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HIGHLIGHTS

• The hierarchically porous nitrogen‑doped carbon (SHPNC) was fabricated by biorenewable carbon sources.

• The SHPNC electrode exhibited a high specific capacity, excellent cyclic stability, and superior rate capability.

• The asymmetric potassium‑ion hybrid capacitors delivered a maximum energy density of 135 Wh kg−1, long lifespan with excellent 
capacity retention, and outstanding ultrafast charge/slow discharge performance.

ABSTRACT Potassium‑ion hybrid capacitors (KIHCs) have attracted increas‑
ing research interest because of the virtues of potassium‑ion batteries and super‑
capacitors. The development of KIHCs is subject to the investigation of applica‑
ble  K+ storage materials which are able to accommodate the relatively large size 
and high activity of potassium. Here, we report a cocoon silk chemistry strategy 
to synthesize a hierarchically porous nitrogen‑doped carbon (SHPNC). The 
as‑prepared SHPNC with high surface area and rich N‑doping not only offers 
highly efficient channels for the fast transport of electrons and K ions during 
cycling, but also provides sufficient void space to relieve volume expansion of 
electrode and improves its stability. Therefore, KIHCs with SHPNC anode and 
activated carbon cathode afford high energy of 135 Wh kg−1 (calculated based 
on the total mass of anode and cathode), long lifespan, and ultrafast charge/slow 
discharge performance. This study defines that the KIHCs show great applica‑
tion prospect in the field of high‑performance energy storage devices.

KEYWORDS Potassium‑ion hybrid capacitors; Biomimetic materials engineering; N‑doped carbon; Hierarchically porous structure; 
High energy density

   ISSN 2311‑6706
e‑ISSN 2150‑5551

      CN 31‑2103/TB

ARTICLE

Cite as
Nano‑Micro Lett. 
         (2020) 12:113 

Received: 18 March 2020 
Accepted: 28 April 2020 
© The Author(s) 2020

https://doi.org/10.1007/s40820‑020‑00454‑w

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-020-00454-w&domain=pdf


 Nano‑Micro Lett.          (2020) 12:113   113  Page 2 of 13

https://doi.org/10.1007/s40820‑020‑00454‑w© The authors

1 Introduction

Lithium‑ion hybrid capacitors with a battery‑type anode and 
a capacitor‑type cathode have been rapidly developed owing 
to high energy, remarkable power, and long life [1–5]. How‑
ever, the rising costs and restricted global lithium resources 
have driven researchers to seek other energy storage devices 
to relieve the energy crisis [6–8].

Gradually, potassium‑ion hybrid capacitors (KIHCs) 
bridging the gap between potassium‑ion batteries (PIBs) and 
supercapacitors (SCs) are emerging as an exciting research 
frontier owning to low redox potential, abundant reserves of 
K (2.09 wt%), higher transport number of solvated  K+ and 
lower desolvation energy than that of  Li+ and  Na+ [9–12]. 
Nevertheless, larger ionic radius of the  K+ (1.38 Å) [13], 
in sharp contrast to that of  Li+ (0.76 Å) and  Na+ (1.02 Å) 
[14, 15], causes a large volume expansion of the active 
material during the charging/discharging process, lead‑
ing to low reversible capacity and inferior cyclic stability 
as well as insufficient rate capability [16–19]. To improve 
KIHCs, one efficacious strategy is exploring feasible and 
sustainable anode materials that can store the large‑size  K+ 
[13, 17–22]. In contrast with variety of cathode materials 
reported, searching for high‑performance anode materials 
is much slower and tougher because of unsatisfactory cyclic 
performance and limited rate capability caused by serious 
structural deformation, low intercalation utility, and elec‑
trolyte decomposition [23]. To date, only limited amount of 
anode materials have been proposed, such as carbonaceous 
materials, organic materials, K‑ion intercalation compounds, 
and metal‑based alloy materials [24–28]. Especially, the 
inexpensive carbonaceous materials have been widely stud‑
ied as one of the leading candidates due to their high thermal 
stability, high potassium storage capability, and environmen‑
tal friendliness [29–32].

