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Abstract Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of

structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.

Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various

graphene-based gas/vapor sensors, such as NH3, NO2, H2, CO, SO2, H2S, as well as vapor of volatile organic compounds.

The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which

may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for

example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.
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1 Introduction

The past several decades have witnessed a tremendous

development of chemical sensors in many fields [1–4].

Gases detecting and harmful vapors with early warning

feature are playing increasingly important roles in many

fields, including environmental protection, industrial man-

ufacture, medical diagnosis, and national defense. Mean-

while, sensing materials are of intense significance in

promoting the combination properties of gas/vapor sensors,

such as sensitivity, selectivity, and stability. Thus, various

materials [5–13], covering from inorganic semiconductors,

metal oxides, and solid electrolytes, to conducting poly-

mers, have been exploited to assemble sensing devices with

small sizes, low power consumption, high sensitivity, and

long reliability. Among them, nanomaterials, such as car-

bon nanotubes (CNTs), metal-oxide nanoparticles, and

graphenes, are widely used in gas sensing for their excel-

lent responsive characteristics, mature preparation tech-

nology, and low cost of mass production, since the

traditional silicon-based semiconducting metal-oxide

technologies will have reached their limits [14]. Figure 1

shows a module of MQ-9, a SnO2-based gas sensor for CO

detection, which can be easily obtained in the market.

As one of the most fascinating materials, graphene has

aroused scientists’ great enthusiasms in its synthesis,

modification, and applications in many fields since 2004

[15], due to its remarkable overall properties, for instance,

single-atom-thick two-dimensional conjugated structures,

room-temperature stability, ballistic transport, and large

available specific surface areas [16–39]. Graphene can be

served as an ideal platform to carry other components for

specific roles, because of its special structure. High con-

ductivity and ballistic transport ensure that graphene

exhibits very little signal disturbance when it works as a

chemical sensor [40], which do not require auxiliary
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electric heating devices due to its excellent chemical sta-

bility at ambient temperature [16, 27]. All of these features

for graphene are beneficial for its sensing properties,

making it an ideal candidate for gas/vapor detecting.

Therefore, great efforts have been put into the research of

graphene-based gas/vapor sensors, leading to a giant leap

in the development of graphene-based gas-sensing devices

[24, 41–57]. We can clearly see that the number of pub-

lished papers on graphene-based gas sensors has sharply

increased over the period from 2007, as shown in Fig. 2.

The first experiment focusing on the detection of gas

molecules based on graphene was carried out in 2007.

Schedin et al. reported that micrometer-size sensors made

from graphene were capable of detecting single gas

molecules attached to or detached from graphene’s surface,

as depicted in Fig. 3 [24]. Their discovery indicated that

graphene had a great potential for detecting and sensing.

In principle, a sensor is a device, purpose of which is to

sense (i.e., to detect) some characteristics of its environs. It

detects events or changes in quantities and provides a

corresponding output, generally as an electrical or optical

signal. According to different forms of reaction with

external atmospheres, gas/vapor sensors can be classified

into chemiresistor, silicon-based field-effect transistor

(FET), capacitance sensor (CS), surface work function

(SWF) change transistor, surface acoustic wave (SAW)

change transistor, optical fiber sensor (OFS), and so on

[58]. Among them, chemiresistor is the most widely used

in the construction of gas/vapor sensors and also the most

popular product for practical applications, because of its

long-history research, simple structure, convenience to

implement, room-temperature operation, and relatively low

cost [59, 60]. Actually, we usually apply voltage on both

electrodes of the device, and detect the current fluctuating

over time when gas composition changes. Figure 4
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distinctly shows the typical structure of chemiresistors and

silicon-based FET devices. An ordinary testing system for

the research of gas sensors with chemiresistor structure is

also displayed.

Through real-time monitoring and analyzing the

response curves of sensing devices, the realistic realization

of vapor detection can be achieved. Figure 5 is an example

of real-time response of dimethyl methylphosphonate

(DMMP) vapor monitored by para-phenylene diamine-re-

duced graphene oxide (PPD-RGO)-based vapor sensor. In

Fig. 5, the excellent repeatability, low limit of detection,

and superior selectivity of the vapor sensor have been

distinctly displayed.

For evaluating the performance of gas/vapor sensors,

there are a few critical parameters including component

resistance, measure resistance, sensitivity, limit of detec-

tion, response time, recovery time, and selectivity. The

definitions and formulas of these parameters are summa-

rized in Table 1.

2 Synthesis and Properties of Graphene

There are mainly four approaches to synthesize single-

layered or few-layered graphene: micromechanical exfoli-

ation, epitaxial growth, vapor deposition, and chemical

reduction [64–67]. Novoselov et al. used scotch tapes to

repeatedly peel flakes of graphite off the mesas which were

fixed onto a SiO2/Si substrate, and the high-purity, single-

layered graphene was obtained [15]. By micromechanical

exfoliation of highly ordered pyrolytic graphite, crystalline

graphene nanosheets with large surface areas and a small

number of layers could be obtained [65]. This method is

very simple and does not need any special facilities.

However, it is limited to laboratory research because of the

small size and inefficiency of the production. Berger and

his co-workers got graphene thin films which exhibited

remarkable two-dimensional (2D) electron gas behaviors

through thermal decomposition on the (0001) surface of

6H-SiC [68]. Epitaxial growth, compared with mechanical

exfoliation, can realize the preparation of graphene with

larger sizes and higher qualities. Hence, this approach is of

significant importance for graphene semiconductor devi-

ces. Although a great breakthrough has been made for this

technique, there is still a long way to go toward mass

production of the graphene with uniform thickness and

acceptable cost. Chemical vapor deposition (CVD) is the

most extensively used method in industrial manufacture

considering the merits of controllable sizes and structures.

By pyrolysis of carbon-containing compounds, graphene

was grown on the surfaces of transition metals, such as Cu

[36], Pt [69], Ni [37], Ru [70], and Ir [71]. Copper foil is

the most common substrate material to build single-layered

graphene. Li and his group have successfully synthesized

large-area and uniform graphene films on copper foils with

a high quality by CVD techniques using methane as carbon

source [36].

