben‑
eficial to ions diffusion and prolonged cycle life of the ZIBs.

In the above‑proposed reaction pathways, the oxidation 
reaction from Mn(BTC) to  MnO2 plays an important role in 
this system. On the one hand,  MnO2 is capable of deliver‑
ing a high capacity, but on the other hand,  MnO2 generally 
suffers from rapid capacity fading due to the dissolution of 
manganese from the  MnO2 electrode [15]. Therefore, the 
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poor cycling stability of the Mn(BTC)//ZnSO4//Zn system 
as discussed in Fig. S4 is considered to be mainly caused by 
the dissolution of  MnO2.

3.3  MOF Material Stabilized Zn Metal Anodes

To achieve stable zinc anodes, we introduced a ZIF‑8 coat‑
ing on bare Zn foil. Electrochemical stability of the ZIF‑
8‑coated Zn foil electrode (i.e., ZIF‑8@Zn) was character‑
ized in symmetrical ZIF‑8@Zn||ZIF‑8@Zn coin cells at a 
current density of 0.25 mA cm−2 and a charge/discharge 
capacity of 0.05 mAh cm−2. Figure 5a shows the cycling 
performance of bare Zn foil electrode and the ZIF‑8@Zn 
electrode based symmetric cells with 2 M  ZnSO4 electrolyte. 
It can be seen that a sudden short circuit appears after ~ 20 h 
stripping/plating for bare Zn foil. By contrast, the ZIF‑8@
Zn electrode works stably for at least 170 h and correspond‑
ing polarization voltage almost keeps constant, implying 
that the ZIF‑8@Zn electrode has superior cycle stability. 
Furthermore, compared with the first cycle charge/discharge 
profile of the bare Zn foil in Fig. 5b, the ZIF‑8@Zn electrode 
demonstrates a lower polarization voltage (120 vs. 200 mV 

for the bare Zn foil‑based symmetric cells), which indicates 
a low energy barrier for metal nucleation on the surface of 
the ZIF‑8@Zn electrode [69]. Very similarly, in the electro‑
lyte of 2 M  ZnSO4 + 0.1 M  MnSO4 mixture solution (Fig. 5c, 
d), the ZIF‑8@Zn electrode‑based symmetric cells exhibit 
small polarization voltages and a long‑term stable charge/
discharge behavior over 170 h, whereas the bare Zn foil elec‑
trode‑based symmetric cells perform poorly. The remarkably 
improved cycling stability of the ZIF‑8@Zn anode are also 
observed at larger current densities of 0.5–2 mA cm−2 and 
higher Zn deposited depth of 0.1–0.4 mAh cm−2 (Fig. S7). 
All batteries exhibit stable cycling life over 150 h, further 
confirming the benefits of the ZIF‑8@Zn anode on Zn strip‑
ping/plating behaviors. Besides, electrochemical impedance 
spectroscopy (EIS) test was also conducted to study the 
interfacial properties of bare Zn and ZIF‑8@Zn anodes. As 
shown in Fig. S8, bare Zn electrodes delivered a large inter‑
facial resistance and charge transfer resistance (estimated 
from the semicircle arc at high frequency range), which is 
due to passivation surface layers on Zn foils [70]. By con‑
trast, the ZIF‑8@Zn electrodes show a smaller interfacial 
resistance since the ZIF‑8 coating provides a more stable 
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electrode interface to guide a uniform Zn stripping/plating 
process.

Potential mechanism for the optimized electrochemical 
performance of the ZIF‑8@Zn electrode is further investi‑
gated. We analyzed the morphology evolution of the bare Zn 
foil electrode and the ZIF‑8@Zn electrode before and after 
100 charge/discharge cycles by SEM and EDS mapping. As 

shown in Fig. 6a, b, many large protuberances appear on the 
surface of the Zn foil after cycling, suggesting uneven zinc 
plating/stripping process during repeated charge/discharge 
cycles. EDS mapping in Fig. 6c and Fig. S9 demonstrates 
that these protuberances contain O and Zn elements; thus, 
they are zinc oxides/hydroxides, as reported in the litera‑
ture [11]. Cross‑sectional SEM image (Fig. S10a, b) further 

Fig. 6  SEM images and EDS mapping of bare Zn electrode a before and b, c after 100 stripping/plating cycles, ZIF‑8@Zn electrode d before, 
and e, f after 100 stripping/plating cycles. g Schematic illustration for morphology change of the bare Zn foil and ZIF‑8@Zn electrodes during 
repeated Zn stripping/plating processes
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shows some dead Zn particles on the surface of the bare Zn 
foil after cycling. In Fig. 6d, we can see that porous ZIF‑8 
coating is on the surface of the ZIF‑8@Zn electrode, and 
after cycling (Fig. 6e, f), no large protuberances/dendrites 
appear. Besides, cross‑sectional SEM and EDS images of 
the ZIF‑8@Zn electrode (Fig. S10c, d) show that ZIF‑8 layer 
does not fall off the Zn foil after 100 cycles, which means 
the ZIF‑8 coating is stable in ZIBs. A schematic illustration 
for the morphology evolution of bare Zn and ZIF‑8@Zn 
electrodes during repeated Zn stripping/plating is presented 
in Fig. 6g. According to the literature [71–74], Zn inclines to 
deposit on some sites to form small protuberances/dendrites 
during the plating process. These small protuberances/den‑
drites then generate inhomogeneous electric field, which is 
apt to attract  Zn2+ to grow into uncontrolled protuberances/
dendrites. When stripping, these large protuberances/den‑
drites incline to dissolve from their root positions, leading 
to the formation of “dead” Zn. Furthermore, the vigorously 
growing zinc protuberances/dendrites may easily pierce 
through the separator and cause a short circuit. For ZIF‑8@
Zn electrodes, the porous structure of ZIF‑8 coating can 
homogenize the zinc‑ion flux, avoiding an uneven distribu‑
tion of the electric field and thus inhibiting the formation of 
protuberances/dendrites [75–77].

