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HIGHLIGHTS

• Physical Properties of the two‑dimensional tellurium were discussed in detail, including electrical properties, optical properties, 
thermoelectric properties, and outstanding environmental stability.

• Emerging applications based on atomically thin tellurene flakes were presented, such as photodetector, transistors, piezoelectric device, 
modulator, and energy harvesting devices.

• The challenges encountered and prospects were presented.

ABSTRACT Since the successful fabrication of two‑dimensional (2D) tellurium (Te) in 2017, 
its fascinating properties including a thickness dependence bandgap, environmental stability, 
piezoelectric effect, high carrier mobility, and photoresponse among others show great potential 
for various applications. These include photodetectors, field‑effect transistors, piezoelectric 
devices, modulators, and energy harvesting devices. However, as a new member of the 2D 
material family, much less known is about 2D Te compared to other 2D materials. Motivated 
by this lack of knowledge, we review the recent progress of research into 2D Te nanoflakes. 
Firstly, we introduce the background and motivation of this review. Then, the crystal structures 
and synthesis methods are presented, followed by an introduction to their physical properties 
and applications. Finally, the challenges and further development directions are summarized. 
We believe that milestone investigations of 2D Te nanoflakes will emerge soon, which will 
bring about great industrial revelations in 2D materials‑based nanodevice commercialization.
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1 Introduction

As one of the chalcogens (group‑VI materials), tellurium 
(Te) is well known as a p‑type semiconductor with a band‑
gap of 0.35 eV at room temperature and possesses a wealth 
of intriguing properties [1] such as photoconductivity [2], 
thermoelectricity [3], and piezoelectricity [4]. Since atomi‑
cally thin graphene flakes were discovered in 2004 [5, 6], 
two‑dimensional (2D) materials have triggered intensive 
research interest for the fabrication of nanodevices on an 
industrial scale [7–15]. However, the development of 2D 
materials faces significant challenges, such as the zero band‑
gap of graphene [16, 17], the environmental instability of 
black phosphorus (BP) [18–22], the low current mobility 
of transition metal dichalcogenides (TMDCs) [23], and 
the lack of large‑scale and efficient synthesis methods. In 
2017, 2D nanoflakes of Te were successfully fabricated [24], 
which possess superior properties compared to other existing 
2D materials, including excellent environmental stability, 
better oxidation and hydration catalytic activity, a tunable 
bandgap, improved thermoelectric, and nonlinear optical 
responses, and a high carrier mobility (~ 103 cm2 V−1 s−1) 
at room temperature [25]. These properties are favorable 
for fundamental research and practical applications, such 
as high‑performance photodetectors [26], field‑effect tran‑
sistors (FETs), and modulators. In addition, 2D Te nano‑
flakes possess unique helical chain structures [27], which 
give rise to their high carrier mobility and strong in‑plane 
anisotropic properties. The flexible mechanical properties 
and structural symmetry‑breaking of the 2D Te nanoflakes 
provide a large in‑plane piezoelectric coefficient, which ena‑
bles it to be a potential material for piezoelectric devices. 
Moreover, 2D Te nanoflakes currently possess the lowest 
lattice thermal conductivity among the family of known 
2D single‑element materials, which exhibit extraordinary 
topological properties [28, 29]. However, as a new member 
of the monoelemental 2D materials family, less is known 
about it compared to graphene [11, 16, 17, 30–34], BP [18, 
35–41], TMDCs [42–46], and other more commonly used 
2D materials [47–52]. Much more work is needed to further 
investigate the potential properties, schemes to control the 
morphology during the synthesis process, carrier dynam‑
ics, transport mechanisms, and nanodevice applications of 
2D Te nanoflakes. In this regard, a detailed and compre‑
hensive understanding of 2D Te nanoflakes is necessary for 

the further development of 2D Te research and technology. 
Inspired by this, we have summarized the recent progress in 
the field of 2D Te nanoflakes. In this review, we first briefly 
summarize the synthesis method, structure and properties of 
2D Te nanoflakes. Then, we highlight some recently demon‑
strated progress based on 2D Te, including photodetectors, 
FETs, piezoelectric devices, and modulators. A considera‑
tion of prospective challenges and future research into 2D 
Te nanoflakes is also presented in this review.

2  Structure and Synthesis Methods for 2D Te 
Nanostructures

As mentioned above, due to the excellent performance, the 
2D Te nanostructures play a key role in many applications, 
such as electronics, sensors, optoelectronic devices, and 
energy devices. In the past two decades, numerous studies 
have mainly focused on the synthesis method for zero‑ and 
one‑dimensional (0D and 1D) Te nanostructures [53–62]. 
However, for 2D Te nanostructures, relatively little is known 
compared to the 0D and 1D Te structural properties and syn‑
thesis methods. Therefore, in this section, we summarize and 
highlight some recent representative investigations regarding 
the structure of 2D Te. Then, we focus on the synthesis of 
2D Te nanostructures, including molecular beam epitaxy 
(MBE), physical vapor deposition (PVD), solution synthe‑
sis, liquid‑phase exfoliation (LPE), and thermal evaporation.

2.1  Structure

Through a combination of first‑principles calculations and 
experiments, Zhu et al. [63] discovered that 2D Te (a.k.a. tel‑
lurene) possesses three phases, (α‑, γ‑Te) and tetragonal (β‑Te) 
structures, as shown in Fig. 1a–c. The formation mechanism 
was found to be inherently rooted in the multivalent nature of 
Te. The α‑ and γ‑Te phases showed a three‑ and sixfold coordi‑
nation structure, respectively. However, the β‑Te phase exhib‑
ited a mixture of three‑ and fourfold coordination structures; 
these findings suggested that Te possesses multiple bonding 
configurations. Subsequently, Qiao et al. [64] reported a simi‑
lar investigation of the structure of few‑layer Te. The crystal 
structure of the α‑phase was found to consist of parallel helical 
Te chains with three Te atoms were included in each repeating 
unit. The β‑phase can be achieved by further decreasing the 
thickness of the α‑phase Te to a monolayer and the structure of 
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the β‑Te proved to be in accordance with BP. Additionally, no 
soft phonon modes were observed for monolayer β‑Te, and a 
cohesive energy of 2.567 eV  atom−1 indicated that the kinetics 
of single‑layer β‑Te is relative more stable [24]. Notably, Te 
is composed of atomic chains in a triangular helix, which are 
stacked together via van der Waals forces in a hexagonal array 
and possess a 1D crystal structure rather than a layered 2D van 
der Waals structure (Fig. 1d). Furthermore, Te atoms form 
covalent bonds to only the two closest neighboring Te atoms 
in the helical chain (Fig. 1e), which is in sharp contrast to the 
structure of other traditional 2D materials like grapheme, BP, 
and TMDCs that possess layered structures with strong chemi‑
cal bonds within the layer. When viewed along the x‑axis, the 
zigzag layers are seen to be stacked together via van der Waals 
forces to form a 3D structure (Fig. 1f) [25, 26].

2.2  Synthesis Method

For BP, high‑quality and large‑area 2D flakes are difficult to 
synthesize; in contrast, the 2D Te nanoflakes can be directly 
synthesized via multiple facile methods [65]. In this section, 
four commonly employed synthesis techniques to produce 
2D Te are introduced, namely PVD, MBE, solution synthe‑
sis, LPE, and thermal evaporation.