In 2006, Stankovich et al. created a bottom-up approach

when they incorporated graphene sheets in a composite

material and the far-reaching method, which called chem-

ical reduction of graphene oxide, pave the way for gra-

phene’s large-scale production, modification, and

application [21]. Figure 6 displays the fabrication process

flow of graphene–polymer composite. In 2009, Tung et al.

reported a versatile solution-based process for the large-

scale production of single-layered chemically converted
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Fig. 3 Single-molecule detection. a Examples of changes in Hall resistivity observed near the neutrality point (|n|\ 1011 cm-2) during

adsorption of strongly diluted NO2 (blue curve) and its desorption in vacuum at 50 �C (red curve). The green curve is a reference—the same

device thoroughly annealed and then exposed to pure He. The curves are for a three-layered device in B = 10 T. The grid lines correspond to

changes in qxy caused by adding one electron charge, e (dR & 2.5 X), as calibrated in independent measurements by varying Vg. For the blue

curve, the device was exposed to 1 ppm of NO2 leaking at a rate of&10-3 X mbar L s-1. Statistical distribution of step heights, R, in this device

without its exposure to NO2 (in helium) (b) and during a slow desorption of NO2 (c). For this analysis, all changes in qxy larger than 0.5 X and

quicker than 10 s (lock-in time constant was 1 s making the response time of &6 s) were recorded as individual steps. The dotted curves in

textbfc are automated Gaussian fits. Adapted from reference [24]. (Color figure online)
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graphene over the entire area of a silicon/SiO2 wafer [72].

In general, there are three steps to obtain graphene-based

composites: (1) strong oxidant, like H2SO4, HNO3, or

HClO4, is used to transform graphite to graphite oxide. (2)

complete exfoliation of graphite will take place, and

molecular-level dispersion of individual graphene oxide

(GO) in water or other polar solvent via ultrasonication will

be achieved. (3) through the reduction of GO suspended in

water or organic solvents, reduced graphene oxide (RGO)

can be prepared without changing its morphology. Con-

ductivity of RGO would be partly recovered too. The RGO

sheets have quite high specific surface areas, which can be

considered as a promising candidate for gas detection.

Brodie method [73], Staudenmaier method [74] and

Hummers method [75] are three main ways to form GO.

Hummers method is becoming the most popular approach

to synthesize GO by virtue of its merits, including rapid,

easy and relatively safe properties. Various modified
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Hummers methods have been reported to promote the

progress of GO preparation [76–79].

In a sense, the development of chemical reduction can

provide equivalent routes for production and modification

of graphene materials via wet chemical techniques. As

such, the reductant is so important since it can affect the

properties of vapor detecting devices to a large degree [80–

111]. Fan and co-workers observed that a stable graphene

suspension could be quickly prepared by simply heating an

exfoliated-GO suspension under strongly alkaline

conditions at moderate temperatures (50–90 �C). This

interesting reaction provides a green route to the synthesis

of graphene with excellent dispersibility in water [81]. Zhu

and his team developed a green and facile approach to

synthesize chemically converted graphene nanosheets

(GNS) through reducing exfoliated GO precursors by

reducing sugars, such as glucose, fructose, and sucrose.

Their unremitting efforts pave a new way to enlarge the

production of widely used GNS with a high quality [95].

Recently, Liu et al. had demonstrated a green and facile
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Fig. 5 a Reproducibility of response of the RGO sensor to 20 ppm DMMP vapor. b Response curve of the RGO sensor to DMMP vapor under
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Table 1 Summary of the definition and formula of sensor parameters

Parameter Definition Formula

Ra Resistance value of the device, when put into the dry, clean atmosphere

Rg Resistance value of the device, when put into gas to be detected

S Ratio of variation of resistance ( Ra � Rg

�
�

�
�) to initial resistance (Ra) S ¼ DR

Ra

�
�
�

�
�
�� 100% ¼ Ra�Rg

Ra

�
�
�

�
�
�� 100%

LOD The lowest concentration of target gas that can be distinguished from the common

atmosphere, which produces a signal greater than three times the standard deviation of the

noise level

Tres Period of time from gas sensor contact with gas to be detected to variation of resistance reach

to 90 % of Ra � Rg

�
�

�
�

Trec Period of time from gas sensor away from gas to be detected to variation of resistance reach

to 90 % of Ra � Rg

�
�

�
�

D Ratio of response of target gas (Sc) to response of disturbed gas (Si). D ¼ Sc
Si
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approach to synthesize RGO through reduction of GO by

Zn powder under acidic condition at room temperature.

This approach offers a possibility for the production of

RGO with cost-effective, environment-friendly and large-

scale characteristics [106].

Recently, we found that PPD-reduced RGO exposed to

DMMP exhibited much better response than that of the

RGO reduced from hydrazine [63]. At the same time, we

confirmed that RGO reduced from aniline exhibited a

better response to ammonia, compared with the RGO

reduced from hydrazine [107]. The sensing properties of

aniline-reduced graphene attached with different states of

polyaniline (PANI) had also been studied. The results

suggested that free RGO exhibited better response to NH3

and showed higher sensitivity with concentrations at ppm

levels compared to those of the RGO attached with acid-

doped PANI and de-doped PANI [108].

3 Properties of Gas/Vapor Sensors

Graphene has shown excellent sensing properties toward

NH3, NO2, H2, CO, SO2, H2S, and volatile organic com-

pounds (VOCs). Subsequently, some information from

related works was summarized and discussed. Efforts have

been made to exploit these sensitivities in the development

of new sensor technologies.

3.1 Ammonia Detection

Ammonia (NH3) is a compound of nitrogen and hydrogen

with the formula NH3, which is a colorless gas with a

characteristic pungent smell. Ammonia not only con-

tributes significantly to the nutritional needs of terrestrial

organisms by serving as a precursor to food and fertilizers,

but also is a building-block for the synthesis of many

pharmaceuticals, and is used in many commercial products.

