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HIGHLIGHTS

• 3D mesoporous  Ni3FeN was constructed through hard templating and thermal nitridation.

• Ni3FeN exhibits superior electrochemical performance for OER with a small overpotential of 259 mV to achieve a 10 mA cm−2.

• Ni3FeN can also deliver a lower charging voltage and longer lifetime than  RuO2 in a rechargeable Zn–air battery.

ABSTRACT As sustainable energy becomes a major concern for modern soci-
ety, renewable and clean energy systems need highly active, stable, and low-cost 
catalysts for the oxygen evolution reaction (OER). Mesoporous materials offer an 
attractive route for generating efficient electrocatalysts with high mass transport 
capabilities. Herein, we report an efficient hard templating pathway to design 
and synthesize three-dimensional (3-D) mesoporous ternary nickel iron nitride 
(Ni3FeN). The as-synthesized electrocatalyst shows good OER performance in 
an alkaline solution with low overpotential (259 mV) and a small Tafel slope (54 
mV  dec−1), giving superior performance to  IrO2 and  RuO2 catalysts. The highly 
active contact area, the hierarchical porosity, and the synergistic effect of bimetal 
atoms contributed to the improved electrocatalytic performance toward OER. 
In a practical rechargeable Zn–air battery, mesoporous  Ni3FeN is also shown to 
deliver a lower charging voltage and longer lifetime than  RuO2. This work opens 
up a new promising approach to synthesize active OER electrocatalysts for energy-related devices.
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1 Introduction

Among the electrochemical processes, the electrocatalytic 
oxygen evolution reaction (OER) has considerable scientific 
and economic advantages for energy conversion and storage 
applications, such as water splitting or metal–air batteries 
[1, 2]. Particularly, the small overpotentials and fast kinet-
ics required for catalyzing OER make it potentially cost-
effective. Using precious metal catalysts ruthenium (Ru) and 
iridium (Ir) oxides, the potential of this technology has been 
proved with excellent electrocatalytic characteristics [3, 4]. 
However, these noble metal-based catalysts are impractical 
due to their rarity and high cost, limiting their widespread 
use [5]. To address this concern, efforts have been made 
toward developing earth-abundant low-cost and highly active 
OER electrode materials, such as metal-perovskite oxides 
[6], sulfides [7], nitrides [8], and phosphides [9]. Among 
them, transition metal nitrides (TMNs) have emerged as 
promising low-cost alternatives due to their rapid electron 
transport properties and excellent chemical stability [10].

A significant decrease in overpotential can be achieved 
through various approaches to optimize the surface nano-
structure and electronic states for OER electrocatalysts [11, 
12]. One approach, the introduction of an additional transi-
tion metal element, allows tuning of the electronic structure 
and improvement of the precipitation energies compared to 
single-metal materials [13] due to the synergistic effect of a 
mixed metal system. For example, the incorporation of Fe 
into CoN has been shown to improve the catalytic perfor-
mance compared to pure cobalt nitride [14, 15]. As another 
approach, the formation of nanostructured TMNs can pro-
vide abundant accessible active sites, high infiltration capac-
ity, and large contact area [16]. By combining these two 
approaches, three-dimensional ordered mesoporous mixed 
metal nitrides could be made with uniform mesochannels, 
large surface areas and pore volume, and high electron con-
ductivity. However, they would only be of practical interest 
in OER electrocatalysis [17, 18]. There has been some suc-
cess in producing mixed metal transition metal nitrides by, 
for example, heating the respective oxide precursor under 
ammonia [14, 16], plasma-based nitridation [19], or in situ 
nitridation of metals supported on nitrogen-doped carbon 
[20]. However, there remain significant technical difficulties 
and fundamental challenges in synthesizing ordered nano-
structured materials using these approaches.

