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Abstract We developed novel hybrid ligands to passivate PbS colloidal quantum dots (CQDs), and two kinds of solar

cells based on as-synthesized CQDs were fabricated to verify the passivation effects of the ligands. It was found that the

ligands strongly affected the optical and electrical properties of CQDs, and the performances of solar cells were enhanced

strongly. The optimized hybrid ligands, oleic amine/octyl-phosphine acid/CdCl2 improved power conversion efficiency

(PCE) to much higher of 3.72 % for Schottky diode cell and 5.04 % for p–n junction cell. These results may be beneficial

to design passivation strategy for low-cost and high-performance CQDs solar cells.
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1 Introduction

Colloidal quantum dots (CQDs) solar cells as potential

next-generation solar energy-harvesting devices have

received considerable attention in the past several years [1–

4] owing to their low manufacturing cost (coated on sub-

strates using drop-casting, spin-coating or ink-jet printing).

Among all kinds of CQDs (such as CdTe [5–9], CdSe [10],

PbS [11–14], PbSe [15–17], CuInS2 [18], etc.) solar cells,

PbS CQDs solar cells have lots of distinctive merits. For

example, PbS CQDs solar cells can be prepared in ambient

condition under low temperatures below 200 �C, and the

electronic bandgap of PbS CQDs can be easily tuned by

changing size due to its large exciton Bohr radius

(*18 nm for PbS [19]), which enables the fabrication of

multi-junction solar cells from single material.

PbS CQDs solar cells with negligible power conversion

efficiency (PCE) were first reported in 2005 [20]. There are

two key factors which affect the performance of PbS CQDs

solar cells. The important one is protection technique of as-

prepared PbS CQDs. As the size decreases, the surface

state of PbS will go up rapidly due to oxidation if there is

no suitable ligand to protect. Devices based on no-protec-

tion PbS CQDs exclusively show large internal series

resistance and low carrier mobility, resulting in low device

performance. Meanwhile, since the long-chain carboxyl

acid is usually attached to the surface of PbS, it is difficult

to gain satisfactory device performance unless the carboxyl

ligands are well removed during device fabrication pro-

cesses. With development of nanotechnology, many efforts

had been made to improve the PCE of PbS CQDs solar

cells, including packing and passivation of CQDs [21, 22],

adoption of new exchanging ligands [23], and design of

new device structure [24]. In order to improve surface pas-

sivation and therefore eliminate valence-band-associated

trap states in CQDs thin film, Sargent et al. [25–27] first

introduced a mixture of CdCl2 and tetradecyl phosphonic

acid (TDPA) during synthesis process of PbS CQDs. They

obtained solar cell device with *8.0 % efficiency based on

these hybrid passivated CQDs. On the other hand, new

exchanging ligands such as mercaptopropionic acid (MPA)
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or di-thiol were introduced during device fabrication process

to remove the long-chain carboxyl acid ligands on the sur-

face of PbS CQDs. The thin film prepared by this method

was compact and showed good carrier mobility.

In this paper, we developed a novel simple process of

passivating PbS CQDs to improve the film quality and

therefore to enhance the solar cells’ performance. Different

hybrid ligands were introduced during PbS nucleation and

QDs growth processes. Two kinds of solar cells based on

PbS CQDs were fabricated to verify the effects of ligands

passivation.

2 Experimental

2.1 Materials

Oleic acid (OA, 90 %), lead oxide (PbO, 99.9 %), 1-oc-

tadecene (ODE), CdCl2, and oleic amine (OLA) were pur-

chased from Alfa Aesar. Mercaptopropionic acid

Hexamethyldisilathiane (TMS), octyl-phosphine acid (OPA),

tetradecyl phosphonic acid (TDPA), and octodecyl-phosphine

acid (ODPA) were purchased from Aladdin. All chemicals

were used directly without any further purification.

2.2 Synthesis of PbS CQDs

PbS CQDs with different passivating ligands were defined as

(A) without ligand, (B) CdCl2 ? OLA ? OPA, (C) CdCl2 ?