2.2.1  Physical Vapor Deposition

The PVD synthesis method is commonly applied by heat‑
ing a source reservoir to control the deposition of materials 
onto substrates. To produce2D materials, the PVD synthesis 
method generally requires a vacuum environment and high‑
purity sources. Recently, this method has been used by Apte 
et al. [66] in an investigation of polytypism in the synthesis 
of ultrathin Te flakes with a thickness of < 7 nm and an area 
of 50 μm. To gain an insight into the PVD‑synthesized Te 
flake structures, they were compared with the theoretically 
predicted structures. During the synthesis process, the bulk 
Te was first placed on the Si/SiO2 substrates before being 
evaporated in an Ar/H2 environment at 650 °C. After cool‑
ing down, ultrathin Te flakes were achieved, as shown in 
Fig. 2. The synthesized Te flakes had a typical thickness 
of 0.85 nm, corresponding to three atomic layers (Fig. 2b). 
Transmission electron microscopy (TEM) images of the syn‑
thesized flakes are shown in Fig. 2d, e, which confirmed the 
hexagonal symmetry with three distinct sets of sixfold dif‑
fraction spots. Utilizing high‑resolution scanning transmis‑
sion electron microscope (STEM) images of the Te flakes 
(Fig. 2c, f), the existence of three poly types, α‑, β‑, and γ‑Te 
was confirmed.
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Fig. 1  a–c Structures of α‑, β‑, and γ‑Te phases. Adapted with permission from [63]. Copyright 2017, American Physical Society. d–f Crystal 
structure of Te viewed from the z axis, as a single‑molecule chain, and viewed from the x axis. Adapted with permission from [26]. Copyright 
2018, American Chemical Society
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2.2.2  Molecular Beam Epitaxy

In contrast to the conventional heteroepitaxy method, the 
van der Waals epitaxy (vdWE) synthesis method is of great 
interest to produce ultrathin 2D layered materials. This syn‑
thesis method can overcome the large lattice mismatch and 
facilitate the migration of the 2D material’s adatoms along a 
mica substrate surface. Additionally, the vdWE method ena‑
bles over layers to be relaxed perfectly without considering 
the strain in the heterointerface. Recently, vdWE has been 
employed for the synthesis of 2D Te thin films on mica and 
graphene substrates [67], as shown in Fig. 3. The resulting 
2D Te nanoflakes grown on the mica substrate exhibited 
large lateral dimensions (30–80 nm) and highly singular 
crystallinity, as shown in Fig. 3d, e. The chemical composi‑
tion and microstructure of the Te flakes were characterized 
by TEM. Figure 3a–c shows the hexagonal profile of the 
whole sample, one corner, and an edge of the Te nanoplates, 
respectively. Furthermore, 2D Te flakes with mono‑ and 
few‑layer thicknesses were synthesized successfully on a 
graphene/6H‑SiC (0001) substrate, as shown in Fig. 3f–j. 

Using scanning tunneling microscopy (STM) measurements, 
the obtained Te flakes were found to be composed of paral‑
lel helical Te chains located on the surface of the graphene 
substrate. It can be seen from Fig. 3g, h that the lowest step 
height between the graphene substrate and the Te flake was 
approximately 0.13 nm, which confirmed that single‑layer 
Te flakes were achieved. The fast Fourier transform (FFT) 
measurement showed that the Te flakes exhibited a rectan‑
gular lattice structure, which was in sharp contrast to the 
hexagonal symmetry of the graphene, as shown in Fig. 3i, j.

2.2.3  Solution Syntheses

The production of 2D materials with large areas and high 
quality is essential for their further development in large‑
scale electronic and optoelectronics applications [69, 70]. 
Recently, several investigations have presented the fab‑
rication of large‑area and high‑quality 2D Te nanoplates 
based on the solution synthesis technique [25, 26]. Fig‑
ure 4a, b presents solution‑synthesized environmentally 
stable quasi‑2D Te flakes. Firstly,  Na2TeO3 was dissolved 
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Fig. 2  Ultrathin Te flakes synthesized by PVD. a Schematic of the experimental setup. b Atomic force microscopy (AFM) image of the edge of 
a Te flake including a profile taken along the dotted line showing the thickness of the flake. c High‑angle annular dark‑field scanning transmis‑
sion electron microscopy (HAADF–STEM) image of Te flakes showing the large‑scale uniformity. d, e TEM images of Te flakes showing their 
structure measured by electron diffraction (inset of d). f Atomically resolved HAADF–STEM images of the three Te polymorphs. Adapted with 
permission from [66]. Copyright 2019, WILEY–VCH
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into a polyvinylpyrrolidone (PVP) solution, and then, 
hydrazine monohydrate ammonium and hydroxide solu‑
tion were added. Finally, the mixture was transferred into 
a Teflon‑lined autoclave. After heating, cooling, and puri‑
fying processes, quasi‑2D Te nanoflakes with a thickness 
of 10–30 nm and lateral dimensions of 10–50 μm were 
obtained. Additionally, the thickness of the 2D Te flakes 
showed a dependence on the duration of the reaction time. 
Subsequently, Wang et al. [25] demonstrated a substrate‑
free solution method to synthesize high‑quality and large‑
scale 2D Te nanoplates. The 2D Te flakes were synthesized 
through reducing the concentration of the  Na2TeO3 by the 
addition of  N2H4 in an alkaline solution, in the presence of 
the crystal‑face‑blocking ligand PVP. The optical image of 
the obtained 2D Te solution, after the heating process, is 
shown in Fig. 4c. Figure 4d shows an atomically resolved 
HAADF–STEM image, which confirmed the threefold 
screw symmetry and helical chains along the [0001] direc‑
tion of the 2D Te flakes. Furthermore, it was found that 
the morphology evolution process transitions from 1D to 
2D Te, as shown in Fig. 4e, which can be attributed to the 
balance between kinetic and thermo dynamic mechanisms 

during the synthesis process. Large‑area 2D Te nanoflakes 
with mono‑, bi‑, tri‑, and few‑layers can be obtained by 
tuning the pH values of the solutions, as shown in Fig. 4f.

2.2.4  Liquid‑Phase Exfoliation

The LPE technique has been an effective means of synthesiz‑
ing 2D Te layered nanoarchitectures [69–74]. Generally, the 
exfoliation efficiency can be determined by several factors, 
including sonication energy, favored anisotropic characteris‑
tics, and solvent‑nanoflake interactions of the bulk materials. 
Recently, Xie et al. [75] have reported the first production 
of ultrathin 2D Te nanoflakes by employing the LPE syn‑
thesis technique. Firstly, the Te powder was dissolved in 
IPA, and the mixture was then transferred into a plastic tube, 
followed by probe sonication. Finally, the 2D Te nanosheet 
solution was obtained by further subjecting the mixture to 
a bath sonication. After centrifugation and drying, ultrathin 
2D Te nanoflakes were achieved with lateral dimensions 
ranging from 41.5 to 177.5 nm, as shown in Fig. 5a. The 
crystal lattice spacing was measured to be 3.2 Å, as shown in 
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Fig. 3  a, b TEM and high‑resolution TEM (HRTEM) images of a 2D Te flake. Inset of b shows the electron diffraction pattern. c HRTEM 
image of the Te flake edge. d Optical microscope (OM) image of 2D Te flakes, scale bar = 4 μm, with inset of a single flake. e AFM image of 2D 
Te flake, scale bar = 2 μm, with the step height profile of the flake edge. Adapted with permission from [67]. Copyright 2014, American Chemi‑
cal Society. f STM image of 2D Te grown on graphene with a step height profile of the edge. g High‑resolution STM of monolayer Te flake. h 
STM image of the reconstructed graphene (upper and inset) and single‑layer Te flake (lower). i, j Fast Fourier transforms of graphene and single‑
layer Te flake. Adapted with permission from [68]. Copyright 2017, American Chemical Society
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Fig. 5b. To confirm that the crystalline features of the 2D Te 
nanoflakes were retained during the LPE process, as elected 
electron diffraction (SED) pattern and FFT photograph were 
obtained, as shown in the inset of Fig. 5b and c, d. The thick‑
ness of the obtained 2D Te nanoflakes was measured by 
AFM and ranged from 3.4 ± 0.3 to 6.4 ± 0.2 nm.