3.4  ZIBs of Mn(BTC) Cathode//ZIF‑8@Zn Anode

An aqueous zinc‑ion battery using the above‑studied 
Mn(BTC) cathode and ZIF‑8@Zn anode was constructed, as 
illustrated in Fig. 7a. 2 M  ZnSO4 aqueous solution was cho‑
sen as the electrolyte. CV curves at a scan rate of 0.5 mV s−1 
are displayed in Fig. 7b. It can be seen that there emerge two 
reduction peaks at 1.22 and 1.37 V and one oxidation peak 
at 1.83 V in the initial cycle, and the oxidation peak is corre‑
sponding to the oxidation reaction from Mn(BTC) to  MnO2 
as discussed above. From the second cycles, two pairs of 
reversible redox peaks appear, indicating a reversible  Zn2+ 
storage/release process. The rate performance is displayed in 
Fig. 7c. The battery delivers a discharge capacity of 112, 63, 
40, and 14 mAh g−1, respectively, at current densities of 50, 
100, 200, and 500 mA g−1. Figure 7d shows cycling perfor‑
mance of the battery. It can be observed that the Mn(BTC) 
exhibits a discharge capacity of about 55 mAh g−1 at a cur‑
rent density of 100 mA g−1 after activation process. How‑
ever, the capacity rapidly fades to only 27 mAh g−1 after 50 

charge/discharge cycles, indicating a poor cycling stability. 
As investigated above, such a poor cycling performance 
can be mainly ascribed to the dissolution of  MnO2 from 
Mn(BTC) cathode. Therefore, to optimize cycling perfor‑
mance of the Mn(BTC) cathode and the assembled battery, 
 MnSO4 was added to the  ZnSO4 electrolyte, because  Mn2+ in 
the electrolyte is able to suppress manganese dissolution [78, 
79]. In 2 M  ZnSO4 + 0.1 M  MnSO4 electrolyte, their electro‑
chemical performance is significantly improved. As shown 
in Fig. 7e, peak currents of CV curves with the addition of 
 Mn2+ in the electrolyte are much higher than that without 
 Mn2+ (Fig. 7b), which indicates a better  Zn2+‑storage ability. 
A superior rate capability is also achieved in Fig. 7f, with the 
capacity of 170, 142, 80, and 46 mAh g−1 at current densities 
of 50, 100, 500, and 1000 mA g−1, respectively. The high 
rate performance could be ascribed to the stabilization and 
excellent kinetics of the cathode under the case of  Mn2+ 
addition in  ZnSO4 electrolyte [15]. Cycling performance test 
(Fig. 7g) shows that the battery delivers a reversible capacity 
of 150 mAh g−1 after 50 cycles at 0.1 A g−1. Furthermore, 
the battery exhibits 92% capacity retention after 900 cycles 
at 1000 mA g−1 in Fig. 7h, which indicates excellent long‑
cycling stability. It is worth noting that the cycle perfor‑
mance of Mn(BTC) cathode in  ZnSO4 + MnSO4 electrolyte 
is superior to many previously reported manganese oxide 
cathodes shown in Table S2 at similar current densities, but 
the capacity and rate capability are not as good as widely 
studied  MnO2 materials. Despite this, MOF cathode mate‑
rials are still promising for  Zn2+ storage because further 
research may find some Mn‑MOF or other MOF materials 
with much better  Zn2+‑storage ability, considering that MOF 
materials possess diverse structure, controllable chemical 
composition, very high specific surface area, and many other 
merits. CV curves (Fig. S11a) at various scan rates were also 
recorded and used to analyze  Zn2+ storage kinetics of the 
cathode. When the scan rate increases from 0.5 to 5 mV s−1, 
both anodic and cathodic peaks slightly shift, which is due 
to increased polarization at higher scan rates [80]. Accord‑
ing to the previous literature, the relationship between peak 
current (i) and the scan rate (v) can be represented by Eqs. 1 
and 2 [81]:

(1)i = av
b

(2)log i = b log v + log a
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where a and b are adjustable parameters. In general, b value 
ranges from 0.5 to 1.0. The coefficient b of 0.5 indicates a 
faradic reaction, and the coefficient b of 1.0 means a com‑
plete surface‑controlled capacitive process [82]. The b val‑
ues calculated by slope of the log(v)‑log(i) plots (Fig. S11b) 
for redox peaks (Fig. S11a) are 0.54 and 0.67. This indicates 
that  Zn2+ storage in the Mn(BTC) cathode is mainly through 
faradic reactions.

4  Conclusions

In summary, a high‑performance aqueous zinc‑ion battery 
system was realized based on MOF materials. Several kinds 
of MOF materials were synthesized first and investigated as 
cathode materials for ZIBs. During them, Mn(BTC) MOF 
showed a high capacity and its  Zn2+ storage mechanism was 
revealed such as a transformation reaction from Mn(BTC) 
to  MnO2 during charge process. In addition, a porous ZIF‑8 
coating was utilized to protect Zn foil anodes, which led to 
a uniform electrolyte flux and significantly inhibited the for‑
mation of zinc protuberances/dendrites. An aqueous zinc‑ion 
battery was constructed based on the Mn(BTC) cathode and 
the ZIF‑8 stabilized Zn anode. Benefiting from the syner‑
getic effect of Mn(BTC) cathode and  Mn2+ additive in the 
electrolyte, high capacity and excellent long‑term cycling 
ability were simultaneously realized. This work proves that 
by exploring MOF materials, high‑performance aqueous 
zinc‑ion batteries can be achieved.
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