Nanocasting synthesis using mesoporous silica as a hard 
template has attracted tremendous interest as a platform for 
developing efficient electrocatalysts based on earth-abundant 
metals [21]. The hard templating route has been successfully 
developed to prepare high-surface-area mesoporous multi-
metal materials for OER from mixed oxides [22], perovs-
kites [23], and phosphides [24]. Various synthesis routes for 
ordered mesoporous transition metal nitrides by nanocasting 
have also been developed [25]. This generally takes one of 
two synthetic routes: direct nitridation of mesoporous oxides 
or the transformation of mesostructured metal oxides/silica 
composites to nitrides/silica composites. Though there has 
been some success with mixed metal materials, to the best 
of our knowledge, mixed metal nitrides have not been sig-
nificantly developed. By combining the benefits of nanocast-
ing, with the synergetic effects of the electronic structure 
derived from multi-metal nitrides, one can achieve highly 
efficient mesoporous OER electrodes from a facile approach 
to achieve high catalyst loading.

Herein, we developed a facile two-step nanocasting–nitri-
dation strategy to achieve a bimetal nitride  Ni3FeN with 
ordered mesoporous structures, uniform mesopores, large 
pore volume, and large surface areas. Benefiting from both 
high catalyst loading and large contact area between the 
catalyst and electrolytes, this mesoporous  Ni3FeN catalyst 
exhibits highly efficient and stable catalytic activity toward 
the OER in an alkaline solution. It exhibits a very low over-
potential (259 mV) to achieve a 10-mA cm−2 geometric cur-
rent density, which is lower than those of  IrO2,  RuO2, and 
an ordered mesoporous  Ni3N electrocatalyst.

2  Experimental

2.1  Synthesis of Mesoporous Oxides

Ordered mesoporous NiO and  Ni3FeOx were synthesized fol-
lowing a nanocasting route with KIT-6 as the hard template 
according to the procedure reported by Deng et al. [26]. 
Typically, 0.5 g of KIT-6 and 0.8 M of metal nitrates as a 
precursor (Ni(NO3)2·6H2O, Fe(NO3)3·9H2O) were dispersed 
in 3.6 mL of ethanol in a weight ratio of 1:0 and 3:1 for NiO 
and  Ni3FeOx oxides, respectively. After 30 min of stirring 
at room temperature, ethanol was removed by evaporation 
through heating of the mixture overnight at 60 °C. After-
ward, the resulting precursor ion filled mesoporous silica 
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composite was heated in a ceramic crucible in an oven at 
250 °C for 4 h to completely decompose the nitrate spe-
cies. The impregnation step with the metal salt solution was 
repeated in order to achieve higher loadings. After evapora-
tion of the solvent, the resulting metal precursor/silica com-
posites were calcined at 550 °C for 6 h. The silica template 
was removed by treatment with 2 M NaOH solution, washed 
with deionized water and ethanol, and then dried at 60 °C 
for 12 h.

2.2  Synthesis of Mesoporous  Ni3N

The as-obtained mesoporous NiO (100 mg) was heated at 
370 °C with a heating rate of 4 °C min−1 under a flowing 
pure ammonia atmosphere (1 bar, 200 sccm) and main-
tained for 4 h in a tube furnace. The furnace was then cooled 
down naturally to room temperature in a flowing ammonia 
environment.

2.3  Synthesis of Mesoporous  Ni3FeN

The nickel–iron nitride was obtained from the mesoporous 
 Ni3FeOx mixed oxides precursor via a similar nitridation 
reaction: 200 mg of the porous  Ni3FeOx precursor was 
heated with a heating rate of 4 °C min−1, maintained at 
400 °C for 4 h under a flowing  NH3 atmosphere, and then 
allowed to cool to room temperature.