Biorenewable carbon sources relying on the renewable 
and widely available advantages have been used as precur‑
sors to prepare anode materials for PIBs [33–39]. Cocoon 
silk with hierarchical architecture featuring an intricate 3D 
hierarchical network not only ensures extraordinary struc‑
tural stability, but also allows efficient transport of electro‑
lytes throughout the entire cocoon silk‑derived biological 
carbon matrix [40, 41].

Herein, hierarchically porous nitrogen‑doped carbon 
(SHPNC) was synthesized by a cocoon silk chemistry 

strategy as an advanced anode material for KIHCs. The 
SHPNC with highly hierarchical structure and high‑con‑
tent nitrogen doping provides fast pathways of electrons 
and ions, also offers sufficient free space to overcome the 
damage caused by the volume expansion during charge and 
discharge processes. Remarkably, KIHCs were constructed 
with SHPNC‑900 as the battery‑type anode and commercial 
activated carbon (AC) as the capacitor‑type cathode. The 
optimized KIHCs displayed a high energy of 135 Wh kg−1, 
an energy density of 45 Wh kg−1 at a high power output 
of 1951.8 W kg−1, and an outstanding cyclic life with the 
capacity retention of 75.4% after 3750 cycles at 1 A g−1.

2  Experiment Section

2.1  Synthesis of SHPNC

Synthesis of the SHPNC samples: Firstly, 3 g natural silk 
and 7.5 g  ZnCl2 were added to a 2.5 M (50 mL)  FeCl3 solu‑
tion. And then, the mixture was stirred and evaporated at 
85 °C for 7 h. After the partial solubility of the silk, the 
mixture was left in drying oven at 95 °C overnight. Then, the 
as‑obtained solution was freeze‑dried for 3 days to prepare 
the carbon precursor. Before activation and graphitization, 
the precursor was rapidly heated at 150 °C for 1 h with a 
heating rate of 5 °C min−1 to remove the absorbed moisture. 
Then, the precursor was carbonized at various temperatures 
(750, 900 and 1050 °C) for 1 h under vacuum environment 
in a tubular furnace with a heating rate of 2 °C min−1. The 
resulting dark solid was milled, poured into a 1 M HCl solu‑
tion to soak out the poison iron species and then washed with 
deionized water. The final obtained porous carbon was dried 
at 65 °C for 12 h and marked as SHPNC‑750, SHPNC‑900, 
and SHPNC‑1050, respectively.

2.2  Materials Characterization

The morphology of the samples was characterized via 
SIGMA microscope (Zeiss, Germany) and transmission 
electron microscope (TEM, 2100F, JEOL). The crystal 
structures were explored by X‑ray diffractometer (XRD‑
6100 spectrometer with Cu‑Kα radiation, Shimadzu) and 
Raman spectrometer (inVia‑reflex confocal Raman spec‑
trometer, Renishaw) with a 532 nm laser as the excitation 
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source. XPS spectra were obtained on a K‑Alpha ESCALAB 
250Xi instrument (ThermoFisher‑VG Scientific, USA), with 
Al Kα radiation as the excitation source.  N2 adsorption–des‑
orption analysis was measured on surface area and porosity 
analyzer (ASAP 2020, Micromeritics). BET method and the 
Barrett–Joyner–Halenda (BJH) method were performed to 
deduce the specific surface area and pore size distribution.

2.3  Electrochemical Measurements

SHPNC, conductive carbon, and carboxymethyl cellulose 
with mass ratio of 8:1:1 were dispersed in a mixed solu‑
tion (1 mL) of ethanol and  H2O and painted on the Cu foil 
after ball‑milling treatment. The mass loading of SHPNC 
electrode is about 0.5–2 mg cm−2. Besides, the active car‑
bon, conductive carbon, and carboxymethyl cellulose were 
mixed together with a weight ratio of 8:1:1 to prepare the 
cathode. The mass ratio of anode and cathode was 3:1. The 
electrodes were nature dried for 1 h followed by vacuum 
drying at 60 °C overnight. After drying at 120 °C under 
vacuum, 2032‑type coin cells were fabricated inside an Ar 
filled glovebox, employing a glass fiber filter (Whatman 
GF/F) as the separator and 5 M KFSI dissolved in ethyl‑
ene carbonate/dimethyl carbonate mixture (EC/DMC by 
1:1 vol.) as electrolyte. To assemble PIBs, potassium metal 
and glass fiber film were used as the anode electrode and 
the separator, respectively. The coin‑type cells (2032) were 
assembled in a MB‑Labstar (1200/780) glove box (Munich, 
Germany) under Ar atmosphere, where the concentrations of 
moisture and oxygen were maintained below 0.5 ppm. The 
electrochemical performance and cyclic voltammetry (CV) 
were tested using a CT2001A battery test system (LANDTE 
Co., China) and a CHI660E electrochemical station (CHI 
instrument Co., Shanghai, China), respectively.