Although widely used, this gas is both caustic and

hazardous, and thus it is harmful to human and would

pollute environment. Therefore, the detection of NH3 is a

pressing requirement for the modern society.

Recently, a great deal of efforts had presented a great

leap forward in the development of graphene gas sensors

for ammonia detection. Gautam and his team investigated

ammonia gas-sensing behaviors of graphene synthesized

by CVD, of which the sensitivity and the recovery time

were enhanced by the deposition of gold nanoparticles on

the surface of graphene films [112]. Yavari et al. manu-

factured a device which was distinctly superior to com-

mercially available NO2 and NH3 detectors [113]. They

found graphene films synthesized by CVD (as displayed in

Fig. 7) had an outstanding property of detection of NO2

and NH3 at room temperature. The detection limits of both

NO2 and NH3 reached to ppb level. Wu and his co-workers

reported a contrast experiment between graphene/PANI

nanocomposites, and PANI to explore their sensing

(c)(b)(a)

Fig. 6 a Suspensions of phenyl isocyanate-treated graphite oxide (1 mg mL-1) and dissolved polystyrene in DMF before (left) and after (right)

reduction by N, N-dimethylhydrazine. b Composite powders as obtained after coagulation in methanol. c Hot-pressed composite (0.12 vol% of

graphene) and pure polystyrene of the same 0.4-mm thickness and processed in the same way. Adapted from reference [21]

Fig. 7 Optical micrographs of graphene film grown by CVD on Cu

and then transferred onto a Si/SiO2 substrate. Gold contact pads in the

Van Der Pauw configuration were deposited on the film. Adapted

from reference [113]
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properties [61]. The results indicated that the NH3 detec-

tion limit of graphene/PANI sensors (ca. 1 ppm) was lower

than that of PANI (ca. 10 ppm). This indicated that the

sensitivity of graphene/PANI sensors for NH3 detection

was enhanced by introduction of graphene into PANI. A

simple, low-cost, and practical inkjet-printing technique for

fabricating an innovative flexible gas sensor based on

graphene–poly (3, 4-ethylenedioxythiophene):poly (styrene

sulfonate) (PEDOT:PSS) composite films with high uni-

formity over a large area was created by Seekaew et al.

[114]. Figure 8 clearly depicts a schematic diagram of this

brand new gas sensor fabrication process. The ink-jet

printed graphene-PEDOT: PSS gas sensor exhibited high

response and high selectivity to NH3 in a low concentration

ranging from 25 to 1000 ppm at room temperature. This

novel and convenient method would provide a new thought

for the controllable and mass manufacture of gas detectors.

Table 2 summarized recent researches about NH3 detection

based on graphene.

3.2 Nitrogen Dioxide Detection

Nitrogen dioxide is one of several nitrogen oxides with the

formula NO2. On one hand, this reddish-brown gas, as one

kind of the important chemical feedstocks, is an interme-

diate in the industrial synthesis of nitric acid. On the other

hand, the toxic gas has characteristic sharp, biting odor,

and is a prominent air pollutant. The whole society has a

strong demand for NO2 detection, in order to curb envi-

ronmental pollution and keep the safety and health of

human beings.

Compared to the development of ammonia detection,

there are several reports about NO2 sensing showing the

lower detection limit, higher response, and more practical

manufacturing techniques. Choi and his co-workers

reported a highly sensing NO2 gas sensor based on multi-

layered graphene films synthesized by a CVD method on a

microheater-embedded flexible substrate [124]. The mul-

tilayered graphene had a very low detection limit of NO2 at

sub-ppm (\200 ppb) levels. It also presented high

responses and a short response time, when it was exposed

to 1 ppm NO2 at room temperature. Hoa et al. reported that

they built a gas sensor with hybrid structures of 2D gra-

phene and 2D NiO nanosheets, sensitivity of which was

two orders higher than those of devices based on NiO

nanosheets alone toward NO2 even at 1 ppm level [125].

As shown in Fig. 9, the detector had excellent sensing

properties, such as high sensitivity and superior selectivity.

Nanosphere-like a-Fe2O3-modified RGO nanosheets were

prepared by Dong’s team [109]. The 3D-structured

nanocomposites exhibited a very high response of

150.63 % to 90 ppm NO2 at room temperature, which was
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Screen printing

Sensing film
Interdigitated electrode
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Silver electrode

Gap size: 1 mm

(a) Prepared interdigitated electrode (b) Ink-jet printing

(c) Schematic diagram of gas sensor (d) Photograph of sensor device

1 cm
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Fig. 8 Schematic diagram of gas-sensor fabrication process. Adapted from reference [114]
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65.5 times higher than that of pure graphene, and the

detection limit could be decreased down to 0.18 ppm.

Huang et al. fabricated a gravure-printed chemiresistor-

type NO2 sensor based on sulfonated RGO decorated with

Ag nanoparticles (RGO/S ? Ag) (as depicted in Fig. 10)

[126]. Compared with other graphene-based sensors, this

device showed more rapid response to NO2. When exposed

to 50 ppm NO2, the sensor exhibited a sensitivity of

74.6 %, a response time of 12 s, and a recovery time of

20 s. Recently, Ju et al. reported a bendable and washable

electronic textile (e-textile) gas sensors composed of

reduced graphene oxides using commercially available

yarns and molecular glues through an electrostatic self-

assembly method [127]. The resultant e-textile gas sensor

possessed the following features: (1) chemical durability to

several detergents washing treatments, (2) mechanical

stability under 1000 bending tests at an extreme bending

radius of 1 mm, and (3) a high response to NO2 gas at room

temperature with selectivity to other gases such as acetone,

ethanol, ethylene, and CO2. Herein, we summarized recent

researches about graphene-based gas sensors for NO2

detection, as shown in Table 3.

3.3 Hydrogen Detection

While hydrogen (H2) is not very reactive under standard

conditions, it does form compounds with most elements.