OLA ? TDPA, and (D) CdCl2 ? OLA ? ODPA.

PbS CQDs with different ligands were synthesized by a

solvent thermal method reported previously [23]. Typi-

cally, 0.45 g PbO, 1.5 mL OA, and 16.5 mL ODE were

loaded into a three neck flask at 120 �C and degassed for

6 h to remove any moisture and low boiling point organic

solvents. Then, 0.20 mL TMS mixed with 5 mL ODE was

quickly injected into the reaction system. The hotplate was

removed away immediately, and the reaction was cooled

down to room temperature. When the temperature was

dropped down to 90 �C, different hybrid ligands A, B, C, or

D were injected into the reaction system, and the reaction

was cool down to room temperature. Then, 50 mL acetone

was injected into the final reaction solution to centrifuge at

10,000 rpm for 5 min. Black powder product was collected

and re-dissolved into a mixture of 2 mL toluene and 10 mL

of ethanol and acetone (volume ratio 1:1) to centrifuge

again to remove impurity. This procedure was repeated

more than three times to obtain pure PbS CQDs.

The above-mentioned hybrid ligands B, C, and D were

prepared by mixing 0.72 mmol CdCl2, 2 mL OLA, and

respective 0.048 mmol OPA, 0.048 mmol TDPA, and

0.048 mmol ODPA. The mixtures were degassed and

refluxed at 90 �C for 5 h until transparent solutions were

formed.

2.3 Device Fabrication

Figure 1 illustrates the fabrication processes of PbS CQDs

solar cells with Schottky diode structure of ITO/PED-

OT:PSS/PbS/Al. In detail, PEDOT:PSS layer was firstly

deposited on ITO substrate and baked at 140 �C for 15 h

after the substrate was treated with UV-ozone. The PbS

CQDs film was deposited using a layer-by-layer spin-

coating process under ambient condition as the following

steps: (i) PbS CQDs solution was deposited on above

PEDOT:PSS layer by spin-coating at 2500 rpm for 15 s;

(ii) MPA methanol solution was then spin casted to make

ligands exchange; and (iii) Several drops of methanol

solvent were deposited and spin casted at 2500 rpm to

remove impurities. The procedure from i to iii was repeated

for several times until the film thickness reached about

200 nm. Then, the film was baked at 50 �C for 10 h.

Finally, Al electrode in thickness of *80 nm was depos-

ited on the active layer via thermal evaporation through a

shadow mask, in which the active area was 0.16 cm2.

The fabrication process of solar cells with p–n junction

of FTO/ZnO/TiO2/PbS/Au was almost similar except that

FTO was used as the substrate, and ZnO/TiO2 films were

inserted between FTO and PbS by thermal decomposition

of spin-casting Zn/Ti precursor. The detailed process was

described in the literatures [21, 28]. The Au electrode was

deposited on the PbS active layer via thermal evaporation.

Space charge limited current (SCLC) measurement was

carried out to investigate hole mobility of passivated PbS

CQDs thin film. The measurement process was similar to

that of PbS CQDs solar cells with Schottky diode structure

except that 10 nm MoOx and 80 nm Al were deposited on

the substrate via evaporation. In this case, the thickness of

PbS CQDs thin film was about 200 nm.

2.4 Characterizations

The morphology, structure, and surface state of PbS CQDs

were characterized by transmission electron microscope

(TEM, JEOL 2010), powder X-ray diffraction (XRD,

Bruker D8), and X-ray photoelectron spectroscopy (XPS,

Thermo ESCALAB 250), respectively. The optical prop-

erties of the samples were recorded by ultraviolet (UV)

spectrophotometer (Shimadzu UV-3600). The current–

voltage (J–V) curves of solar cells were measured by a

source-measurement unit under AM 1.5G spectrum

(Keithley 2400) with a solar simulator (Oriel model

91192). The SCLC measurement was carried out on a

semiconductor parameter analyzer (Agilent 4155C).
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3 Results and Discussion