The gravimetric energy (E) and gravimetric power (P) 
of devices were calculated according to the following 
equations:

where m is the total mass of the both electrodes, U is the 
working voltage, I is the discharge current and t is the dis‑
charge time at the end of discharge after the IR drop.

(1)E =
t2

∫
t1

IU∕mdt

(2)P = E∕t

3  Results and Discussion

3.1  Preparation and Structure of SHPNC

Figure 1 reveals the schematic illustration of synthetic pro‑
cess, morphology, and composition of the SHPNC cal‑
cined at 900 °C (SHPNC‑900). As shown in Fig. 1a, the 
cocoon silk chemistry strategy to synthesize SHPNC con‑
sists of four steps: (i) metal salt activation, (ii) freeze dry‑
ing, (iii) calcination, and (iv) purification process. The 
resulting unique SHPNC possesses prominent features 
of high specific surface area with abundant active sites 
through hierarchical carbon matrix, rich heteroatom dop‑
ing, and defects [42–45]. As shown in scanning electron 
microscopy (SEM) in Fig. 1b, c, the as‑obtained SHPNC 
shows a highly porous structure composed of intercon‑
nected and wrinkled carbon nanosheets, which effectively 
limit them from stacking together. The superior structural 
feature plays important roles in enhancing the transpor‑
tation of electrons/potassium‑ions, and affording free 
expansion space for electrode [46]. Transmission electron 
microscopy (TEM) images (Figs. 1d, e and S1) further 
indicate the SHPNC is formed of folded, porous, and 
multichannel carbon nanosheets [47]. Besides, no appar‑
ent long‑range ordered areas can be found in the SHPNC, 
revealing an amorphous structure of SHPNC. Further‑
more, the selected‑area electron diffraction (SAED) pat‑
tern (inset of Fig. 1f) presents dispersed diffraction rings, 
which is well consistent with the HRTEM results (Fig. 1f). 
As clearly observed in element mapping images (Figs. 1g 
and S1), the C, O, N elements were uniformly distributed 
over the entire nanosheets and the content of N signifi‑
cantly reduced with the annealing temperature increasing. 
In addition, the corresponding porous structure diagram is 
presented in Fig. 1h. Notably, the N doped in the SHPNC‑
900 divided into pyridinic nitrogen (N‑6), pyrrolic or 
pyridonic nitrogen (N‑5), and quaternary nitrogen (N‑Q), 
respectively, can effectively improve the conductivity and 
increase the electrochemical active sites of the SHPNC‑
900 electrode [48].

X‑ray diffraction (XRD) and Raman spectroscopy meas‑
urements are conducted to characterize the structures of 
SHPNC annealed at 750, 900, and 1050 °C (SHPNC‑750, 
SHPNC‑900, and SHPNC‑1050). It aims at verifying 
whether SHPNC processes a high degree of local order or 
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much disorder in nanometric scales. As shown in Fig. 2a, 
all the three samples show broad diffraction peak at about 
25° and another weak diffraction peak at about 44°, cor‑
responding to the (002) and (100) planes of the graphite, 
respectively. With increasing annealing temperature, the 

(100) peak becomes relatively sharp, indicating minified 
interlayer spacing of the (100) plane [48]. Raman spec‑
tra of SHPNC‑750, SHPNC‑900, SHPNC‑1050 in Fig. 2b 
exhibit the D and G bands appearing around 1337 and 
1540 cm−1. The D band stands for defects induced A1g 

Fig. 1  a Schematic illustration of the preparation process for the SHPNC. Structure characterizations of SHPNC‑900 by electron microscopies. 
b, c SEM and d, e TEM images of SHPNC‑900. f HRTEM images of SHPNC‑900 with inset showing the corresponding SAED patterns. g Cor‑
responding elemental mapping images of C, N, and O elements of the SHPNC‑900. h Corresponding porous structure diagram
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vibration mode of sp3 carbon rings, while the G band 
stands for E2g vibration mode of sp2 carbon atoms [49]. 
Additionally, the intensity ratio of D band and G band (ID/
IG) can be used to denote degree of disorder in the graphite 
[50]. Obviously, the degree of graphitization increases as 
the rise of annealing temperature.