2.2.5  Thermal Evaporation

The synthesis of large‑scale polycrystalline Te flakes was 
presented through thermal evaporation in the 1960s [76–78]. 
After a prolonged endeavor, Zhao et al. have recently dem‑
onstrated an exciting breakthrough in the synthesis of high‑
quality 2D Te thin films via this technique [79]. According 
to their report, Te pellets were used as the thermal vapora‑
tion source. After decreasing the pressure and temperature of 
the process in an Edwards Coating System, ultrathin 2D Te 
nanoflakes with thicknesses ranging from 4 to 53 nm were 
synthesized through thermal evaporation at a temperature of 
− 80 K. Figure 6a‑c presents the optical, low‑magnification 
TEM, and HRTEM images of the 9‑nm‑thick Te nanoflakes 
on an  SiO2 TEM grid. Noticeably, the substrate temperature 
has a significant influence on the quality of the synthesized 

Te nanoflakes. By decreasing the substrate temperature from 
room temperature to − 80 K, the average area of the domains 
monotonically increased from zero to ~ 25 μm2.

3  Physical Properties of 2D Te

The 2D Te nanoflakes, as a new member of the 2D materi‑
als family, have received less investigation into their physi‑
cal properties. Their superior properties including a tunable 
direct bandgap, high carrier mobility, excellent thermoelec‑
tric performance, and stability show that 2D Te nanoflakes 
have great potential for electronics and photoelectron‑
ics applications. In this regard, we briefly summarize the 
investigations into their physical properties in this section 
based on first‑principles calculations within ab initio molec‑
ular dynamics (MD) and density functional theory (DFT) 
simulations.

3.1  Electrical Properties

Owing to the great potential of mono‑ and few‑layer 2D Te 
in electronics and photoelectronics applications, the elec‑
tronic band structure has recently been investigated through 
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various theoretical calculations, including first‑principles 
calculations based on DFT and ab initio MD simulations 
[81]. Zhu et al. [82] reported that monolayer 2D Te pos‑
sesses a direct bandgap of 1.04 eV by using first‑principles 
calculations. Additionally, by introducing an external strain, 
both the transport properties and the bandgap can be tuned, 
as shown in Fig. 7a. As the tensile strain was increased from 
0 to 6%, the conduction band minimum (CBM) showed a 
gradual downshift behavior toward the Fermi level. In con‑
trast, the valence band maximum (VBM) barely changed. 
Consequently, the bandgap decreased to 0.86 eV for 6% 
tensile strain. Xian et al. [83] presented results by first‑
principles calculations suggesting that 2D Te possessed a 
chair‑like buckled structure rather than a hexagonal struc‑
ture. Owing to this special structure, the 2D Te caused ani‑
sotropic band dispersions around the Fermi level, which 

can be explained via a generalized semi‑Dirac Hamilto‑
nian. The calculated band structure, as well as the spin–orbit 
coupling (SOC) of 2D Te, is shown in Fig. 7b, c. It can 
be seen clearly in Fig. 7a that Dirac‑cone‑like dispersions 
occurred at  P1 in the Brillouin zone (BZ). Furthermore, in 
contrast to the dispersions of the group‑IV 2D materials, 
these dispersions showed highly anisotropic behavior, as 
shown in Fig. 7c. Recently, Liu et al. [84] have presented 
work with first‑principles calculations showing that along 
different transport directions, the isotropy of the few‑layer 
2D Te is related to the potential and effective mass of the 
charge carriers, as shown in Fig. 7d–g. More importantly, the 
calculated bandgaps increased as the thickness of the few‑
layer 2D Te decreased. The band edge energies also showed 
similar behavior, varying linearly with 1/n or 1/d (where n 
and d denote the layer number and thickness of the 2D Te 
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sion from [80]. Copyright 2020, Nature publishing Group
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nanoflakes, respectively), as shown in Fig. 7f. Additionally, 
the effective mass of charge carriers being transported across 
the chains increased linearly with 1/n or 1/d. These findings 
enable the evaluation of the electronic properties of 2D Te 
at different thicknesses.

3.2  Optical Properties

Optical properties are another important parameter for 
electronics and photoelectronics applications of 2D Te, 
in particular for photodetectors and FET devices [85, 86]. 
Recently, investigations have been carried out to gain a bet‑
ter insight into the optical properties of 2D Te. Firstly, Wu 
et al. [24] reported strong light absorption in few‑layer β‑Te 
from the ultraviolet (UV) band to the visible band, as shown 

in Fig. 8a. For the few‑layer β‑Te, the calculated optical 
absorption coefficients showed clear layer‑dependent behav‑
ior, in which the absorption coefficients decreased as the 
thickness of the few‑layer β‑Te increased. This was attributed 
to the thickness‑dependent band dispersion and interlayer 
electronic hybridization; both processes were enhanced with 
increasing thickness. These outcomes showed that few‑layer 
β‑Te is a promising material for acousto‑optic and UV–vis‑
ible deflectors. As previously mentioned, 2D Te can be syn‑
thesized with large areas, which enables high‑performance 
FETs and photodetectors based on 2D Te. Recently, Wang 
et al. [25] have reported an investigation on FETs based 
on large‑scale 2D Te. In their report, thickness‑ and angle‑
dependent Raman spectra were employed to characterize the 
optical properties of 2D Te at room temperature, as shown 
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in Fig. 8b, c. Three Raman active modes were observed as 
the thickness of the 2D Te was varied from a monolayer to 
37.4 nm. Additionally, for a moderate thickness of the 2D 
Te flakes (less than 20.5 nm), three different Raman active 
modes located at approximately 92, 121, and 125 cm−1 were 
found, which is consistent with previous investigations. 
These findings suggested that the symmetric characteris‑
tics of the bulk Te were appropriate for its 2D morphology. 
Further decreasing the thickness to 9.1 nm, the  E1 longitu‑
dinal (LO) mode appeared, and this can be attributed to the 
enhanced deformation potential and the weakened electro‑
optic effect in the 2D Te lattice. As the thickness of the 
2D Te samples continued to decrease (less than 9.1 nm), 
degeneracy in the E1 transverse (TO) and LO modes was 
observed with peak broadening, this may be caused by the 
symmetry assignments, electronic band structure changes, 
and thickness‑dependent intra‑chain atomic displacement 
for each band. Meanwhile, due to the unique chiral‑chain 
structure, significant peak shifts were found in the Raman 
spectra as the thickness varied. Broadband absorption and 
strong light absorption of few‑layer α‑Te were investigated 
by Qiao et al. [64]. The calculated absorbances at 1.6 and 
3.2 eV were 2–3% and 6–9% per layer (Fig. 8d, e), respec‑
tively, two to three times larger than that of BP. The excellent 
optical absorbances indicated the promising potential of the 
few‑layer α‑Te for broadband optical applications ranging 
from the visible band to the infrared band. Furthermore, 
the absorbance showed layer‑dependent behavior (Fig. 8f), 
where the absorption efficiency increased as the sample 
thickness was reduced. The strong interchain and interlayer 
couplings in the few‑layer α‑Te are two key processes that 
enhance the absorbance significantly. For two incident light 
sources with wavelengths of 512 and 382 nm, the absorb‑
ance of per layer for bilayer α‑Te is nearly 1.65 and 2 times 
higher than that of bulk Te, respectively.