The UV absorption spectra, TEM images, and XRD pat-

terns of PbS CQDs with different passivating ligands are

shown in Fig. 2. The UV absorption peak was at 1102 nm

for CQDs without ligand protection (A) as shown in

Fig. 2a. The peaks blue shifted for those with hybrid

ligands and the blue-shift amplitudes increase with

increasing carboxyl chain of passivating ligands (998 nm

for ligand B, 1040 nm for ligand C, and 1060 nm for

ligand D). This may be due to the stronger absorption

ability of the alkyl phosphate acid ligands with shorter

carboxyl chains which could slow down the growth rate

of PbS CQDs. From TEM images shown in Fig. 2b–e,

one can see that the CQDs size particles are aggregate

and the size without protection is larger of 4.6 nm. The

average size for ligand B, C, and D is, 3.5, 3.5 and

3.9 nm, respectively. It was reported that the size

decrease of PbS CQDs would result in the blue-shift of

absorption peak [4], which is consistent with our results.

Figure 2f shows XRD patterns of PbS CQDs with dif-

ferent ligands. The peaks are corresponding to (111),

(200), (220), (311), (400), (331), (420), and (420) facets

which are in well agreement with the standard cubic

structure of PbS (JCPDS 02-0699).

The J–V curves of CQDs solar cells are shown in

Fig. 3a, and the device performances are listed in Table 1.

It can be noted that cells with hybrid ligands (B, C, and

D) show much higher PCE values than those without

ligand (A). The cell with ligand B has higher values of

Voc = 0.54 V, Jsc = 13.32 mA cm-2, and FF = 51.7 %,

resulting in PCE = 3.72 %. This value is higher than that

of previous reported for PbS CQDs solar cells with the

Schottky diode configuration [21, 29, 30]. However, the

cell without ligand (A) has less values of Voc = 0.36 V,

Jsc = 5.541 mA cm-2, and FF = 29.07 %, resulting in

PCE = 0.58 %. The former is six times higher than the

latter. In addition, as the carbon chain length of alky

phosphine increases, the values of Jsc, Voc, and FF decrease

accordingly, leading to the decrease of PCE (The PCE is

2.42 % for ligand C and 1.32 % for ligand D). Figure 3b

shows the J–V curves of PbS CQDs solar cells under dark.

It is obvious that the dark current of the cell without ligand

(A) is much higher than those with hybrid ligands (B, C and

D). This indicates that cells based on the hybrid ligands

efficiently suppress the leakage current at the PbS/Al

interface. In the case of no hybrid ligand passivation, PbS

CQDs are more likely attacked by oxygen in the reaction

system or octane solvent, resulting in the generation of

mid-gap trap states. To clarify this, XPS was carried out to
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Fig. 1 The fabrication schematic of PbS CQDs solar cells passivated by hybrid ligands
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characterize the surface state of different PbS thin films as

shown in Fig. 3c. The atom percentage of different ele-

ments is summarized in Table 2 (Since ligand C or D has

similar results to ligand B, their results did not present

here). The presence of Cl 2p metal chloride peak is related

to the CdCl2 ligand which was injected during the forma-

tion of PbS CQDs in ligand B-passivated PbS. One can

note that the peaks of metal oxide and thiol for PbS CQDs
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without ligand (A) appear, whereas no such peaks observed

in ligand B sample. This indicates that hybrid ligands

prevented the oxidation of PbS CQDs during device fab-

rication process, and MPA was removed thoroughly which

was also observed by Sargent et al. [25]. The external

quantum efficiency (EQE, see Fig. 3d) of PbS CQDs cells

shows better response in the range of 400–800 nm for those

with hybrid ligands.

Figure 4 shows the J–V curves of PbS CQDs p–n

junction cells with different hybrid ligands (As devices

based on PbS CQDs with ligand D have similar results as

that with ligand C, its J–V curve is not presented here).

Their performances are summarized in Table 3. For cell

without ligand passivation (A), the PCE was only 1.71 %

coupled with low Jsc = 11.11 mA cm-2 and Voc = 0.4 V.