The porosity and architecture of the as‑fabricated SHPNC 
were verified by nitrogen absorption–desorption isotherms 
and pore size distribution analyses. Figure 2c shows a high 
nitrogen uptake at lower pressure caused by micropores and 
the hysteresis loop at higher pressure due to mesopores. 
All SHPNC samples exhibit type I isotherms and the high 
isotherm in the lower pressure region, suggesting a high 

microporosity. Brunauer–Emmett–Teller (BET) surface 
areas are calculated to be 693.0 (SHPNC‑750), 977.7 
(SHPNC‑900), and 1798.2  m2  g−1 (SHPNC‑1050). As 
shown in Fig. 2d, the pore sizes of three samples are con‑
centrated between 0 and 3 nm, which is consist with the 
adsorption–desorption isotherm.

In order to quantify the chemical composition of the 
SHPNC, surface characteristics were analyzed by X‑ray pho‑
toelectron spectroscopy (XPS). As displayed in Fig. 2e, two 
sharp peaks indicate SHPNC‑1050 is mainly composed of 
C and O, while three peaks in SHPNC‑750 and SHPNC‑900 
demonstrate the as‑prepared SHPNC‑750 and SHPNC‑900 
are mainly composed of C, N, and O. The specific element 
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contents of C, N, and O are listed in Fig. 2f, implying the 
contents of N element decreases as the rise of annealing 
temperature, which agrees with  the  result  of TEM ele‑
ment mapping. Besides, the high‑resolution C1s core level 
XPS spectra of SHPNC shown in Fig. 2g deconvolute to 
three peaks (C–C (284.8 eV), C=N (285.7 eV), and C=O 
(288.7 eV)), indicating the synthetic strategy is a powerful 
to in situ synthesize heteroatom doping SHPNC [51, 52]. 
The N 1 s spectra (Fig. 2h) reveals three similar peaks for all 
samples at binding energies of 398.7, 400.9, and 405.1 eV, 
which are indexed to N‑6, N‑5, and N‑Q, respectively. The 
content of N‑6 relative to N‑Q reduces with increasing 
temperature, indicating that higher calcination temperature 
facilitates the generation of N‑Q (Fig. S2). It is noteworthy 
that N‑6 and N‑5 can act as electrochemically active sites 
and be beneficial to the surface‑induced capacitive processes 

[40]. Meanwhile, N‑Q is reported to be conducive to the 
electroconductibility of the graphitic carbon relying on the 
significant change in the electron–donor characteristic [53]. 
Figure 2i shows that three similar peaks of O 1 s spectrum 
at about 530.0, 531.4, and 531.6 eV can be indexed to C=O 
carbonyl groups (O–I), C–OH hydroxylic groups or C–O–C 
ether groups (O–II), and COOH carboxyl groups (O–III), 
respectively [52].

3.2  Electrochemical Properties of SHPNC Electrode 
for Potassium‑Ion Half Cells

Cyclic voltammetry (CV) was conducted to investigate elec‑
trochemical reaction of SHPNC (Figs. 3a and S3). The CV 
curves of these three samples are similar, while the SHPNC‑
900 displays larger peak area due to its higher specific 
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capacity. Figure 3a shows the first three consecutive cyclic 
voltammograms of the SHPNC‑900 electrode at a scan rate 
of 0.2 mV s−1 in the voltage range of 0.01–3 V. There are 
three peaks in the first cycle including a clear anodic peak 
at 0.499 V, a relatively weak peak at 0.304 V, as well as a 
cathodic peak at 0.578 V. The cathodic peak ascribed to 
the formation of solid electrolyte interface (SEI) and the 
decomposition of the electrolyte, weakens in the subsequent 
scans [53]. Accordingly, the anodic peak at 0.304 V could be 
attributed to the deintercalation of K ions [52]. Obviously, 
the following two CV curves exhibit the similar characteris‑
tics, demonstrating the same reaction mechanism and good 
reversibility of SHPNC‑900 anode. Figure 3b presents the 
charge/discharge voltage profiles of the SHPNC‑900 anode 
in selected cycles at a current density of 25 mA g−1 in the 
voltage range of 0.01–3.0 V (vs. K/K+). Apparently, the 
different cycles show similar potassiation/depotassiation 
behavior. Equally, the charge/discharge profiles almost over‑
lap with each other (Fig. S4a‑c), which is consistent with 
the CV results, indicating a good reversibility of SHPNC 
electrode. In addition, with increasing current density, the 
platform at ≈ 0.2 V almost disappears while the charging 
process and the linear characteristic of the discharge/charge 
curves becomes more obvious (Fig. S4d).