As one of the most important industrial chemicals and

Table 2 A summary of recent researches about graphene-based gas sensors for NH3 detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

RGO/MnO2 ? PANI Chemiresistor NH3 1080 25 %/5 ppm 240 [115]

RGO/ANI Chemiresistor NH3 1080 10.7 %/5 ppm 170 [107]

RGO/ANI ? PANI Chemiresistor NH3 1080 20 %/20 ppm 120 [108]

RGO/Py Chemiresistor NH3 1.4 2.4 %/1 ppb 76 [116]

RGO/Py Chemiresistor NH3 720 4.2 %/50 ppb 375 [117]

GR ? Au Chemiresistor NH3 1200 1 %/6 ppm 3800 [112]

GR FET NH3 – 0.49 V/ppm – [118]

GR Chemiresistor NH3 21,600 3 %/500 ppb 21,600 [113]

GR ? PANI Chemiresistor NH3 50 0.7 %/1 ppm 23 [61]

GR supported by mica substrate FET NH3 60 4 %/50 ppm – [119]

GR gated by ionic liquid FET NH3 33 130 ppb – [120]

Printed GR ? PEDOT:PSS Chemiresistor NH3 180 25 ppm 300 [114]

RGO ? P3HT Chemiresistor NH3 141 7.15 %/10 ppm 488 [121]

RGO/Tannic acid Chemiresistor NH3 40 9.3 %/1310 ppm 170 [122]

RGO/Cu(OH)4
2-?Cu2O Chemiresistor NH3 28 80 %/100 ppm 206 [123]

RGO reduced graphene oxide, GR Graphene, PPD p-phenyldiamine, DMMP dimethyl methyl phosphonate, PANI polyaniline, ANI aniline, Py

pyrrole, COP Chemical oxidative polymerization
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100 ppm, and H2 was 4 %. Adapted from reference [125]
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potential clean energy facing the future, hydrogen has

aroused a great attention. Large-scale preparation, trans-

portation, and application of this material have a strong

demand for rapid detection and accurate analysis, which

makes H2 detection become a research hotspot recent

years.

Johnson and his co-workers reported a novel Pd-func-

tionalized multilayered graphene nanoribbon networks

Gravure printing

Ag-S-RGO

PI substrate

Cross-sectional view

Ag IDEs

(a)

(b)

Side view

50
0 n

m

500 nm

40
 nm48

 nm

50 mm

50 mm

Fig. 10 a Photographs of RGO/S ? Ag ink and sensing layer printed onto the PI substrate with Ag-IDEs, respectively. b Schematic of the

printed RGO/S ? Ag sensor. Adapted from reference [126]

Table 3 A summary of recent researches about graphene-based gas sensors for NO2 detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

GR Chemiresistor NO2 3000 4 %/100 ppb 3000 [113]

Single-layered GR FET NO2 3600 2.5 ppm – [128]

Ozone-treated GR Chemiresistor NO2 900 1.3 ppb 1800 [129]

GR/PMMA on a flexible PET substrate Chemiresistor NO2 170 25 %/200 ppm – [130]

RGO/hydrazine ? WO3 Chemiresistor NO2 – 5 ppm – [131]

Multilayered GR Chemiresistor NO2 1800 6 %/1 ppm – [124]

RGO ? NiO Chemiresistor NO2 125 200 %/1 ppm (200 �C) 250 [125]

Bilayer GR FET NO2 – Establish a theoretical model – [62]

RGO/FeCl3 ? a-Fe2O3 Chemiresistor NO2 80 180 ppb 44 [109]

RGO ? PVP QCM NO2 – 20 ppm – [132]

Printed RGO/S ? Ag Chemiresistor NO2 12 74.6 %/50 ppm 20 [126]

RGO/hydrazine ? ZnO Chemiresistor NO2 165 25.6 %/5 ppm 499 [133]

RGO ? SnO2 aerogel Chemiresistor NO2 190 50 ppm 224 [134]

GO ? Cs Chemiresistor NO2 240 90 ppb 540 [135]

RGO/NaBH4 Chemiresistor NO2 420 11.5 %/5 ppm 1680 [136]

RGO ? SnO2 Chemiresistor NO2 75 3.31 %/5 ppm (50 �C) 300 [137]

RGO/WO3 Chemiresistor NO2 540 769 %/5 ppm 1080 [138]

RGO/In2O3 Chemiresistor NO2 240 8.25/30 ppm 1440 [139]

RGO reduced graphene oxide, GO Graphene oxide, GR Graphene, PVP Polyvinylpyrrolidone, QCM quartz crystal microbalance
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with excellent sensitivity to H2 at ppm levels. The fluffy

porous material structure and noble metal modification

accounted for their fast response and recovery time at room

temperature [140]. The relationship between the sensor

performance and work temperature was studied as well.

Their work offers the possibility of using functionalized

graphene-based nanoribbon networks in a wide range of

gas/vapor-sensing applications. Figure 11 shows the

response of the device varying with the concentration of H2

and work temperature. The real-time response curves of the

detector as well as the activation energy of hydrogen

detection at background temperatures varied from room

temperature to 175 �C were measured by Chu et al. [141].

Three Ea (activation energy) were observed dependent on

the background temperature: 0.832 eV for 30–60 �C,
0.396 eV for 60–100 �C, and 0.057 eV for 100–170 �C.
Their results contribute to the theoretical research of

gas/vapor detection. Meanwhile, Chu and his team studied

the effect of thickness of the Pt metal layer on hydrogen-

sensing sensitivity of Pt-coated and multilayered graphene,

and they concluded that the Pt coating improved the

response time of the graphene sensor, but decreased the

sensitivity [142]. When the thickness of the Pt metal layer

was about 1 nm, the sensor presented the highest sensi-

tivity. Mehta and co-workers had successfully fabricated a

device with ultrafast response and recovery of hydrogen

sensing based on graphene composite layers with Pd and Pt

nanoparticles dispersed on graphene layers [143]. Jiang

et al. considered the dissociative adsorption of H2 mole-

cules on graphene with mono-atom-vacancies by using

density functional theory (DFT) calculations [144]. They

demonstrated that this defected graphene was promising

for ultrasensitive room-temperature hydrogen sensing and

the LOD could even reach to 10-35 mol L-1 theoretically.