2.4  Zn–Air Battery (ZAB) Measurements

The Zn–air battery (ZAB) tests were performed with a 
homemade Zn–air cell. The air cathode was made by spray-
ing catalyst ink onto carbon paper with a gas diffusion layer, 
with a catalyst loading of 0.25 mg cm−2. The catalyst ink 
was prepared by ultrasonically dispersing a mixture of 6 mg 
 Ni3FeN, 6 mg iron phthalocyanine (FePc), 12 mL ethanol, 
and 100 μL of 5 wt% Nafion solution. For comparison, a 
mixture of 40% Pt/C and  RuO2 (mass ratio 1:1) with the 
same catalyst loading on carbon paper was used as the cata-
lytic layer. A polished Zn foil (thickness 0.3 mm) was used 
as the anode, and the electrolyte was 6.0 M KOH containing 
0.20 M Zn(Ac)2. A Land CT2001A system was used to carry 
out the cycling test with a 10-min rest time between each 
discharge/charge cycle at a current density of 10 mA cm−2. 
Each discharge/charge period was set to be 30 min. The 

charge and discharge polarization curves were carried out 
using the PINE electrochemical workstation (Pine Research 
Instrumentation, USA).

Further details regarding the characterization of the cata-
lysts are available in the Supporting Information.

3  Results and Discussion

3.1  Characterization of Mesoporous Electrocatalysts

As shown in Fig. 1, highly ordered mesoporous oxides were 
synthesized through a nanocasting route from mesoporous 
silica using 3D cubic KIT-6 silica as templates [27]. In 
the second step, after nanocasting, the silica template is 
removed, leaving behind a 3D mesoporous metal oxide rep-
lica. Then, the mesoporous replica was subsequently nitrid-
ized under an ammonia atmosphere.

To verify the formation of crystalline phases, the 
mesoporous oxides replica and their corresponding nitrides 
were investigated by wide-angle X-ray diffraction (XRD). 
As shown in Fig.  2a, after flowing ammonia over the 
mesoporous NiO, the diffractogram shows completely dif-
ferent diffraction peaks, which are consistent with hexago-
nal  Ni3N (JCPDS Card No. 01-089-5144) [28]. As well for 
the  Ni3FeOx precursor, annealing at 400 °C in ammonia 
results in a complete conversion to an iron-nickel nitride 
mesostructure. The resulting XRD pattern shows only the 
diffraction peaks that are indexed to  Ni3FeN (JCPDS Card 
50-1434). The diffraction peaks correspond to (111), (200), 
(220), and (311) planes of face-centered cubic (fcc)  Ni3FeN 
[29, 30]. None of the samples show the characteristic peak 
at 23° from amorphous silica (Fig. S1), confirming the com-
plete removal of the silica template. As shown in Fig. 2b, 

Impregnation

)ii()i(

(iii)KIT-6

NH3

NH3 Mesoporous oxides Mesoporous nitride

Removal
of silica

Fig. 1  Schematic illustration of the synthesis strategy for ordered 
mesoporous bimetal  Ni3FeN through a nanocasting route
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the low-angle diffractogram of the calcined KIT-6 shows 
two diffraction peaks which correspond, respectively, to 
the (211) and (220) reflections of a 3D Ia3d cubic structure 
[31, 32]. Compared with the template, all diffractograms 
of mesoporous oxide intermediates and their corresponding 
nitrides show a similar diffraction peak assigned to the (211) 