Electrochemical performance of as‑prepared three 
samples (SHPNC‑750, SHPNC‑900, and SHPNC‑1050) 
was investigated to explore the influence of carbonization 
temperature. Figure S5 is the charge–discharge voltage 
profiles for selected cycles of SHPNC at a current density 
500 mA g−1, demonstrating similar battery behavior of 
SHPNC‑750, SHPNC‑900, and SHPNC‑1050 electrodes. 
Figure S6 shows that the SHPNC‑900 displays best cycling 
stability and possesses the highest reversible capacity of 
215 mAh g−1 at 500 mA g−1 after continuous 370 cycles. 
Notably, the SHPNC‑900 with appropriate specific sur‑
face area and nitrogen content (N‑5, N‑6, and N‑Q) com‑
pared with that of SHPNC‑750 and SHPNC‑1050 (Fig. S2) 
achieves continuous higher capacity and superior cyclic per‑
formance. Thus, we mainly focus on investigations of the 
battery performance of SHPNC‑900 electrode.

As shown in Fig. 3c, the SHPNC‑900 delivers a high 
reversible capacity of 300  mAh  g−1 at current density 
of 25  mA  g−1 after 163 cycles. At current density of 
200 mA g−1, the SHPNC‑900 electrode displays a high 
reversible capacity of 270  mAh  g−1 after 923 cycles 
(Fig. 3d). Furthermore, long‑term cyclability of SHPNC‑900 

was investigated at other current rates (Fig. S7). As 
expected, it exhibited impressive cycling stability with 
high specific capacities of 271 (50 mA g−1) and 164 mA h 
 g−1 (1000 mA g−1), after 330 and 593 cycles, respectively. 
Remarkably, the electrochemical performance of SHPNC 
is superior compared to that of other reported carbon‑based 
materials due to the unique cocoon silk chemistry strategy 
[21, 25, 46, 49, 50, 53–57].

As displayed in Fig. 3e, CV curves were measured at scan 
rates of 0.2 to 50 mV s−1 in a voltage range from 0.01 to 3 V 
to analyze the kinetic of the electrodes. The capacity contri‑
bution in the SHPNC‑900 electrode was examined in details 
according to the power‑law formula i = aνb [58, 59], where i 
is the peak current and ν is the scan rate. Clearly, the b value 
can be obtained by the slope of the log(i) versus log(υ) plot. 
When the b value is close to 0.5, the electrochemical behav‑
ior is predominated by the ionic diffusion process, while the 
b value close to 1.0 indicates a total capacitive process [60, 
61]. And the plot applied on the depotassiation peak current 
is shown in Fig. 3f. A good linear relationship can be seen 
for SHPNC‑900, and the b value was calculated to be 0.72, 
suggesting a mixed potassium storage mechanism of Fara‑
daic intercalation process and surface process. To be spe‑
cific, the equation of i = k1v + k2v1/2 can quantify the capaci‑
tive contribution ratio under different scan rates, where k1v 
and k2v1/2 represent the contribution of capacitance and ionic 
diffusion, respectively [58, 59]. A typical profile (Fig. 3g) 
at a scan rate of 50 mV s−1 manifests the separation of the 
capacitive contribution (red region) from the total capac‑
ity (purple region). The capacitive capacity of SHPNC‑900 
accounts for 15% at a low scan rate of 0.2 mV s−1, indicat‑
ing that the charge storage behavior is dominated by the 
ionic diffusion process (Fig. S8a). As the scan rate rising 
to 0.5, 1, 5, 10, 20, and 50 mV s−1, the fraction of capaci‑
tive capacity increases to 17%, 20%, 31%, 42%, 58%, and 
96%, respectively (Figs. 3h and S8). This phenomenon fur‑
ther confirmed that SHPNC‑900 assists PIBs with superior 
rate capability. Rate performance is important in practical 
applications of PIBs in electric vehicles and power tools. 
Thus, capacities versus cycle number at various charge/
discharge current rates were investigated over a voltage 
range of 0.01–3.00 V versus K/K+ (Fig. 3i). Noticeably, the 
SHPNC‑900 electrode delivers high discharge capacities of 
343, 273, 245, 216, 168, 152, 145, 107, 89, and 78 mAh g−1 
at the current densities of 25, 50, 100, 200, 1000, 1500, 
2000, 3000, 4000, and 5000 mA g−1, respectively. Moreover, 
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when the current density returns to 25 mA g−1, about 93% of 
the discharge capacity can be recovered (a reversible capac‑
ity of 318 mAh g−1 obtained after 200 cycles), revealing 
a superior rate stability of SHPNC‑900. The hierarchically 
porous nitrogen‑doped SHPNC‑900 provides outstanding 
structural stability, fast ion, and electron transport during the 
charge/discharge process, as well as strong pseudocapacitive 
behavior, thus affording high utilization and rate capability 
of SHPNC‑900 electrode [40].