The reaction pathway of H2 molecule dissociative

adsorption on pristine graphene and treated graphene with

a monoatom-vacancy was displayed in Fig. 12. Table 4

summarized recent researches about H2 detection based on

graphene.

3.4 Carbon Dioxide, Carbon Monoxide,

and Methane Detection

Carbon dioxide (CO2), carbon monoxide (CO), and

methane (CH4) are very familiar to our daily life, industrial

manufacture, and environmental protection. CO2 is not

only the primary source of carbon in life, but also of sig-

nificant impact in air pollution, which can cause global

warming. CO is toxic to humans when encountered in

concentrations above about 35 ppm. Besides, this color-

less, odorless, and tasteless gas is one kind of gaseous

fuels, which is widely used as reducing agent in industry.

CH4 is the simplest alkane and the main component of

natural gases. On one hand, the relative abundance of

methane makes it an attractive fuel. On the other hand, it is

the chief culprit of a gas explosion. In a word, detection

and early warning of these gases is a pressing need for

modern society.

Nemade et al. have carried out a lot of work focusing on

graphene-based carbon dioxide sensor over the recent years

[158]. They fabricated a device with excellent stability,

short response and recovery times, and low detection limit

based on few-layered graphene synthesized by an electro-

chemical exfoliation method. It is worth mentioning that

this few-layered graphene also showed remarkable sensing

features to liquid petroleum gases, which endowed it with a

giant potential application. In addition, they investigated

the sensing characteristic to CO2 of graphene/Y2O3 quan-

tum dots (QDs) [159], graphene/Sb2O3 QDs [160], and

graphene/Al2O3 QDs [161], respectively. The experimental

results showed that gas-sensing properties could be chan-

ged by different combination of materials. Liu and his team
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investigated the adsorption of several common gas mole-

cules (CO, SO2, NH3, CO2, N2, H2O, and H2) on Li-dec-

orated T graphene, using DFT [162]. They found that Li-

decorated T graphene exhibited a higher sensitivity to CO.

Their work provided an insight to build promising gas

detectors based on graphene. Wu et al. reported that gra-

phene nanosheets/PANI nanocomposite with a different

mass ratio was synthesized and investigated [163]. This

hybrid was able to fabricate methane sensor, the detection

limit of which decreased with the increasing mass ratio of

graphene to PANI. Herein, we summarized recent resear-

ches about graphene-based gas sensors for CO2, CO and

CH4 detection, as shown in Table 5.

3.5 Sulfur Dioxide and Hydrogen Sulfide Detection

As main atmospheric pollutants, sulfur dioxide (SO2) and

hydrogen sulfide (H2S) are very harmful to mankind and

animals. In recent years, some researchers reported some

novel gas sensors for the detection of SO2 and H2S based on

graphene composites. Shen and his team demonstrated that

GO nanosheets derived from chemically tailoring acted as a

promising material for SO2 gas sensing [166]. The edge-

tailored GO nanosheet-based chemiresistive sensor had a

wide range of sensitivity as well as a quick response and

short recovery time at room temperature. First principle

calculations based on DFT were often used to predict the

physical properties of specific materials. Through DFT

calculation, Liu et al. drew a conclusion that Al-doped

defective graphene owned a high reactivity toward SO2,

indicating its potential application in SO2 detection [167].

Similarly, Shao et al. found that Cr-doped zigzag graphene

nanoribbons were also considered as the potential candi-

dates for SO2 molecular sensors [168]. Tensile strain effects

on enhanced adsorption of H2S molecules on Ag-decorated

defective graphene composite were investigated using first

principles calculations based on DFT by Xian’s team [169].

Their calculations illustrated that a relatively modest tensile
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strain around 8 % in defective graphene can greatly

increase the binding energy of Ag adatom by 44 %, indi-

cating enhanced stabilization of Ag adatom on defective

graphene, while the tensile strain had little effects on the

sensitivity of Ag-decorated defective graphene composite

to H2S molecule. Zhou et al. fabricated a RGO/Cu2O

nanocomposite-based sensor with a very low detection limit

of 5 ppb at room temperature, which might be on account of

high surface activity adsorption of H2S gas molecules due to

the absence of any surfactant capping [170]. So far, it is the

lowest LOD in the similar types of sensors. Jiang and co-

workers had also carried out a fantastic work to realize

ultrafast response to H2S within 500 ls, as well as a fast

recovery time of less than 30 s [171]. They used magnetic

fields with different orientations to control fabrication

progress of the Fe2O3/graphene nanosheets. The experi-

mental results illustrated that structural orientation of

nanosheets played an essential role in maximizing effi-

ciency of the device. In a word, their remarkable jobs and

significant results have greatly promoted the development

of graphene-based gas sensors. Table 6 summarized recent

researches about SO2 and H2S detection based on graphene.

Table 4 A summary of recent researches about graphene-based gas sensors for H2 detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

Pt/RGO/SiC FET H2 300 Voltage shift of &100 mV

for 1 % H2 (100 �C)
– [145]

GR/Pt Chemiresistor H2 540 16 %/4 vol% – [140]

Multilayered GR/Pd nanoribbon Chemiresistor H2 21 55 %/40 ppm 23 [146]

GR/Pt Chemiresistor H2 700 1 % concentration (175 �C) 700 [141]

GR/Pt Chemiresistor H2 120 80 %/1 % concentration 1200 [142]

GR/(Pt ? Pd) Chemiresistor H2 \2 2 % concentration (40 �C) 18 [143]

GR/Pd Chemiresistor H2 – 1 % concentration – [147]

GR/Pd Chemiresistor H2 900 20 ppm 1800 [148]

GR First-principle calculation H2 – – – [149]

RGO/TiO2/(Pd ? Pt) Chemiresistor H2 18 92 %/500 ppm (180 �C) 29 [150]