reflection, indicating that the ordered mesostructured is pre-
served. Transmission electron microscopy (TEM) analysis 
reveals the morphology of the pristine KIT-6 template and 
different as-synthesized mesoporous replicas and nitrides, as 
shown in Fig. 2c. The KIT-6 template consists of a highly 
ordered and interconnected mesopore system with a pore 
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Fig. 2  a Wide-angle XRD patterns of ordered mesoporous NiO,  Ni3N,  Ni3FeOx mixed oxide, and  Ni3FeN and their standard XRD JCPDS data. 
b Low-angle powder XRD patterns of KIT-6 and mesoporous materials replicated from KIT-6 silica. TEM images of c KIT-6 silica template 
along the [111] direction, d NiO, e  Ni3FeOx, f  Ni3N, and g  Ni3FeN (inset: the corresponding particles sizes distributions); h HRTEM of  Ni3FeN 
(inset: the corresponding FFT)
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size diameter in the 5–6 nm range, resulting in the sharp dif-
fraction features observed in Fig. 2b. This is also supported 
by the BET analysis (Fig. S2). After nanocasting, it can be 
observed that NiO (Fig. 2d) and  Ni3FeOx (Fig. 2e) exhibit an 
ordered framework and uniform nanoparticles with a narrow 
size range ~ 7 nm. Figure 2f shows the morphology of the 
mesoporous  Ni3N. We can still clearly see that the ordered 
mesostructure and uniform particles of the mother mate-
rial, NiO, were maintained after conversion to nitride. The 
diameters of those particles are approximately 6.9 ± 0.4 nm 
(Fig. S3f), which is in good agreement with the mesopore 
diameter of the KIT-6 (5–10 nm). This indicates that the 
transformation of NiO into  Ni3N maintained the confined 
structure of the pore channels [33]. For the as-synthesized 
mesoporous bimetallic Ni–Fe nitride (Fig. 2g), the TEM 
micrograph shows that the  Ni3FeN partially consists of large 
domains with an ordered framework and uniform nanopar-
ticles with an average size 6.3 ± 0.4 nm arranged uniformly 
throughout the material as expected (inset of Fig. 2g). Nitro-
gen sorption isotherms of  Ni3N and  Ni3FeN (Fig. S4) indi-
cate that both of them display type IV sorption isotherm and 
exhibit hysteresis loops, as is typical for mesoporous mate-
rials. The template-free mesostructured nitrides have BET 
surface area of 50 and 52 m2 g−1 with pore size distributions 
ranging from 5 to 8 nm, for  Ni3N and  Ni3FeN, respectively.

Furthermore, the high-resolution TEM (HRTEM) image 
of  Ni3FeN (Fig. 2h) indicates that the fabricated mesoporous 
ternary nitride is well crystallized, and the integrated crystal 
lattice pattern suggests that a single crystal exists in this 
domain. The d-spacing of the plane is 1.69 Å, correspond-
ing to the (111) plane of  Ni3FeN [34]. Typical selected area 
electron diffraction (SAED) pattern (inset of Fig. 2h) dis-
plays highly resolved concentric rings and regular spots, 
suggesting the high crystallinity of the sample in agreement 
with the HRTEM results. In addition, the energy-dispersive 
spectrum (EDS) elemental mapping (Fig. S7b) reveals a uni-
form distribution of the Ni, Fe, and N atoms in the selected 
field (similar to the mother oxide as shown in Fig. S6). The 
molar ratio of Ni/Fe in  Ni3FeN, determined from the EDX 
spectrum (Fig. S5c), is around 3.012: 0.988, close to the 
expected Ni/Fe ratio of 3:1.

X-ray photoelectron spectroscopy (XPS) was employed 
to characterize the chemical valence states of the various 
elements of the bimetallic nitride catalyst. The XPS survey 
spectra for  Ni3FeN samples (Fig. S8) confirm the presence 