On the contrary, the cell with ligand B passivation shows

higher values of Voc = 0.46 V, Jsc = 23.30 mA cm-2, and

FF = 47 %, resulting in higher PCE = 5.04 %, which is

almost three times higher than that of cell without ligand

passivation (A) and 70 % higher than that of cell with

ligand C passivation. It was reported that PbS CQDs solar

cells with p-n junction of PbS–TiO2 showed good stability

over several months [25, 26]. We also tested the stability of

the as-prepared cells under ambient conditions in which the

cell with ligand B was selected as an example. As shown in

Fig. 4b, the device exhibits long-term storage stability in

air, and the efficiency decreases less than 5 % after 50 days

storage.

Figure 5 shows the SCLC results of PbS CQDs films.

The hole mobility was calculated by the formula of J ¼
9
8

elpV
2

L3
; [31], where e was the relative dielectric constant,

and L was the thickness of PbS active layer. A very low

Table 1 Photovoltaic parameters of PbS CQDs Schottky diode cell

with different hybrid ligands

Devices Voc (V) Jsc (mA cm-2) FF (%) PCE (%)

A 0.36 5.541 29.07 0.58

B 0.54 13.320 51.70 3.72

C 0.44 11.830 46.49 2.42

D 0.42 8.932 35.18 1.32

Table 2 Atom percentage of element content of PbS CQDs solar cells with different hybrid ligands from XPS results

Sample Atom (%)

C 1s

C–C

C 1s

C=O

Cl 2p metal

chloride

Pb 4f

(4d)

S 2p3 (S 2p1)

metal sulfide

S 2p3

(S 2p1) thiol

O 1s

carbonates/sulfates

O 1s metal

oxide

S 2p3

(S 2p1) sulfate

A-passivated PbS 33.65 5.95 0 10.65 19.01 6.9 20.83 0.57 2.44

B-passivated PbS 36.7 4.94 2.88 11.39 26.81 3.76 13.53 0 0
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Fig. 4 a J–V curves of p–n junction PbS CQDs cells with different hybrid ligands (A, B and C). b Stability of PbS/TiO2 CQDs solar cells devices

fabricated using PbS CQDs passivated by ligand B

Table 3 Photovoltaic parameters of PbS CQDs p–n junction cell

with different hybrid ligands

Devices Voc (V) Jsc (mA cm-2) FF (%) PCE (%)

A 0.40 11.11 38.5 1.71

B 0.46 23.3 47 5.04

C 0.48 13.81 43.1 2.86
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hole mobility of 6.64 9 10-5 cm2 Vs-1 was observed in

PbS thin film without ligand passivation (A), which indi-

cates that large surface states exist in the film. While the

hole mobility increases for those with hybrid ligands pas-

sivation, and the values are, respectively, 1.07 9 10-3 and

5.46 9 10-4 cm2 Vs-1 for ligand C and D. It reaches the

highest of 2.29 9 10-3 cm2 Vs-1 for ligand B. The

increased hole mobility can improve the cell performance

due to recombination reduction of electron and hole during

carrier transfer, and therefore, higher Jsc can be expected.

This is consistent with the J–V results (see Table 1). It

could be concluded that although CdCl2 played a deter-

minative role in mid-gap state passivation [25], the choice

of alkyl phosphine acid is more important to improve

transport ability associated with the valence band.

4 Conclusion

In summary, novel hybrid ligands were developed to pas-

sivate PbS CQDs, and the performance of as-prepared PbS

CQDs solar cells with not only Schottky diode structure but

also p–n junction structure was improved. The reason is

that the hybrid ligands passivate surface defects well and

prevent oxidation of PbS CQDs during the device fabri-

cation process. In addition, the shorter the chain length of

phosphine in hybrid ligands, the higher hole mobility and

PCE were demonstrated in cells. Especially, the PbS CQDs

cell with ligand B in Schottky diode structure has the

highest PCE value compared with reported cells with other

ligands. Our results provide an effective way to improve

the performance of PbS CQDs solar cells.
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