RGO/SnO2 ? Pt Chemiresistor H2 5 1 % concentration 4 [151]

RGO/Pd Chemiresistor H2 – 0.20 % – [152]

GR with mono-atom-vacancy First-principle calculation H2 – 10-35 mol L-1 – [144]

RGO/Pd Chemiresistor H2 1200 0.4 %/0.2 ppm 900 [153]

GO Chemiresistor H2 270 6 %/800 ppm 306 [154]

PMMA/Pd NPs ? SL GR Chemiresistor H2 108 66 %/2 % 330 [155]

GR/SnO2 NPs FET H2 1.2 3/100 ppm 1.6 [156]

GO/PEDOT:PSS Chemiresistor H2 30 4.2 %/100 ppm 25 [157]

RGO reduced graphene oxide, GR Graphene, PMMA Polymethylmethacrylate, NPs Nanoparticles, SL Single layer

Table 5 A summary of recent researches about graphene-based gas sensors for CO2, CO, and CH4 detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

GR/PANI Chemiresistor CH4 85 10 ppm 45 [163]

GR/Li First-principle calculation CO – – – [162]

GR prepared by mechanical cleavage Chemiresistor CO2 8 9 %/10 ppm – [164]

GR/Y2O3 QDs Chemiresistor CO2 – 1.08 %/35 ppm – [159]

Few-layered GR Chemiresistor CO2 11 3 ppm 14 [158]

GR reduced by hydrogen plasma Chemiresistor CO2 240 2 %/300 ppm 240 [165]

GR/Sb2O3 QDs Chemiresistor CO2 16 50 ppm 22 [160]

GR/Al2O3 QDs Chemiresistor CO2 14 100 ppm (125 �C) 22 [161]

GR Graphene, QDs quantum dots
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3.6 Volatile Organic Compounds, Explosives,

and Chemical Warfare Agents Detection

Volatile organic compounds (VOCs) are organic chemicals

that have a high vapor pressure at room temperature. VOCs

are numerous, varied, and ubiquitous. They refer to gases

which containing organic compounds, including aromatic

hydrocarbon, nitro hydrocarbon, halogenated hydrocarbon,

long chain alkane, alcohol, ether, acetone, grease, hydra-

zine, and so on. Most of them are toxic, flammable, and

explosive gases. At present, as the terrible activities are of

high frequency, the detection of explosives and chemical

warfare agents (CWAs) attracts an increasing attention in

many fields and is becoming a hot topic for research.

In general, the study of graphene-based vapor sensors

for detection of VOCs, explosives, and CWAs is relatively

immature. As such, many novel approaches have been

developed to explore the terra incognita.

Dua and co-works developed a rapid and one-step

method for the conversion of exfoliated GO into RGO

using aqueous vitamin C as a mild and green reducing

agent [180]. The RGO-based gas sensor fabricated by

inkjet printing techniques was able to detect VOCs at ppb

level at room temperature. In 2011, Jiang et al. developed a

facile and novel route to synthesize Al2O3/graphene

nanocomposites with the aid of supercritical CO2 derived

from graphene oxide [181]. The ethanol-sensing features of

as-synthesized Al2O3/graphene nanocomposites were

firstly reported on the basis of catalytic chemiluminescence

mechanisms. They boldly broke through the limitation of

the traditional preparation and measurement methods,

leading a new way to tackle relevant problems. In the same

year, Zhang et al. reported an intrinsic polymer optical fiber

(POF) sensor based on graphene, which was described for

the purpose of acetone vapor sensing for the first time

[182]. Gautam’s team had systematically studied the key

parameters (response, recovery, repeatability and reliabil-

ity) of the sensor based on gold and platinum nanoparticles

functionalized graphene for the detection of different

organic vapors (acetic acid, ethanol, and acetone) at ppm

levels [183].

Tang et al. established a prominent analytical platform

for electrochemical sensing determination of nitroaromatic

explosive compounds, such as 2,4,6-trinitrotoluene (TNT),

which was superior to other TNT-sensing platforms, using

uniform and rich-wrinkled graphene films prepared by

electrophoretic deposition techniques [184]. The detection

of TNT with the concentration of 0.2 ppb in a phosphate

buffered saline by differential pulse voltammetry was

realized. Fan’s team utilized water-soluble and surface-

unmodified graphene quantum dots, which were prepared

by a chemical approach from GO, as a novel, effective, and

simple fluorescent-sensing platform for ultrasensitive

detection of TNT in solution by fluorescence resonance

energy transfer quenching for the first time [185]. The

detection limit was about 0.495 ppm. Liu et al. used sur-

face enhanced Raman scattering to realize ultratrace

detection of TNT (5 9 10-16 M), which was based on

Table 6 A summary of recent researches about graphene-based gas sensors for SO2 and H2S detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

GR FET SO2 120 100 %/50 ppm 120 [172]

Edge-tailored GO FET SO2 – 5 ppm – [166]

Al-dropped defective GR First-principle calculation SO2 – – – [167]

Cr-doped zigzag GR nanoribbons First-principle calculation SO2 – – – [168]

Ag-decorated defective GR First-principle calculation H2S – – – [169]

Ag-supported Si-doped GR First-principle calculation H2S – – – [173]

Fe-dropped defective GR First-principle calculation H2S – – – [174]

RGO ? Cu2O nanocrystal Chemiresistor H2S 120 11 %/5 ppb 120 [170]

PSS-doped RGO/PANI Chemiresistor H2S \90 1 ppm 150 [175]

RGO/SnO2 NFs Chemiresistor H2S \198 1 ppm (200 �C) \114 [176]

RGO/Fe2O3 Chemiresistor H2S 500 ls 15 ppm (190 �C) \30 [171]

GR/porous WO3 NFs Chemiresistor H2S – 3.9 %/100 ppb (300 �C) 600 [177]

Zigzag Gr/Cu First-principle calculation H2S [178]

GR/Ti or GR/Sn First-principle calculation SO2/H2S [179]

RGO reduced graphene oxide, GO Graphene oxide, GR Graphene, PSS poly 4-styrenesulfonic acid, NFs Nanofibers
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p-aminothiophenol functionalized graphene nanosheets

decorated with silver nanoparticles [186]. GO modified Au

electrode was used as a carbon electrode catalyst for the

electrochemical oxidation of chemical warfare agent sim-

ulant thiodiglycol (TDG) at room temperature by Singh

and his team [187]. Their experiments indicated that GO

would be a better alternative material for transition metals

in the degradation of chemical warfare agents as well as

environmental pollutants. Ganji et al. drew a conclusion

that aluminum nitride graphene had stronger interaction

with the DMMP molecule and could provide more sensi-

tive signal for a single DMMP molecule, compared with

pristine graphene, boron nitride graphene, using ab initio

van der Waals density functional calculations [188].

