Supporting Information for

Hybridized Mechanical and Solar Energies Driven Self-Powered Hydrogen Production

Xuelian Wei^{1, 2}, Zhen Wen^{2, *}, Yina Liu³, Ningning Zhai², Aimin Wei², Kun Feng², Guotao Yuan², Jun Zhong², Yinghuai Qiang^{1, *}, Xuhui Sun^{2, *}

¹Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China

²Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China

³Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, People's Republic of China

*Corresponding authors. E-mail: <u>wenzhen2011@suda.edu.cn</u> (Z. Wen); <u>yhqiang@cumt.edu.cn</u> (Y. Qiang); <u>xhsun@suda.edu.cn</u> (X. Sun)

Supplementary Figures

Fig. S1 UPS spectra of (**a**) WO₃ and (**b**) BiVO₄. The top of valence band is calculated to be about -7.2 eV and -6.9 eV (compared to the vacuum level) by subtracting the width of the He I UPS spectrum from the excitation energy (21.2 eV)

Fig. S2 XPS analysis of the WO₃, BiVO₄ and WO₃/BiVO₄ photoanodes: (**a**) Three pristine prepared photoanodes, (**b**) C, (**c**) O, (**d**) W 4f, (**e**) V 2p, and (**f**) Bi 4f spectra

Fig. S3 (a) The equivalent circuit of EIS experimental test. (b) Parameters of equivalent circuit elements. R_s is the series resistances. C_{bulk} is the capacitance of the space charge depletion region at the electrode surface. R_{trap} is the resistance for trapping holes by surface states. C_{trap} shows the amount of active sites in surface states. R_{ct} is the resistance for charge transfer across the interface.

Fig. S4 Equivalent circuit of the self-powered solar hydrogen generation system

Fig. S5 Peak voltage as a function of different rotation speeds in the dark or under illumination

Fig. S6 J-V curves of WO₃/BiVO₄ electrodes measured in dark and under illumination

Fig. S7 Photochemical stability curve for the $WO_3/BiVO_4$ photoanode collected at 1.23 V vs. RHE over 6 h

Supporting Note S1

Figure S1 shows the UPS spectra of WO₃ and BiVO₄. E_{cutoff} is determined by linear extrapolation to zero of the yield of secondary electrons. From Fig. S1, $E_{cutoff} = 16.8$ eV for WO₃ and $E_{cutoff} = 17.3$ eV for BiVO₄. The HOMO energy is determined using the incident photon energy, hv = 21.2 eV, E_{cutoff} , and E_{onset} . Also, $E_{onset} = 2.8$ eV for WO₃ and $E_{onset} = 3.0$ eV for BiVO₄. Thus, the HOMO energies are obtained directly from the UPS measurements,

$$E_{HOMO} = hv - (E_{cutoff} - E_{onset})$$
(S1)

For WO₃, $E_{\text{HOMO}} = -7.2 \text{ eV}$, and $E_{\text{HOMO}} = -6.9 \text{ eV}$ for BiVO₄. The LUMO energies were calculated using the HOMO levels and the optical gaps (E_g) obtained from the onset of absorption (Fig. 1f). $E_g = 2.58 \text{ eV}$ for WO₃ and $E_g = 2.41 \text{ eV}$ for BiVO₄. Thus for WO₃, $E_{\text{LUMO}} = -4.62 \text{ eV}$; and $E_{\text{LUMO}} = -4.49 \text{ eV}$ for BiVO₄.

Supporting Note S2

The slopes from the Mott-Schottky plots are used to estimate the carrier densities using Eq. S2:

$$N_{d} = (2/e_{0}\epsilon\epsilon_{0})[d(1/C^{2})/dV]^{-1}$$
(S2)

where e_0 is the electron charge $(1.602 \times 10^{-19} \text{ C})$, ε is the dielectric constant of WO₃ (2.3), BiVO₄ (60), ε_0 is the permittivity of vacuum (8.854 × 10⁻¹² F m⁻¹), N_d is the donor density and V is the potential applied at the electrode. Capacitances were derived from the electrochemical impedance obtained at each potential with 10,000 Hz frequency in the dark. The Mott-Schottky slopes of both samples are positive which indicates that they are n-type semiconductors with electrons as majority carriers. The slopes are used to estimate carrier densities. The charge carrier densities after calculation for WO₃ and BiVO₄ are 6.81×10^{23} and 7.30×10^{19} cm⁻³, respectively. Moreover, BiVO₄ can only be considered as a modification in our experiment and very small quantity, so the result of the WO₃/BiVO₄ heterojunction

can be supposed to be as the WO₃, while the value is 6.81×10^{23} cm⁻³. The higher carrier density of the WO₃/BiVO₄ heterojunction photoanode compared with the individual sample BiVO₄ could partly provide a benefit to the performance.

Supporting Note S3

Overall energy conversion efficiency (η) = $\frac{\text{Output Energy}}{\text{Total Input Energy}} = \frac{E_1}{E_2 + E_3}$

where E_1 is the energy of produced hydrogen involved, E_2 is the input mechanical energy to drive a RD-TENG, and E_3 is the input sunlight light energy.

When the rotation speed is 160 rpm, the calculation process of different energies is as follows:

(1) Under illumination, the H₂ production rates reached 7.27 μ L/min, thus,

$$E_1 = n_1 \Delta G = \frac{7.27 \times 10^{-6}}{22.4} \times 237 \times 10^3 = 7.69 \times 10^{-2} \text{ J}$$

Under dark, the H₂ production rates reached 5.45 µL/min, thus

$$E_1' = n_1' \Delta G = \frac{5.45 \times 10^{-6}}{22.4} \times 237 \times 10^3 = 5.77 \times 10^{-2} \text{ J}$$

where n_1 and $n_{'1}$ is moles of hydrogen under illumination and dark, , ΔG is standard Gibbs free energy.

(2) The rated torque of the rotary motor to drive the RD-TENG is 8.5 N m, thus,

$$E_2 = \frac{T \cdot n}{9550} \cdot t = \frac{8.5 \times 160}{9550} \times 1000 \times \frac{1}{3600} \times 60s = 2.37 \text{ J}$$

where T is the torque of the rotary motor, n is the rotation speed, t is the time.

(3) All illuminated area is 0.1 cm^2 , thus,

$$E_3 = P \cdot S \cdot t = 1000 W/m^2 \times (0.1 \times 10^{-4}) m^2 \times 60 s = 0.6 J$$

where P is the optical power density, S is the illuminated area, t is the time. In conclusion,

$$\eta = \frac{E_1}{E_2 + E_3} \times 100\% = 2.59\%$$
$$\eta' = \frac{E_1'}{E_2} \times 100\% = 2.43\%$$