3.3  Thermoelectric Properties

With the increasing global consumption of energy and the 
shortage of fossil fuel resources, it is of great significance 
to harvest waste heat energy. Thermoelectric technology 
provides an effective way to convert the waste heat into 
useful electricity on a large scale. Since the discovery of 
2D materials, they have attracted considerable attention 
for thermoelectric applications. However, compared to 

the well‑studied thermoelectric properties of the other 2D 
materials, including graphene, monoelemental borophene 
[87], germanene [88–90], silicene [88, 91], and arsenene 
[92, 93], the thermoelectric properties of 2D Te nanoflakes 
have received relatively little attention. In this section, 
we highlight some representative investigations into the 
thermoelectric properties of 2D Te nanoflakes. Gao et al. 
[94] investigated the thermal properties of 2D Te flakes 
theoretically by applying first‑principles calculations and 
phonon Boltzmann transport, as shown in Fig. 9a. Accord‑
ing to the calculated results, 2D Te possesses an extremely 
low room‑temperature lattice thermal conductivity (KL) 
of only 2.16 and 4.08 W m−1  K−1 along the armchair and 
zigzag directions, respectively, which are comparable to 
that of bulk Te. More importantly, compared to the other 
2D materials, the calculated KL of the 2D Te was the low‑
est, and this can be attributed to the ultra‑low‑energy opti‑
cal modes, soft acoustic modes, and intensive scattering 
of optical‑acoustic phonons. Subsequently, Sharma et al. 
investigated the thermoelectric properties of the 2D Te by 
combining first‑principles calculations with semi‑classical 
Boltzmann transport theory. The 2D Te was found to pos‑
sess the lowest  KL compared to the other monoelemental 
2D materials (Fig. 9b) [95]. This was attributed to the 
intensive scattering of acoustic phonons into optical pho‑
nons. Lin et al. [29] explored the thermoelectric properties 
of single‑layer 2D Te using DFT calculations. Similar to 
the previous investigations, the anharmonic scattering pro‑
cess dominated and effectively limited its lattice thermal 
conductivity. Consequently, the calculated KL represented 
the lowest value among the previously investigated monoe‑
lemental 2D materials (Fig. 9c).

3.4  Stability

The environmental stability is another important property 
of 2D materials. For many 2D materials, such as BP [19, 
21, 96–98] and TMDCs [99–102], instability has severely 
hindered their further development in both academic and 
industrial applications. In sharp contrast, extraordinary 
environmental stability has been demonstrated for vari‑
ous thicknesses of 2D Te (ranging from few‑layer to mon‑
olayer). The superior environmental stability is mainly due 
to existence of an energy barrier in the oxidation pathways, 



Nano‑Micro Lett.           (2020) 12:99  Page 11 of 34    99 

1 3

which can effectively prevent the 2D Te being oxidized by 
environmental oxygen and water. The great environmental 
stability provides plenty of opportunities for the use of 
2D Te nanoflakes in academic and industrial applications, 
such as high‑performance photodetectors and FETs based 

on air‑stable 2D Te. To facilitate a better understanding of 
the advancements provided by 2D Te, a comparison of the 
main physical properties of 2D Te and other 2D materials 
is listed in Table 1.
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Table 1  Physical properties of 2D Te and other 2D materials

Material Bandgap (eV) Room‑temperature 
carrier mobility  (cm2 
 V−1  s−1)

Room‑temperature 
thermal conductivity 
(W m−1  k−1)

Environmental stabil‑
ity

Optical absorbance 
per layer

Refs.

2D Te 0.35–1.265
Direct bandgap

~103 2.16 and 4.08 (arm‑
chair and zigzag 
directions)

~ 2 months ~ 2–3% (774 nm) and 
~ 6–9% (388 nm)

[25]

Graphene 0 ~ 2.5 × 104 3080–5150 ~ 2.5 months ~ 2.3 ± 0.2% [5, 103]
BP 0.3–1.5

Direct bandgap
~ 103 34 ± 4 and 86 ± 8 

(armchair and zig‑
zag direction)

~ 50 h ~ 1–1.5% (774 nm) 
and 2–3% (388 nm)

[104]

MoS2 0.75–1.89
Indirect to direct 

bandgap

~ 480 101.43 ± 1.13 and 
110.30 ± 2.07 (arm‑
chair and zigzag 
direction)

~ 3 months ~ 10% (688 nm) to 
30% (442 nm)

[105, 106]

MoSe2 0.80–1.58
Indirect to direct 

bandgap

~ 50 43.88 ± 1.33 and 
41.63 ± 0.66 (arm‑
chair and zigzag 
direction)

~ 21 days ~ 10% (775 nm) to 
30% (476 nm)

[107, 108]

WS2 0.75–1.91
Indirect to direct 

bandgap

~ 968 32 and 53 (monolayer 
and bilayer)

~ 2 weeks ~ 10% (620 nm) to 
30% (430 nm)

[109, 110]

WSe2 0.90 to 1.54
Indirect to direct 

bandgap

~ 500 3.935 ~ 30 days ~ 10% (750 nm) to 
30% (430 nm)

[111, 112]
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4  Applications

Owing to the unique helical chain structure, excellent envi‑
ronmental stability, high carrier mobility, and low‑cost syn‑
thesis methods of 2D Te nanoflakes, it holds great potential 
for high‑performance 2D material‑based electronic and pho‑
toelectronic devices. In this section, we summarize some 
recent representative progress in the applications of 2D Te 
nanoflakes.

4.1  Photodetector

A photodetector is a device that converts light signals into 
electrical signals, which is crucial in many fundamental 
research and practical applications. The strong light‑matter 
interaction, large‑scale, and environmental stability of 2D 
Te nanoflakes make them a promising candidate material for 
high‑performance photodetector applications. In general, the 
mechanisms of photocurrent generation in 2D Te nanoflakes 
are photovoltaic, photobolometric, photogating, and photo‑
thermoelectric effects [113–115]. The metrics employed to 
characterize the performance of a photodetector include the 
specific detectivity, response spectrum range, response time, 
external quantum efficiency, photogain, noise equivalent 
power, and photoresponsivity. Here, we discuss the perfor‑
mance of a photodetector based on 2D Te nanoflakes with 
free‑space and waveguide configurations using the metrics.

Three of the most well‑known and intensively investi‑
gated 2D materials are BP [116–120], TMDCs [121–131], 
and graphene [132–136] due to their superior properties 
and strong light‑matter interactions. As a new member of 
the 2D materials family, 2D Te has received less attention 
than the aforementioned three sorts of 2D materials. How‑
ever, the excellent environmental stability, simple synthesis, 
high quality, and large achievable scale of 2D Te nanoflakes 
have recently motivated a surge of academic interest. Subse‑
quently, experiment results have indicated its suitability for 
high‑performance photodetectors. For example, Wang et al. 
reported a high‑photoresponsivity, flexible photodetector 
based on vdWE‑synthesized hexagonal 2D Te nanoplates on 
a flexible mica substrate [25].The fabricated photodetector 
exhibited excellent stability and photoresponsivity, as shown 
in Fig. 10a. The measured current under illumination pre‑
sented the same level of both noise and photocurrent, and the 