Though some detection process of their experiments could

only take place in solution, their excellent work is a useful

reference for graphene-based gas detection and has con-

tributed a lot to practical applications in national defense

and daily life. Herein, we summarized recent researches

about graphene-based vapor sensors for VOCs, explosives,

and CWAs detection, as shown in Table 7.

4 Response Mechanisms

We have given a brief introduction to the classification of

gas/vapor sensors. Considering that the gas-sensing

mechanisms of graphene is uncertain and related research

is rare, herein, we just give a recognized point of view as a

general introduction of the reference of other related lit-

eratures [200–203].

Graphene is intrinsically inert and nonselective. Its great

efficiency to conduct electricity and distinguishing features

of ballistic transport of charges decide that this two-di-

mensional material is an ideal candidate to serve as a

platform or a supporter, in which we can realize many

specific functions by doping or compositing with other

materials. Once combined with other materials physically

or chemically, graphene can show the characteristics of the

semiconductor in normal circumstances, of which con-

ductivity is determined by carriers’ concentration. For

chemiresistor-type sensors, sensing materials show

response to externalities by the change of conductivity, that

is the variation of concentration of hole or electron carriers.

Table 7 A summary of recent researches about graphene-based vapor sensors for VOCs, explosives, and CWAs detection at room temperature

Sensing material Structure of sensor Target gas Tres(s) LOD Trec(s) Ref.

RGO/PPD Chemiresistor DMMP 1080 5 %/5 ppm 360 [63]

Few-layered GR Chemiresistor LPG 5 4 ppm 18 [158]

RGO/SnO2 NFs Chemiresistor Acetone \198 100 ppb (350 �C) \114 [176]

GO/Au electrode TDG [187]

Al nitride GR First-principle calculation DMMP [188]

Uniform and rich-wrinkled GR TNT 0.2 ppb [184]

GQDs FRET quenching TNT 0.495 ppm [185]

GR/Ag ? PATP SERS TNT 5 9 10-16 M [186]

Printed RGO Chemiresistor VOCs ppb level [180]

RGO/Al2O3 CL Ethanol 10 1.5 mg/mL-1 (200 �C) \100 [181]

GR on POF OFS Acetone 44 ppm [182]

RGO FET array Ethanol 300 17 % [189]

GR/(Au ? Pt) Chemiresistor VOCs 30 %/100 ppm [183]

GO/PPr Chemiresistor Toluene 24 ppm [190]

Ni NPs/Nafion/GR CV & EIS Ethanol 0.12 mM [191]

RGO/ZnFe2O4 Chemiresistor Acetone 4 10 ppm (275 �C) 18 [192]

Si dropped BC3 GR First-principle calculation Acetone [193]

Self-Assembled GR/PDA Colorimetric sensor VOCs 0.01 % [194]

Co3O4 NFs ? Ir NPs ? GO Chemiresistor Acetone 1.18 %/120 ppb (300 �C) [195]

RGO coated optical fiber OFS Methanol & Ethanol 100 ppm [196]

RGO/Ag OFS Ethanol 11 1 % 6 [197]

RGO/ZnO ? Ag NPs Chemiresistor Acetylene 21.2 21.2/100 ppm (150 �C) 80 [198]

RGO/ZnO ? Ag NPs Chemiresistor Acetylene 57 12.3/100 ppm (200 �C) 90 [199]

RGO reduced graphene oxide, GO graphene oxide, GR graphene, TDG thiodiglycol, GQDs graphene quantum dots, FRET fluorescence

resonance energy transfer quenching, PATP p-aminothiophenol, SERS surface enhanced Raman scattering, CL catalytic chemiluminescence,

POF polymer optical fiber, PPr polypyrene, NPs nanoparticles, CV cyclic voltammetry, CIS electrochemical impedance spectroscopy, PDA

polydiacetylene, NFs Nanofibers, OFS optical fiber sensor
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Bulk porous materials usually have a large specific surface

area, hence gas molecules can be easily adsorbed, follow-

ing by the interaction between gas molecules and specific

groups in the graphene surface, and then the gas molecules

capture or donate electrons from the sensing material,

which changes concentration of the semiconductor’s

carriers.

Different doping and reaction conditions may lead to

different types of graphene-based semiconductors (p-type

or n-type). As we all know, p-type semiconductors refer to

those who have a larger hole concentration than electron

concentration. In p-type semiconductors, holes are the

majority carriers and electrons are the minority carriers. As

opposed to p-type semiconductors, n-type semiconductors

have a larger electron concentration than hole concentra-

tion. In n-type semiconductors, electrons are the majority

carriers and holes are the minority carriers. For example,

one doped graphene shows characteristic of n-type semi-

conductors: when it is exposed to a reducing atmosphere,

such as NH3, it would get electrons from the gas molecules,

leading to an increase of the electron concentration, i.e., a

decrease of graphene’s resistance occurs. Likewise, when it

is exposed to an oxidation atmosphere, such as NO2, it will

deliver electrons to the gas molecules, leading an increase

of hole concentration, leading to an increase of graphene’s

resistance. Figure 13 demonstrates a general progress of

gas sensing, which has been described above. This is the

old and universal theory called ‘‘Oxygen anion barrier

model,’’ which used to illustrate the mechanism of gas-

sensing progress based on metal-oxide semiconductors

[204–207].