of Ni, Fe, and N, with O and C peaks resulting from surface 
oxidation [35]. The Ni 2p high-resolution scans show the 
expected doublet Ni 2p1/2 and Ni 2p3/2 for various samples 
(Fig. 3a). As can be seen, the nitrated mesoporous mate-
rials,  Ni3N and  Ni3FeN, show a low binding energy peak 
centered at 852.6 eV in Ni 2p3/2 not visible in the mother 
oxide template. This peak can be attributed to the metallic 
state of Ni [36], which results from the formation of nitride 
[8, 28, 37]. Additionally, there are two broad peaks centered 
at 855.3 and 861.2 eV in Ni 2p3/2 with corresponding 872.7 
and 879.9 eV peaks in Ni 2p1/2. These can be described by 
oxidized Ni species and Ni satellite peaks, respectively [36]. 
Given the diffraction results, which had no significant oxide 
phases, this suggests that the Fe–Ni ternary nitrides samples 
are partially oxidized at the surface [8, 38]. The amount 
of metallic Ni appears to be increased with the addition of 
iron, as shown by the relative intensity of the metallic peak 
to the oxidized peaks. For  Ni3FeOx, it is clear that the Ni 
oxide can be described by two components, correspond-
ing to predominately  Ni2+ (NiO) and predominantly  Ni3+ 
 (Ni2O3) oxidation states [39], while the nitrides only have 
one dominate oxide phase. The nitridation process seems to 
preferentially affect the  Ni2+ phase, which disappears with 
nitridation, while the  Ni3+ phase persists. This behavior is 
also supported by the O 1s high-resolution scans (Fig. 3d), 
where the O 1s of  Ni3FeOx has a strong feature at 529.6 eV 
ascribed to NiO [39], which greatly diminished with nitrida-
tion. For the mixed metal nitride, there is also evidence of an 
iron hydroxide phase, at 532.2 eV [40, 41]. Figure 3d shows 
a pure  FeOx phase consisting of γ-Fe2O3 nanoparticles as a 
reference, showing a similar surface hydroxide phase [41]. 
Zhu et al. [38] also observed this tendency of the addition of 
Fe to shift the oxidation state of mixed metal oxides, which 
is dominated by M–OH bonds.

Figure  3b displays high-resolution Fe 2p spectra of 
 Ni3FeN,  Ni3FeOx, as well as a reference γ-Fe2O3 spectra. 
Again, the nitridation results in the formation of a new peak 
at 706.9 eV, which can be assigned to metallic iron nitride 
[35]. However, in this case the signal is dominated by the 
oxide related and satellite peaks at 711.6 and 717.9 eV [35, 
42]. These features are consistent with γ-Fe2O3, though it is 
difficult to unambiguously assign the oxidation states in iron 
oxides [41–43]. In the N 1s region (Fig. 3c), the spectrum 
can be deconvoluted into a combination of two components 
at 397.5 and 399.2 eV for nitrided samples [44].
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3.2  Electrocatalytic Oxygen Evolution Reaction

An efficient oxygen evolution catalyst with superior catalytic 
activity requires an early-onset potential with high kinetic 
current density, small Tafel slope, and good durability [45]. 
To identify whether mesoporous iron–nickel nitride is a 
promising electrocatalyst for OER, electrochemical measure-
ments were carried out by linear sweep voltammetry (LSV) 
on all the synthesized electrocatalysts and benchmark cata-
lysts with the same loading density of ~ 0.203 mg cm−2. The 
upper bound of the potential was set at 1.8 V versus RHE 
(reversible hydrogen electrode) to avoid the detachment of 
the catalytic layer and interference with the measurement 
as a result of excessive oxygen evolution. As displayed in 
Fig. 4a, OER activity curves of the as-synthesized transition 
metal nitrides catalysts, transition metal-based oxides, and 
commercial  RuO2 and  IrO2 were all studied under the same 
conditions for direct comparison.

The as-prepared mesoporous bimetallic electrocatalyst 
iron–nickel nitride exhibited an early-onset potential of 
~ 1.45 V versus RHE, high kinetic current density at a fixed 
potential, and the lowest overpotential (259 mV) (Fig. 4b) 
to achieve a current density of 10 mA cm−2. Compared to 
the nickel iron mixed oxides (352 mV),  IrO2 (320 mV), 
 RuO2 (322 mV), and NiO (415 mV), the nitrides showed 
the lowest overpotentials, demonstrating that the conversion 
of oxides to mesoporous nitrides can significantly improve 
the catalytic performance. Moreover, the mesoporous binary 
 Ni3N exhibited slightly inferior electrocatalytic activity with 
an overpotential of 315 mV. As predicted, after addition of 
Fe to form a ternary compound, the catalytic activities of 
metal nitrides were enhanced. The outstanding electrocata-
lytic performance likely originates from: (1) the synergetic 
effect between bimetal atoms, as reported in other bime-
tallic alloys such as  FexNi1−xOOH [46],  Ni0.51Co0.49P [9], 
Ni–MnO/rGO aerogel [47], and  NiCo2S4 [7]; (2) hierarchical 
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porosity composed of mesopores connected with macropo-
res (or larger mesopores) facilitating fast mass transport, 
resulting in improved electrode performance [48–52]; or (3) 
a combination of these factors.