corresponding photoresponsivity was approximately 162.4 A 
 W−1, indicating the high stability and photoresponsivity of 
the 2D Te‑based photodetector. More importantly, the meas‑
ured photocurrent and noise current only changed slightly 
after the device was subjected to100 continuous bending 
cycles (Fig. 10b, c), which proved the device is suitable for 
wearable and flexible optoelectronic device applications. 
Subsequently, Amani et al. [26] demonstrated short‑wave 
infrared photodetectors based on solution‑synthesized, envi‑
ronmentally stable quasi‑2D Te nanofilms. An Au/Al2O3 
optical cavity substrate was employed to further enhance 
the absorption of the device. Additionally, by adjusting the 
 Al2O3 spacer thickness, the peak photoresponsivity wave‑
length of the device can be tuned from 1.4 μm (13 A W−1) 
to 2.4 μm (8 A  W−1), with nonzero photoresponsivity up 
to 3.4 μm, as shown in Fig. 10d [26]. In order to further 
characterize the performance of the fabricated photodetector, 
the responsivity as a function of various laser wavelengths 
was measured for device temperatures of 78 and 297 K 
(Fig. 10e). The responsivity peaked at λ = 1.7 μm with values 
of 27 A  W−1 (at 78 K) and 16 A  W−1 (at 297 K). The cor‑
responding calculated specific detectivity at 78 and 297 K 
were 2.6 × 1011 and 2.9 × 109, respectively (Fig. 10f). The 
enhancement of the specific detectivity at 78 K was due to 
more efficient suppression of the noise current than at room 
temperature, which was inversely proportional to the specific 
detectivity. These outcomes proved that the solution‑synthe‑
sized 2D Te nanoflakes were suitable for high‑performance 
photodetectors covering the whole near infrared (IR) band. 
Recently, Xie et al. have demonstrated a high photoresponse 
photodetector based on LPE‑synthesized 2D non‑layered Te 
nanosheets [75]. Photoelectrochemical measurements were 
taken to evaluate the photoresponse of the fabricated pho‑
todetector. In contrast to the previous investigations, this 
study mainly focused on the photoresponse of the device 
from the UV to visible bands. At a fixed bias voltage and 
KOH solution concentration, measurements of photocurrent 
and photoresponse as a function of incident laser power at 
different wavelengths were carried out, as shown in Fig. 10g, 
h, respectively. The measured photocurrent was signifi‑
cantly enhanced by increasing the incident laser power for 
the five different wavelengths employed in the experiment. 
Consequently, the photoresponse, which is proportional to 
the photocurrent, was strengthened as well. Meanwhile, 
the stability and KOH solution concentration dependence 
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measurements were also taken, and the outcomes indicated 
that the LPE‑synthesized 2D non‑layered Te nanosheet is 
a promising material for photodetectors in the UV to vis‑
ible bands as well as other photoelectric applications. Due 
to the small and tunable bandgap of the 2D Te nanoplates, 
it is a potential material for mid‑IR (MIR) photodetector 
applications. Compared to a free‑space detector, waveguide 

integration can significantly improve the signal‑to‑noise 
ratio. The optical absorption behavior was found to be pro‑
portional to the path length of the waveguide. Moreover, the 
detectable bandwidth for waveguide‑integrated photodetec‑
tors was wider than that of free‑space photodetectors, mainly 
due to the reduced carrier transit time and RC delay. In this 
regard, Deckoff‑Jones et al. [137] have recently reported a 
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waveguide‑integrated photodetector based on 2D Te. The 
low gated carrier concentration and small tunable bandgap 
of the 2D Te enabled an extremely low‑noise photodetec‑
tor to be achieved at room temperature. Figure 10i presents 
the calculated noise equivalent power (NEP) of the 2D Te‑
based photodetector as a function of the 2D Te thickness and 
device length. The calculated value was far superior to that 
of the best level previously presented for MIR waveguide‑
integrated photodetectors. These interesting findings suggest 
that 2D Te can be considered as a promising material for 
integrated on‑chip MIR detection.

Recently, photodetectors based on van der Walls hetero‑
junctions composed of the Te nanotubes and bismuth/sele‑
nium have been widely investigated due to their significant 
enhancement of photodetector performance. Huang et al. 
[138] demonstrated a photoelectrochemical photodetector 
based on roll‑to‑roll fabricated Te@Se nanotube heterojunc‑
tions for the first time. The heterojunction was synthesized 
via epitaxial growth of Se on the Te nanotubes. Then, a self‑
powered photoelectrochemical photodetector based on this 
heterojunction was fabricated. The photoresponsivity and 
photocurrent density were found to be significantly enhanced 
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compared to that of the Te nanomaterials alone, as shown 
in Fig. 11a. Noticeably, the photodetector showed excel‑
lent stability under both ambient and harsh conditions, as 
shown in Fig. 11b–d. Following this study, Zhang et al. [139, 
140] demonstrated photodetectors based on Te@Bi and Te/
Bi2Se3@Se heterojunctions. For the Te@Bi heterojunc‑
tion, the corresponding photocurrent density and photore‑
sponsivity in 0.5 M KOH solution as a function of incident 
laser power with a wavelength of 365 nm are presented in 
Fig. 11e. The photocurrent density was approximately pro‑
portional to the laser power, while the photoresponsivity was 
inversely proportional to the laser power. It can be concluded 
that the generated number of electron–hole pairs was propor‑
tional to the incident laser power. Meanwhile, the emergent 
built‑in electric field and plasma effects also have a positive 
contribution to the photocurrent. The stability measurement 
was taken in 0.5 M aqueous KOH. The photocurrent density 
only slightly changed and the device displayed extraordinary 
stability even after one month of continuous exposure, as 
shown in Fig. 11f. For the Te/Bi2Se3@Se heterojunction, 
the photoelectrochemical photodetector exhibited a wide 
detection spectrum, ranging from the UV to visible bands. 
The self‑powered photocurrent density measurement is per‑
formed in three different solutions (0.5 M HCl, NaCl, and 
NaOH), as shown in Fig. 11g. The photocurrent density in 
aqueous HCl was larger than in the NaCl and NaOH solu‑
tions, which indicated that the HCl electrolyte was more 
suitable for the Te/Bi2Se3@Se‑based self‑powered photode‑
tector. Furthermore, the response time and stability measure‑
ments of the device further confirmed its excellent perfor‑
mance, as shown in Fig. 10 h, i, respectively. Fast response 
and recovery times of 0.01 and 0.08 s, respectively, were 
achieved in 0.5 M HCl, which was roughly 50 times faster 
than that of BP‑based devices under same conditions. The 
photocurrent density of the device in the HCl electrolyte 
was approximately 90% of the fresh sample value after one 
month of exposure, demonstrating the extraordinary stability 
of the device. All these outcomes indicate that the hetero‑
junctions of Te nanotubes and bismuth/selenium have great 
potential for high‑performance photodetector applications. 
To facilitate a clear comparison, the figures‑of‑merit for pho‑
todetectors based on some typical 2D materials are listed in 
Table 2. The comparison indicates that 2D Te is suitable for 
high‑performance photodetector applications. 

4.2  Field‑Effect Transistors

Transistors are the elementary “building blocks” of inte‑
grated circuits, which are used in most modern electronic 
devices. Since the discovery of graphene and other 2D mate‑
rials [156–158], such as BP [143, 159–163], and TMDCs 
[125, 164–168], substantial research interest has been 
focused on the development of transistors with 2D materi‑
als [169–172]. To date, a few high‑performance FETs based 
on 2D materials have been demonstrated. For example, Li 
[143] and Du [173] et al. reported the first BP‑based FETs, 
in which a field‑effect hole mobility of 1000 cm2  V−1  S−1 
and an on–off ratio greater than  105 were achieved, which is 
superior to devices based on TMDCs. However, their envi‑
ronmental instability has severely restricted further devel‑
opment. As previously discussed, 2D Te nanoflakes possess 
excellent environmental stability, which enables their use 
in high‑performance FETs. Additionally, the unique helical 
chain structure gives rise to high carrier mobility and strong 
in‑plane anisotropic properties. These superior properties 
further confirmed the potential of 2D Te nanoflakes in logic 
electronics applications. Recently, Ye et al. have demon‑
strated a high‑performance FET based on 2D Te nanoflakes 
produced by the solution synthesis method. With a channel 
length of 3 μm, the fabricated device showed a large drain 
current that exceeded 300 mA mm−1 and an on/off ratio of 
approximately  105 [25]. Moreover, field‑effect mobilities of 
approximately 700 cm2  V−1  s−1 were achieved for the opti‑
mal 2D Te sample thickness (~ 15 nm) at room temperature 
(Fig. 12a). Measurements were taken to explore the envi‑
ronmental stability of the device, as shown in Fig. 12b. The 
drain current only changed slightly after 55 days exposed 
in air without any encapsulation treatment, demonstrating 
the excellent air‑stability of the 2D Te nanoflakes. A high‑
est drain current exceeding 1.06 A  mm−1 was obtained by 
further reducing the channel length, representing the largest 
value among all 2D material‑based transistors and compara‑
ble to that of conventional semiconductor devices (Fig. 12c). 
These outcomes indicate the great potential of 2D Te nano‑
flakes in high‑performance electronic and photoelectronic 
applications. Yan et al. [174] also reported the first com‑
prehensive simulation of the interfacial characteristics of 
monolayer 2D Te with various metals and 2D graphene elec‑
trodes based on quantum transport simulation and ab initio 
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electronic structure calculations, as shown in Fig. 12d. 
According to their investigation, a lateral n‑type Schottky 
contact was formed with the Au and Sc electrodes in both 
directions, respectively. For electrodes of other metals, such 
as Cu, Ag, Pd, Pt, and Ni, a lateral p‑type Schottky contact 
was formed in both directions, as shown in Fig. 12e. The for‑
mation of the Schottky barrier was primarily caused by the 
strong Fermi level pinning effect (Fig. 12f). For the 2D gra‑
phene electrode, a lateral p‑type Ohmic contact was formed 
in both directions, which was caused by the combination of a 
weak Fermi level pinning effect at the interface and the work 