3.3  Reversibility Analysis and Mechanism Exploration 
of SHPNC‑900 Electrode

In situ Raman spectroscopy and element mapping were 
systematically carried out to visualize the potassiation/

depotassiation mechanism of SHPNC‑900 electrodes 
(Fig. 4). As shown in Fig. 4a, the initial G band (1539 cm−1) 
obviously blue shifts to lager values and reaches 1591 cm−1 
at voltage of 0.01 V during discharge process. Upon full 
charge (3 V), the G band shifted toward the lower wave 
number until it recovers to the original value (1540 cm−1), 
which signifies that a reversible reaction occurs. To evalu‑
ate the feasibility of the as‑obtained SHPNC for practical 
application, full KIHCs were assembled employing activated 
carbon (AC) as cathode, SHPNC‑900 as anode, and 5 M 
KFSI dissolved in ethylene carbonate/dimethyl carbonate 
mixture (EC/DMC by 1:1 vol.) as electrolyte. It is worth not‑
ing that, superconcentrated KFSI exhibits better thermody‑
namic reactivity and improves the formation of KF‑rich SEI 
to suppress the electrolyte decomposition and the formation 

Fig. 4  a In situ Raman spectra of SHNPC‑900 during potassiation/depotassiation in potassium half cells. b Schematic illustration of the charge/
discharge mechanism of the KIHC. c, d Element mapping of the SC anode in KIHCs at different states: c charged state, d discharged state
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of K dendrite formation. Therefore, 5 M KFSI electrolyte 
enables preferable reversible capacity and better cycling sta‑
bility of KIHCs [62–66]. The schematic illustration of the 
configuration of KIHCs with SHPNC‑900 anode, commer‑
cial AC cathode, and a 5 M KFSI electrolyte is illustrated 
in Fig. 4b. Upon charging/discharge, the anions  (FSI−) in 
the electrolyte adsorb on the AC cathode, while the cations 
 (K+) intercalate into anode materials. The discharge process 
is reversible to the charge process. Elemental mapping was 
performed to further verify the working mechanism of the 
KIHCs (Fig. 4c, d). The fully charged and fully discharged 
states of SHPNC‑900 anode are composed of C, N, O, and 
K elements. Obviously, a large number of  K+ are detected 
in the fully charged state, while the content of  K+ in fully 
discharged is much lower, which implies that  K+ is able to 
reversibly intercalate/de‑intercalate into SHPNC‑900 anode. 
Based on in situ Raman and element mapping, the satisfac‑
tory reversibility in the charge/discharge process can be a 
prerequisite for superior cyclic stability.