Zhou et al. have found that the total flow rate had a

significant effect on the initial electric resistance of the

sensors and their sensing properties to target gases. In

addition, an appropriate quantity of deposited RGO solu-

tion was critical for sensors’ sensing response and sensi-

tivity. Finally, they raise a novel sensing mechanism for

chemiresistors based on RGO at room temperature [208].

Zhu and his team had done an important job to prove that

the oxygen functional groups presiding on the surface of

reduced graphene oxide could play a vital role in the

response for one specific gas. Two types of unprecedented

effects could be attributed to the presence of oxygen

functional groups, i.e., the selective binding interactions

(strong or weak) to different gas molecules, and the

impendence to charge interaction between gas molecules

and sp2-hybridized carbon areas in RGO [209]. Some-

times, p-type graphene and n-type graphene can transform

from one to another by changing the annealing tempera-

ture. Wang et al. explored this interesting phenomenon that

the slightly reduced p-type graphene showed ultrasensitive

gas sensing at room temperature, with a response of 58 %

to 1 ppm ethanol, while the graphene could become n-type

and insensitive to gas sensing, with a low response of

0.5 % to 50 ppm ethanol, by simply increasing the

annealing temperature to about 300 �C [210].

5 Conclusions

5.1 Existing Problems

The interests in the study of nanomaterials have escalated

in the recent decades, while the application is still in its

infancy. This so-called ‘‘game changing’’ technology has

met, one after another, many impediments on its way to

large-scale industrialization [40]. Can graphene and gra-

phene-based devices get through the close siege?

Theory can indicate a direction for practice. However,

till now, the mechanism of gas sensing based on nanoma-

terials is not very clear, and quantitative calculation is

almost impossible. There is little doubt that graphene thin

film has great sensitivity; however, this may lead to another

result that it is sensitive to many kinds of gases. Cross-

sensitivity means sensor shows similar responses to the

different types of gases, and this character may result in

false detecting. For example, cross-sensitivity can be a

problem in the detection of ethylene oxide, as ethylene

oxide requires a very active working electrode catalyst and

high operating potential for its oxidation. Therefore, gases

which are more easily oxidized like alcohols and carbon

monoxide will also give a response. Once a technique

reaches the stage of mass production, it will be a completely

different compared with the laboratory. One of dire chal-

lenges we confronted with is the nonrepeatability of device

fabrication. From preparation of sensing materials to con-

struction of gas/vapor sensors, from building of experi-

mental platforms to characterization parameters, none of

the uniform criteria is listed, and neither specification of

laboratory equipment nor the unified presentation of tech-

nological process and synthesis method was reported.

5.2 Solutions and Prospects

In order to overcome the problems mentioned above, we

put forward several worthwhile schemes and directions.

Sensing materials are the core of gas detection in a real-

world application. The development of synthesizing novel

materials with high sensitivity and selectivity is one of the

mainstream trends of gas sensors. Multicomponent classi-

fication and hybrid nanostructures which have multifunc-

tions and outstanding performances in practical tasks are at

the forefront of current research. By the improved prepa-

ration techniques such as modification of graphene, 3D

structure tailoring, and thermal treatments, we may make

sensors to suit the ideal state.
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Figure 14 shows a stark contrast between the responses

of the graphene/palladium nanoparticle composites to H2,

NO2, and humidity and those of pristine graphene. The

comparison explicitly instructs that modification can

change the sensing properties to a large extent. Yavari and

his team manufactured a macro-graphene foam-like 3D

network which had both the advantages of the nanostruc-

tured and conventional solid-state and conducting-polymer

sensors. A surprising sensing property and ppb level

detection of NH3 and NO2 in air at room temperature had

been demonstrated for this robust, flexible, and novel

material [211]. The microporous structure of this graphene

foam is demonstrated in Fig. 15.

Based on the technology of microelectromechanical

systems, multiple sensor arrays, in which every unit has

different heterostructure and shows different sensing

characteristics, can be assembled and expected to have

higher sensitivity and improved selectivity. Yi et al. pre-

sented a novel materials—sensor integration fabrication

strategy, which involved the introduction of micro-injec-

tion to fabricate sensing devices. The In2O3 nanowire-like

network directly on the surface of coplanar sensors array

by structure replication from sacrificial CNTs was obtained

on the basis of screen-printing technology and calcination.

The device showed that excellent gas-sensing properties

benefited from fabrication of coplanar gas sensors arrays
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Fig. 15 a Photograph and b scanning electron micrograph of the microporous graphene foam structure showing a continuous network of 3D

interconnected graphene sheets that comprise the walls of the foam-like structure. The robust and flexible graphene foam strips can be easily

handled and manipulated. Adapted from reference [211]
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and materials, which had special porous nanowire-like

network micromorphology. Figure 16 shows a schematic

diagram depicting the procedure to prepare the porous

In2O3 nanowire-like network and the related devices.

The employment of the new signal-processing technol-

ogy and recognition algorithm based on single-chip system

is an important direction for the development of gas-

sensing devices. By the application of dynamic detection,

signal processing, and recognition algorithm, gas/vapor

sensors with low power consumption, portable volume, and

intelligent operation could be achieved [213–215]. Huang

and his team had successfully achieved qualitative and

quantitative analysis of organophosphorus pesticide resi-

dues using temperature-modulated SnO2-based gas sensor,

and the quantitative analyses of the pure pesticide vapor

and their mixture were performed by fast Fourier trans-

formation [213]. The results showed that the amplitudes of

the higher harmonics exhibited characteristic changes

depending on the vapor concentration ratio and the kinetics

on the sensor surface, as shown in Fig. 17. They made a

significant exploratory development in the rapid detection

of pesticide residue vapors.

The future of graphene-based gas/vapor sensors looks

bright. Continued progress in this field will overcome the

current challenges, get through the close siege, and lead to

a class of gas sensors with superior sensitivity, excellent

selectivity, reduced size, and extended lifetimes for a wide

range of environments and applications.
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