function match of monolayer graphene with the VBM of the 
monolayer 2D Te. Consequently, 2D graphene is the most 
promising electrode material for FETs based on monolayer 
2D Te. Ren et al. reported high‑performance electrolyte‑
gated transistors (EGTs) based on solution‑grown 2D Te 
nanoflakes (Fig. 12g), and a gate‑tuned insulator–metal tran‑
sition was observed at low temperature [175]. By using Hall 
effect measurement, the fabricated p‑type EGTs exhibited 
charge densities exceeding  1013 cm−2, mobilities greater than 
400 cm2  V−1  S−1, and an operating voltage less than 2 V. 
Additionally, resistance–temperature measurements were 
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taken to reveal the transport mechanisms. Meanwhile, a 2D 
insulator–metal transition was formed with a charge density 
of 1.6 × 1013 cm−2 at the surface of the 2D Te (Fig. 12i). 
These outcomes indicate that electrolyte gating is an effec‑
tive means of modifying the charge density‑dependent prop‑
erties of 2D Te nanoflakes.

Recently, Zhao et al. have demonstrated high‑performance 
wafer‑scale p‑type FETs based on high‑quality 2D Te thin 
films with a thickness of 8 nm synthesized by thermal evapo‑
ration. The effective hole mobility, on/off current ratio, and 
subthreshold swing were measured to be 35 cm2  V−1  S−1, 
 104, and 108 mV  dec−1, respectively (Fig. 13a, b). Addition‑
ally, the fabricated device displayed extraordinary environ‑
mental stability even after exposure to ambient conditions 
without any encapsulation for 30 days, as shown in Fig. 13c. 
The dependence of the effective mobility and on/off current 
ratio on the Te nanoflake thickness was also investigated 
to further evaluate the performance of Te‑based FETs, as 
shown in Fig. 13d. The effective mobility was proportional 

to the thickness of the Te, which is due to the reduced effect 
of surface roughness scattering for thicker films [176, 177]. 
However, the on/off current ratio decreased monotonically as 
the Te sample thickness increased, which can be attributed 
to the decreased bandgap of the Te channel. Electrostatic 
control was also suppressed as the thickness of the Te nano‑
flakes increased. The Te nanoflakes were synthesized via 
low‑temperature evaporation, which is beneficial for depos‑
iting Te on various substrates, including plastic and glass. 
Thus, FETs based on Te synthesized by low‑temperature 
evaporation hold great potential for flexible and transpar‑
ent electronics and display applications. Motivated by these 
results, Te‑based FETs were fabricated on a Kapton sub‑
strate to evaluate their mechanical flexibility and operational 
stability, as shown in Fig. 13e. The electrical properties 
of the device only changed slightly even after 500 bend‑
ing cycles with a radius of 6 mm, as shown in Fig. 13f, g, 
indicating the extraordinary resilience of Te‑based FETs in 
flexible applications.
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4.3  Piezoelectric Devices

Owing to the superior piezoelectric and mechanical perfor‑
mance, and nanoscale structure, the piezoelectric effect in 
2D materials has attracted considerable attention due to the 
potential applications, including energy converters, energy 
sources, sensors, and actuators. For example, due to the 
inversion asymmetry of monolayer  MoS2, both experimen‑
tal and theoretical investigations have proved that monolayer 
 MoS2 exhibits piezoelectricity in its 2H phase [179–181]. 
However, the conversion rate of mechanical to electrical 
energy is severely restricted by its small piezoelectric coef‑
ficient, which also limits its practical applications. In sharp 
contrast, 2D Te nanoflakes possess a large work function and 
the largest piezoelectric strain coefficient compared to the 
other existing piezoelectric materials [182]. Consequently, it 
has been a promising candidate for application in nanogen‑
erators. Recently, He et al. [183] have demonstrated the first 
fully wearable and flexible nanogenerators with high output 
power based on low‑temperature, hydrothermally synthe‑
sized 2D Te nanoflakes. The fabricated 2D Te nanogenera‑
tor device was composed of a sandwich‑like structure with 
polydimethylsiloxane (PDMS)‑coated Te nanoflakes and Au/
textile material, with the Au layer employed as the top and 
bottom electrodes. The devices were investigated in three 
bending states: flat, folded, and rolled, as shown in Fig. 14a, 
b. Under identical strains, periodic bending tests were car‑
ried out, and a closed‑circuit current and an open‑circuit 
voltage of 290 nA and 3 V were achieved, respectively 
(Fig. 14c, d). In order to confirm the potential of the fabri‑
cated 2D Te nanogenerator device for converting vibrational 
energy from human activities into electrical energy, the 
device was adhered to a human arm, and the corresponding 

output current and voltage due to periodic bending and 
unbending were measured to be 650 nA and 2.5 V, respec‑
tively. Additionally, when a compressive force of 8 N and 
an increased driving frequency of 10 Hz were applied to the 
device, the output power density was as high as 2.07 mW 
 cm−2, which can power at least 10 LEDs. In order to get a 
better insight into the piezoelectric device based on 2D Te 
nanoflakes, Chen et al. carried out a systematic investigation 
of 2D Janus tellurene  (Te2Se), including its piezoelectric 
properties and stability for monolayer and multilayer based 
on first‑principles calculations. According to the calculation 
for the monolayer 2D Janus tellurene, the flexible mechani‑
cal properties and structural symmetry‑breaking give rise 
to large in‑plane and out‑of‑plane piezoelectric coefficients 
of 16.28 and 0.24 pm V−1, respectively. For multilayer 2D 
Janus tellurene, the applied in‑ and out‑of‑plane strains give 
rise to strong piezoelectric effects. Furthermore, certain 
stacking sequences lead to out‑of‑plane piezoelectric effects, 
while other sequences produced an in‑plane piezoelectric 
effect. Remarkably, the calculated piezoelectric coefficients 
of monolayer and multilayer 2D Janus tellurene were larger 
than that of the many Janus TMDCs and other well‑known 
piezoelectric materials.