3.4  Electrochemical Properties of SHPNC‑900 
Electrode for K‑Ion Hybrid Capacitors

CV tests of SHPNC‑900 anode and AC cathode are per‑
formed to match KIHCs as shown at the top of Fig. 5a. 
Additionally, CV curves of the KIHCs at various sweep‑
ing speeds from 0.2 to 50 mV s−1 in a voltage range from 
0.01 to 4.2 V are exhibited at the bottom. All CV curves 
show semblable rectangular shapes without obvious redox 
peaks, indicating a capacitive‑dominant behavior [67, 68]. 
With increasing of scan rates, CV curves still keep alike 
characteristics without a significant distortion, displaying 
a benign reversibility [69]. Figure 5b exhibits the measured 
galvanostatic charge–discharge profiles ranging from 0.05 
to 2 A g−1. It is worth mentioning that the KIHCs could 
operate for almost 9000 s at 50 mA g−1. Figure 5c shows 
the KIHCs deliver high energy density of 135, 102, 77.5, 
65, 45, 20 Wh kg−1 at the current densities of 50, 100, 300, 
500, 1000, 2000 mA g−1, respectively. The Ragone plot in 
Fig. 5d (relationship between energy and power densities) 
of the KIHCs device based on the total mass of two elec‑
trodes shows that energy‑power characteristics of SHPNC‑
900//AC are markedly superior to the results for most of 
previously reported KIHCs including graphite//AC [70], 
soft carbon//AC [15],  K2Ti6O13//AC (KTO//AC) [10], 

 Ca0.5Ti2(PO4)3@C//AC (CTP//AC) [11],  Co2P@rGO//AC 
[14], cubic Prussian blue//AC (PB//AC) [71], dipotassium 
terephthalate//AC  (K2TP//AC) [22], AC//AC [4], and HC//
AC [4]. Discharging for a long period of time (slow dis‑
charge) while completing a full charge quickly (fast charge) 
implies an excellent fast charge/slow discharge performance 
[15]. Figure 5e and S9 show the ultrafast charge/slow dis‑
charge characteristics of the KIHCs which is also appraised 
for applying energy storage device in electronic devices and 
electric vehicles. Surprisingly, the KIHCs could be fully 
charged within 7 min at 350 mA g−1 and discharge for over 
2.5 h at 15 mA g−1 (Fig. 5e). The KIHCs are charged to 
4.2 V at a constant current density of 350 mA g−1 (Fig. 5f) 
and 500 mA g−1 (Fig. S10), respectively, and then dis‑
charged to 0.01 V at the current densities of 15, 30, 60, 
120, 240, 350, and 500 mA g−1, respectively. In initial 20 
cycles, the energy density increases should be ascribed to 
the gradual permeation of electrolyte into the structural 
interior of SHPNC‑900 and AC with high specific surface 
area. Gradually, it could deliver energy densities of 79.4, 
88.9, 97.4, 99.1, 95.1, and 92.6 Wh kg−1, displaying the 
excellent fast charge and slow discharge property. As shown 
in Fig. 5g, the optimized SHPNC‑900//AC KIHCs display 
outstanding cyclic reversibility and can retain 75.4% of its 
initial capacity after over 3750 cycles in a voltage window 
0.01–4.2 V. Figure S11 is the cycle performance of KHICs at 
current density of 2 A g−1. The energy density of the KIHCs 
also remains stable over 1858 cycles. The remarkable cycle 
stability of this KIHCs device can be attributed to the typical 
hierarchically porous structure of SHPNC and high‑content 
nitrogen doping via cocoon silk chemistry strategy.

4  Conclusions

In summary, the cocoon silk‑derived, hierarchically 
porous nitrogen‑doped carbon was fabricated via cocoon 
silk chemistry strategy as anode for highly robust KIHCs. 
Hierarchically porous structure and high‑content nitrogen 
doping within SHPNC afford fast ion and electron trans‑
port, play important roles in buffering volume changes 
of K‑ion, and increase the electrochemical active sites. 
Thus, the KIHCs with SHPNC anode and activated carbon 
cathode achieve a high energy density of 135 Wh kg−1 at 
a power density of 112.6 W kg−1 and outstanding cyclic 
stability. Furthermore, an ultrafast charge/slow discharge 
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performance with a full charge in just 7 min and a dis‑
charge time of more than 2.5 h demonstrates a practical 
potential of the SHPNC//AC KIHCs. This work offers a 
pathway to design biological carbon to be a prospective 
and effective anode material for functional KIHCs.
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