Supporting Information for

Boosting Chemodynamic Therapy by the Synergistic Effect of Co-Catalyze

and Photothermal Effect Triggered by the Second Near-Infrared Light

Songtao Zhang^{1, 2}, Longhai Jin⁴, Jianhua Liu⁴, Yang Liu¹, Tianqi Zhang⁴, Ying Zhao¹, Na Yin¹, Rui Niu¹, Xiaoqing Li¹, Dongzhi Xue¹, Shuyan Song¹, Yinghui Wang^{1, *}, Hongjie Zhang^{1, 2, 3, *}

¹State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, 130022, People's Republic of China

²University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China

³Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China

⁴Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China

*Corresponding authors. E-mail: <u>yhwang@ciac.ac.cn</u> (Yinghui Wang), <u>hongjie@ciac.ac.cn</u> (Hongjie Zhang)

S1 Measurement of Photothermal Conversion Efficiency of FeO/MoS2-BSA

Nanocomposites in 1064 nm Laser Irradiation

The photothermal conversion efficiency (η) of FeO/MoS₂-BSA nanocomposites is calculated by equations shown as follows [S1]:

$$\eta = [hS(T_{max} - T_{surr}) - Q_0] / [I(1 - 10^{-A1064})] \times 100\%$$
(S1)

$$hS = (\Sigma miC_{p,i})/\tau_s$$
(S2)

$$t = \tau_s \times (-ln\theta)$$
(S3)

$$\theta = (T - T_{surr})/(T_{max} - T_{surr})$$
(S4)

$$Q_0 = hS(T_{max, water} - T_{surr})$$
(S5)

Where h is the heat transfer coefficient, S is the sample container surface area, T_{max} is the steady state maximum temperature, T_{surr} is the ambient room temperature, Q_0 is energy input of quartzsample cell and solvent without FeO/MoS₂-BSA nanocomposites, I is the laser power (0.75 W cm⁻²), and A1064 is the absorbance of FeO/MoS₂-BSA nanocomposites at 1064 nm. The value of hS is calculated by Eq. S2, Where τ_s is the characteristic thermal time constant, the mass concentration of the FeO/MoS₂-BSA nanocomposites solution was 200 µg mL⁻¹, and its heat capacity (Cp) was approximated to be 4.2 J g⁻¹ k⁻¹ (the heat capacity of water).The heat energy (Q₀) of the quartzsample cell and solvent without FeO/MoS₂-BSA

nanocomposites solution was measured independently calculated by Eq. S5, Therefore according to Eqs. S3-S4, time constant (τ_s) is calculated to be =175.04 s obtained from linear-fitted plot of t vs –Ln θ (Fig. S11) after cooling. And based on the Eq. S2, the hs is calculated to be 4.8 mW °C⁻¹. Then the η can be calculated to be 56% by equations mentioned above.

S2 Supplementary Figures and Table

Fig. S1 XRD patterns of (a) MoS_2 nanosheets and (b) FeO nanoparticles and (c) FeO/ MoS_2 -BSA nanocomposites

Fig. S2 Particle size analysis chart of FeO nanoparticles

Fig. S3 Zeta potential of MoS₂, FeO, FeO/MoS₂, BSA, and FeO/MoS₂-BSA

Fig. S4 SAED image of the FeO/MoS2-BSA nanocomposites

Fig. S5 (a) XPS survey spectrum of FeO/MoS₂-BSA nanocomposites. (b-d) Fe, Mo, S element XPS spectra, together with their corresponding fitting curves (the fitting curves were marked with the dash-dot lines)

Fig. S6 Fourier transform infrared spectroscopy (FT-IR) of as-prepared FeO/MoS₂ nanocomposites and FeO/MoS₂-BSA nanocomposites

In Fig. S6, compared to the Fourier transform infrared spectroscopy (FT-IR) of FeO/MoS₂ nanocomposites, the characteristic absorption peaks only appeared in the infrared absorption spectrum of FeO/MoS₂-BSA nanocomposites at 1510, 1630, 3270, 2930, and 3430 cm⁻¹ represent the absorption peak of C-N, C=O, N-H of amide bond, CH₂ and NH₂ respectively in BSA molecule, it indicated that the BSA molecule was modified on FeO/MoS₂ nanocomposites successfully.

Fig. S7 (**A**) The pictures and hydrodynamic diameter of FeO/MoS₂-BSA nanocomposites dispersed in PBS and normal saline solution for 0 and 7 days. (**B**) TEM of FeO/MoS₂-BSA nanocomposites dispersed in PBS and normal saline solution for 0 and 7 days (scale bar: 2 μ m)

Solution	Number	HD (nm)	<u>+</u> SD	PDI
PBS	1	234.6	77.6	0.087
	2	222.8	59.4	0.062
	3	224.0	62.0	0.084
Normal saline	1	247.1	84.8	0.113
	2	245.3	75.6	0.098
	3	245.6	88.5	0.147

Fig. S8 UV-vis absorption spectra of FeO/MoS₂-BSA nanocomposites, MoS₂ nanosheets and FeO nanoparticle

Fig. S9 Photothermal heating curves of FeO/MoS₂-BSA nanocomposites under the 1064 nm laser irradiation with different laser power

Fig. S10 (a, b) The temperature curves of FeO/MoS₂-BSA nanocomposites solution (200 μ g mL⁻¹) under the 1064 nm laser irradiation (0.75 w cm⁻²) with time

Fig. S11 Plot of cooling time after 10 min versus negative natural logarithm of driving force temperature (the linear fitted curves were marked with the red line with $\tau_s = 175.04 \text{ s}$)

Fig. S12 UV-vis absorption spectra of FeO/MoS₂-BSA under 1064 nm laser irradiation (0.75 w cm⁻²) for 0 and 1 h

Fig. S13 Fluorescence spectrums of p-phthalic acid (PTA) mixed with H₂O₂ and FeO/MoS₂-BSA nanocomposites with time changed from 0 min to 12 min under the 1064 nm laser irradiation

Fig. S14 Cell viability of Hela cells with different concentration of FeO/MoS₂-BSA (Data are means \pm SD; N = 3)

Fig. S15 Irradiation-time-dependent temperature changes of tumor-bearing mice under 1064 nm irradiation with or without injection of FeO/MoS₂-BSA

Fig. S16 Blood analysis. (**a-h**) Hematology analysis detected by the complete blood after intravenous injection of FeO/MoS₂-BSA at 30 d. (**i-p**) Blood biochemistry detection by blood serum after intravenous injection of FeO/MoS₂-BSA at 30 d

Fig. S17 Quantification of MR signals in tumors after intravenous injection of FeO/MoS₂-BSA for 24 h *in vivo* (**P < 0.01)

Fig. S18 Biodistributions of Mo atom in tumor and main organs at different time (1, 7, and 14 days)

Supplementary Reference

[S1]J. Yu, W. Yin, X. Zheng, G. Tian, X. Zhang et al., Smart MoS₂/Fe₃O₄ nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5(9), 931-945 (2015). https://doi.org/10.7150/thno.11802