4.4  Modulator

The superior properties of 2D Te nanoflakes, such as broad‑
band optical absorption and response, strong light‑material 
interaction, and excellent environmental stability, enable 
2D Te nanoflakes to be utilized for optical modulators. 
To gain insight into the modulation mechanism, Wu et al. 
designed an all‑optical modulation system based on 2D Te 
nanoflakes, with “on” and “off” modes for the modulating 
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behavior [184]. The schematic of the system with 2D Te 
nanoflakes dispersions based on spatial cross‑phase modu‑
lation is shown in Fig. 15a. Due to the combination of the 
Kerr and non‑axis‑symmetric thermal convection effects for 
both the pump and probe light, the diffraction rings were 
distorted, as seen in Fig. 15b. Moreover, the lower‑power 
probe light can be modulated by higher‑power pump light by 
using this modulation system, and the “on” and “off” modes 
can be realized (Fig. 15c). These outcomes show the 2D Te 
nanoflakes to be a promising candidate for photonics device 
applications. Motivated by the superior properties and great 
potential of 2D Te nanoflakes for modulator applications, 
Guo et  al. successfully fabricated a saturable absorber 

based on 2D Te/PVP nanoflakes, enabling the achievement 
of a highly stable femtosecond laser with a pulse duration 
of 829 fs (Fig. 15f) [185]. The 2D Te/PVP thin film was 
adhered to the end of a fiber and employed as a saturable 
absorber (Fig. 15d). The generated pulse train is shown in 
Fig. 15e, with a repetition frequency of 15.45 MHz. Moreo‑
ver, no peak intensity fluctuation was found in the pulse 
train, illustrating the excellent stability of the mode‑locked 
laser operation. To further investigate the stability of the 
mode‑locked laser, radio‑frequency (RF) spectrum meas‑
urement was carried out, as shown in Fig. 15g. The peak 
was measured, displaying a frequency and peak‑to‑back‑
ground ratio of 15.45 MHz and 53 dB, respectively. These 
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outcomes further confirmed the extraordinary stability of 
the mode‑locked laser operation. Furthermore, the satura‑
tion intensities (modulation depths) of the Te/PVP thin films 
were measured to be 44.65 (11.86%), 26 (10.5%), and 78.14 
(27%) GW  cm−2 at 800, 1060, and 1550 nm, respectively, 
which confirmed that Te/PVP thin films show great potential 
for broadband saturable absorber and mode‑locking laser 
applications. As mentioned previously, similar to BP, 2D Te 
has a tunable bandgap range of 0.35–1.2 eV, which covers 
the MIR spectral band up to a wavelength of 3.5 μm. Several 
kinds of MIR modulators have been demonstrated using free 
carrier plasma dispersion [186, 187], thermo‑optic phase 
shift [188–190], electro‑absorption (Pauli blocking or field‑
induced effects) [191–193], and the electro‑refractive (Pock‑
els) effect [194]. Among these technologies, Pockels electro‑
optic modulators were the most popular modulator due to 
their intrinsic ultrafast response and potential for achieving 
phase‑only modulation. However, MIR integrated Pockels 
modulators have only been experimentally realized using 
Si‑on‑LiNbO3 [194]. The broken structural inversion sym‑
metry and huge electro‑optic activity of 2D Te permit it to be 
utilized for low energy and ultrafast Pockels effect modula‑
tors. In this regard, Jones et al. reported a high‑performance 
waveguide‑integrated Pockels effect modulator based on 2D 
Te. The modulator showed a switching energy of 12.0 pJ/bit 
and a half‑wave voltage‑length product of 2.7 V cm, which 
is orders of magnitude higher than that of existing state‑of‑
the‑art devices (Fig. 15h–j) [137].

4.5  Energy Harvesting Devices

Due to the rapid pace of industrial development, the energy 
crisis has become a critical issue in the twenty‑first century. 
During the past decade, there have been tremendous efforts 
to solve this severe worldwide problem [195–200]. The gen‑
eration of electricity through harvesting energy from ambi‑
ent and waste heat sources is an environmentally friendly and 
sustainable approach to overcome this problem. In general, 
two solutions have been proposed to improve thermoelec‑
tric generation efficiency: striving to develop high‑efficiency 
thermoelectric bulk materials or low‑dimension thermoelec‑
tric materials. As previously mentioned, a large body of the‑
oretical and experimental investigations has proved that 2D 
Te possesses extraordinary thermoelectric properties, even 
among the other 2D materials [185, 201–205]. Thus, 2D 

Te holds great potential for next‑generation thermoelectric 
device applications. Recently, by combining the advantages 
of nanostructures and the intrinsically high thermoelectric 
property of 2D Te, Qiu et al. [202] have presented the first 
highly efficient thermoelectric devices based on 2D Te, as 
shown in Fig. 16a. A He–Ne laser was employed to locally 
heat the 2D Te and generate a temperature gradient. Ther‑
moelectric current mapping measurements were taken to 
further improve the harvesting efficiency. Figure 16b pre‑
sents the laser‑induced thermoelectric current mapping of 
the fabricated device. Noticeably, a thermoelectric current 
of almost 3 μA was achieved for an incident laser power of 
3 mW, which is two orders of magnitude larger than that of 
previous investigations [206, 207]. However, a photovoltaic 
effect may exist during the measurement and contribute to 
the generated current. To evaluate of the influence of photo‑
voltaic effect during the measurement process, three differ‑
ent types of metals were used as electrodes. According to the 
outcomes, the photovoltaic effect generated a current located 
at the metal–semiconductor interface, and a depletion‑type 
contact was formed, as shown in Fig. 16c. Solar energy is 
another important reliable source of energy in nature. Many 
efforts have attempted to efficiently take advantage of this 
energy source. Solar cells, which can convert sunlight into 
electricity, have already proven to be a lucrative candidate 
for commercialization applications and continue to be an 
extremely popular and diverse area of research. To further 
enhance the conversion efficiency and performance of solar 
cells, heterojunction solar cells are currently in the research 
and development phase. This type of solar cell requires a 
suitable direct bandgap of 1.2–1.6 eV, high carrier mobil‑
ity, and environmental stability. It has been shown that 2D 
tellurene meets almost all the aforementioned criteria [208]. 
Recently, Wu et al. [209] have theoretically demonstrated a 
high‑efficiency heterojunction solar cell based on 2D Te and 
TMDCs. By utilizing first‑principles DFT simulations, the 
maximum power conversion efficiency of the 2D Te/WTe2 
and 2D Te/MoTe2 heterojunction solar cells was calculated 
to be 22.5% and 20.1%, respectively, as shown in Fig. 16d. In 
addition, the heterojunctions exhibited a remarkable absorp‑
tion of sunlight and an enhancement of charge separation 
behavior due to the type‑II band alignment. Utilizing pure 
2D ternary compounds, Yang et al. [210] reported a highly 
efficient solar cell based on monolayer  HfTeSe4. The simu‑
lation outcomes from first‑principles calculations indicated 
that the solar cell exhibited an extraordinary absorbance 
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coefficient of up to  105 cm−1 in the visible band, as shown 
in Fig. 16e. The monolayer  HfTeSe4 exhibited a relative long 
carrier recombination lifetime and ultrahigh photocurrent 
(Fig. 16f, g), which is beneficial for solar cell applications. 
The calculated maximum power conversion efficiency of 
solar cell based on a monolayer  HfTeSe4 and  Bi2WO6 het‑
erojunction is up to 20.8% (Fig. 16h), which is much higher 
than that of 2D organic and heterostructure‑based solar cells 
reported previously [211–214]. To aid in the comparison 
with existing devices, the figures‑of‑merit of some typical 

energy harvesting devices based on 2D materials are listed 
in Table 3. The comparison results indicate that 2D Te is 
suitable for high‑performance energy harvesting devices.

4.6  Logic Gates and Circuits

Benefiting from the high uniformity of Te FETs, which ena‑
bles the fabrication of logic gates and computational circuits 
based on Te FETs, Javey et al. have recently demonstrated 
various functional logic gates and circuits based on p‑type 
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Te FETs. Firstly, a simple logic gate consisting of two Te 
p‑type FETs and a NAND gate with a logically valid out‑
put were fabricated, as shown in Fig. 17a, b. For the logic 
gate, typical voltage transfer curves with a gain of 22 and 
38 (Vdd = 1 and 2 V) were achieved. Additionally, multiplier 

circuits consisting of 35 and 39 transistors were fabricated 
to realize multiplication functions. By increasing the number 
of transistors, the maximum output voltage loss decreased 
from 6 to 3%. To further explore the performance of Te in 
logic gate and circuit applications, more complicated 3D 

Table 3  Typical energy harvesting device performance based on 2D Te and other 2D materials

Material Thermoelectric figure of merit: 
ZT (room temperature)

Room‑temperature 
power factor

Power conversion efficiency Absorbance coef‑
ficient  (cm−1)

Refs.

