Supporting Information for

Insights into Enhanced Capacitive Behavior of Carbon Cathode for

Lithium Ion Capacitors: The Coupling of Pore Size and

Graphitization Engineering

Kangyu Zou¹, Peng Cai¹, Baowei Wang¹, Cheng Liu¹, Jiayang Li¹, Tianyun Qiu¹, Guoqiang Zou^{1, *}, Hongshuai Hou¹, Xiaobo Ji^{1, 2}

¹College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China

²College of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, People's Republic of China

*Corresponding author. E-mail: <u>gq-zou@csu.edu.cn</u> (Guoqiang Zou)

Supplementary Figures and Tables

Fig. S1 Simulated and experimental XRD patterns of Zn_xCo_{100-x}-ZIFs

Fig. S2 The coulombic efficiencies of the Zn_xCo_{100-x}-PCs

Fig. S3 The coulombic efficiencies of the Zn_xCo_{100-x} -APCs S2/S9

Fig. S4 XPS survey spectra of the of Zn_xCo_{100-x}-PCs and Zn_xCo_{100-x}-APCs

Fig. S5 CV curves of (a) Zn_{100} -PC, (b) $Zn_{75}Co_{25}$ -PC, (c) $Zn_{50}Co_{50}$ -PC, (d) $Zn_{25}Co_{75}$ -PC and (e) Co_{100} -PC cathodes at various scan rates from 1 to 50 mV s⁻¹

Fig. S6 CV curves of (a) Zn_{100} -APC, (b) $Zn_{75}Co_{25}$ -APC, (c) $Zn_{50}Co_{50}$ -APC, (d) $Zn_{25}Co_{75}$ -APC and (e) Co_{100} -APC cathodes at various scan rates from 1 to 50 mV s⁻¹

Fig. S7 Nyquist plots and relationships of Z' and $\omega^{-1/2}$ in the low frequency region of (**a**, **b**) Zn₁₀₀-PC, (**c**, **d**) Zn₇₅Co₂₅-PC, (**e**, **f**) Zn₅₀Co₅₀-PC, (**g**, **h**) Zn₂₅Co₇₅-PC, (**i**, **j**) Co₁₀₀-PC

Fig. S8 Nyquist plots and relationships of Z' and $\omega^{-1/2}$ in the low frequency region of (a, b) Zn₁₀₀-APC, (c, d) Zn₇₅Co₂₅-APC, (e, f) Zn₅₀Co₅₀-APC, (g, h) Zn₂₅Co₇₅-APC, (i, j) Co₁₀₀-APC

Fig. S9 Optimized solvation structures of $PF_6^-(DMC)_i$ by DFT calculations: (**a**) $PF_6^-(DMC)_1$, (**b**) $PF_6^-(DMC)_2$, (**c**) $PF_6^-(DMC)_4$ and (**d**) $PF_6^-(DMC)_6$

Fig. S10 The coulombic efficiency of the Zn₉₀Co₁₀ –APC

Fig. S11 (a) GCD profiles at 0.1 A g⁻¹, (b) Rate capability at different current densities and (c) Cycling performance at 0.1 A g⁻¹ of commercialize graphite anode S7/S9

Fig. S12 (a) CV curves and (b) GCD profiles of PLG//AC LIC

Fig. S13 Cycling stability of PLG//Zn₉₀Co₁₀-APC and PLG//AC LICs at 1 A g^{-1} for 10000 cycles within 2-4.0 V.

Fig. S14 Comparison of potential drops for PLG//Zn₉₀Co₁₀-APC and PLG//AC LICs during the cyclic process

Sample	C (at%)	N (at%)	O (at%)
Zn ₁₀₀ -PC	67.93	20.59	11.48
Zn ₇₅ Co ₂₅ -PC	70.94	19.43	9.62
Zn ₅₀ Co ₅₀ -PC	64.99	9.95	25.06
Zn ₂₅ Co ₇₅ -PC	75.04	8.69	16.27
Co ₁₀₀ -PC	86.55	6.29	7.16
Zn ₁₀₀ -APC	81.49	7.47	10.59
Zn ₇₅ Co ₂₅ -APC	84.28	6.34	9.38
Zn ₅₀ Co ₅₀ -APC	87.32	5.85	6.83
Zn ₂₅ Co ₇₅ -APC	89.22	4.64	6.14
Co ₁₀₀ -APC	90.60	3.19	6.21

Table S1 XPS elemental contents of Zn_xCo_{100-x}-PCs and Zn_xCo_{100-x}-APCs

Table S2 The specific calculated values of solvation energies of $PF_6(EC)_i$ (*i* =1, 2, 4, 6) structures

i	ΔE_{solv} (kcal mol ⁻¹)	
1	-15.4672	
2	-26.9473	
4	-55.0242	
6	-71.8422	

Table S3 The specific calculated values of solvation energies of $PF_6(DMC)_i$ (*i* =1, 2, 4, 6) structures

i	ΔE_{solv} (kcal mol ⁻¹)	
1	-6.7610	
2	-12.9980	
4	-26.1158	
6	-39.4399	