Few‑layer Te 0.63 31.7 mW/cm K2 ND ND [202]
Monolayer  HfTeSe4 

and  Bi2WO6 
heterojunction

ND ND 20.8% 6 × 105 [210]

2D Te/WTe2 and 
2D Te/MoTe2 
heterojunction

ND ND 22.5% and 20.1% 5 × 105 [209]

Graphene 0.42 2.5 mW/m K2 12.6% 3.01 × 105 [215–217]
BP 0. 25 138.9 μW/cm K2 6.85% ND [218–220]
Perovskite 0.13 28–36 μW/cm K2 17.2% ~  104 [221–223]
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multilayer transistors and logic gates based on p‑type Te 
FETs were demonstrated, as shown in Fig. 17c. Noticeably, 
the Id–Vg transfer curves of the first layer changed slightly 
after the construction of the top layer through a low‑tem‑
perature process, as shown in Fig. 17d. The slight shift of 
the threshold voltage was likely caused by the semicon‑
ductor–oxide interface or a fixed charge in the intermedi‑
ate oxide. A two‑layer invert was employed to construct 
3D circuits, where the upper‑ and bottom‑layer transistors 
were operated as an active load and the driver, respectively 
(Fig. 17e). A gain of approximately 12 at a Vdd = 2 V was 
achieved, as shown in Fig. 17f. These outcomes indicate 
that p‑type Te FETs possess great potential for integrated 
3D logic gates and circuits applications [178].

5  Summary

Since 2D Te nanoflakes were successfully fabricated in 
2017, it has become one of the most popular of the 2D mate‑
rials family [183]. In this review, we summarized the crystal 
structure, synthesis methods, physical properties, and vari‑
ous applications based on 2D Te nanoflakes, such as pho‑
todetectors, FETs, piezoelectric devices, modulators, logic 
gates, and circuits. Similar to BP, 2D Te nanoflakes are a 
layered semiconductor material with a thickness‑dependent 
bandgap ranging from 0.35 to 1.2 eV (visible to MIR band). 
The unique helical chain structure of 2D Te gives rise to a 
high room‑temperature carrier mobility (~ 103 cm2  V−1  s−1) 
and strong in‑plane anisotropic properties. In sharp contrast, 
due to an energy barrier that inhibits oxidation pathways, 2D 
Te nanoflakes possess more robust environmental stability 
than other existing 2D materials, making them a promis‑
ing material for fundamental research as well as practical 
applications. During the past two decades, it has become 
highly sought after to obtain large‑scale and high‑quality 
2D materials to satisfy the demands of various applications 
arising from the rapid development of the semiconductor 
industry. Up scaling the fabrication of these 2D materials 
is currently a major area of focus in the nanotechnology 
and nanoscience field, and the lack of commercially viable 
solutions is also severely restricting the further development 
of 2D materials in the semiconductor industry. However, 
scalable and high‑quality 2D Te nanoflakes can be efficiently 
synthesized though various means, including PVD, MBE, 
solution synthesis, LPE methods, and thermal evaporation. 

These low‑cost and efficient synthesis methods are favorable 
for industry applications and commercialization.

As a versatile material, 2D Te nanoflakes have been 
utilized in a wide range of applications. The unique helical 
chain structure, flexible mechanical properties, and struc‑
tural symmetry‑breaking in 2D Te nanoflakes lead to a 
large in‑plane piezoelectric coefficient, which enable it to 
be a potential material for piezoelectric devices. Moreover, 
benefiting from air‑stability, strong light‑material interac‑
tion, broadband optical absorption and response, and other 
superior properties, 2D Te nanoflakes have been utilized 
in the fabrication of numerous devices, including photo‑
detectors, FETs, modulators, logic gates and circuits, and 
exhibited excellent performance that often exceeds the 
existing state‑of‑the‑art 2D materials.

6  Prospective

Although 2D Te nanoflakes have already shown excel‑
lent potential for academic and engineering applications 
(Fig. 18), challenges and opportunities still remain for 
researchers. For synthesis processes, ultrathin 2D Te 
nanoflakes can be synthesized through the PVD method. 
However, the requirements for a high‑vacuum environ‑
ment and high‑purity atomic sources limit the potential 
for up scaling. The LPE technique is an effective means of 
synthesizing layered 2D Te nanoarchitectures. However, 
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the small‑scale and inefficient control of the thickness of 
the derived materials restricts its further applications. 
Additionally, in situ CVD methods have been applied to 
synthesize large‑scale and high‑quality 2D materials, such 
as graphene, BP, and TMDCs among others [224–233]. 
However, the use of CVD method is rarely reported to 
produce ultrathin 2D Te nanoflakes. Thus, it is of great 
significance to develop CVD techniques to grow atomi‑
cally thin Te. In particular, the controllable synthesis of a 
desired number of layers from monolayer to multilayer is 
highly sought after.

Regarding photodetectors and FETs based on 2D Te nano‑
flakes, the reported investigations mainly focus on the visible 
to near‑IR band. The development of ultra‑broadband (UV to 
MIR band) devices is highly preferred. Additionally, the car‑
rier dynamics and transport mechanisms in photodetectors 
and FETs are not understood clearly enough compared to 
photodetectors and FETs based on BP and TMDCs. Further‑
more, doping and heterojunction methods can significantly 
enhance the performance of photodetectors and FETs based 
on 2D Te nanoflakes. To further improve the performance of 
Te‑based devices, it is necessary to improve the doping and 
heterojunction fabrication techniques, particularly control‑
lable doping and heterojunction formation processes. Fur‑
ther investigations are necessary to gain a better insight into 
photodetectors and FETs based on 2D Te nanoflakes. In the 
modulator application, the long‑term operation stability is 
still a challenge. Additionally, only a few investigations have 
been reported examining free‑space and waveguide modula‑
tors based on 2D Te nanoflakes. Further research is needed 
to explore the performance and mechanisms of these modu‑
lators. For energy harvesting devices, most investigations are 
still in the theoretical stage and further experimental work is 
needed to provide a pathway toward helping solve the energy 
crisis. In logic gate applications, the use of 2D Te has only 
been achieved in the simplest logic gate. Further investi‑
gations should be carried out to explore the performance 
of p‑type Te FET‑based logic gates with more complicated 
structures. For circuit applications, the practicality of p‑type 
Te FETs has only been demonstrated for monolithic 3D cir‑
cuits. To enhance the performance of such devices, a more 
suitable insulation layer and a more optimized deposition 
technique must be found.

Besides the aforementioned applications, extending 
the applications of 2D Te thin films to other fields, such 
as flexible and transparent electronics and displays, highly 

integrated chips, biomedicine, and lasing has become a criti‑
cal issue for its further development. With the rapid devel‑
opment of 2D materials and industry demands, we believe 
2D Te will continue to find novel applications in the future.

In conclusion, 2D Te is a fascinating material due to its 
excellent properties and great potential in various fundamen‑
tal and practical applications. However, 2D Te also faces 
some significant challenges. The continued investigation of 
this interesting material in photonic systems, including pho‑
todetectors, FETs, piezoelectric devices, modulators, energy 
harvesting devices, logic gates, and circuits, is anticipated. A 
more comprehensive understanding of 2D Te nanoflakes will 
emerge in the future as a result of these ongoing concerted 
research efforts.
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