It is important to note that in the polarization curve of 
 Ni3N, an apparent oxidation peak centered at about 1.32 V 
can be observed prior to the onset of oxygen evolution. This 
could be assigned to the oxidation redox peaks of  Ni2+/Ni3+ 
conversion during the OER in alkaline electrolytes, which 
have been investigated in detail in most of Ni-based electro-
catalysts [53, 54]. The shift to around 1.4 V and decrease in 
total Ni oxidation peak intensity in the LSV curve of  Ni3FeN 
are likely attributed to the incorporated Fe suppressing the 
transformation of Ni(OH)2 to NiOOH [55], which is consist-
ent with other bimetallic alloys (Ni,Co)S2 [56] and Fe–Ni 
hydroxide [55]. This suppression is also supported by the 
observed preferential surface oxidation of Fe in the XPS 

results. Additionally, it is likely that the nitridation process 
itself contributes to this effect, as it was mainly the  Ni2+ 
that was converted into nickel nitride. With a limited abun-
dance of  Ni2+, there is a lower content of Ni(OH)2 in ternary 
nitride. These two effects likely result in a reduction in the 
number of active sites available for nickel oxidation. Louie 
et al. [57] also observed the decrease in average intensity for 
the oxidation state of Ni in NiOOH with the incorporation 
of Fe in Ni–Fe films.

The Tafel slope and current densities exchange were deter-
mined to evaluate the kinetic process. As shown in Fig. 4c, 
the Tafel plots derived from polarization curves demon-
strate that the  Ni3FeN exhibits the smallest Tafel slope of 
54 mV dec−1 among these tested catalysts, which indicates 
efficient electron transfer and rapid kinetic activities. This is 
similar to the commercial heavy metal catalyst, but substan-
tially smaller than mesoporous NiO and nickel–iron mixed 
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oxides (99 and 106 mV dec−1, respectively). The ternary 
 Ni3FeN also has a lower Tafel slope than the binary  Ni3N 
(63 mV  dec−1), demonstrating more rapid kinetic activity, 
supporting the improved catalytic performance.

To investigate the reaction kinetics occurring at the elec-
trode–electrolyte interface during the OER, electrochemi-
cal impedance spectroscopy (EIS) was also measured in 
a three-electrode system in 1.0 M KOH. On basis of the 
Nyquist plots (Fig. 4d), the smallest semicircle for Ni–Fe 
nitride suggests the lowest charge-transfer resistance for 
OER at an overpotential of 1.5 V compared with the other 
mesoporous catalysts, which is consistent with the supe-
rior OER activity and smaller Tafel slope. Double-layer 
capacitance (Cdl) measurements were performed to evalu-
ate the electrochemically active surface area (ECSA) of the 
mesoporous  Ni3FeN catalyst through electrical double-layer 
capacitance (EDLC) measurements in 1 M KOH electrolyte 
[56, 58, 59]. The charging currents were collected at differ-
ent scan rates (20, 40, 60, 80, and 100 mV s–1) as shown in 
Fig. 5a.

The mesoporous  Ni3FeN catalyst provided high cathodic 
(ic) and anodic (ia) current densities at each rate scan, con-
sistent with a much greater active surface area than the other 
mesoporous catalysts (Fig. S9). The double-layer capaci-
tance value of  Ni3FeN was estimated around 3.85 mF  cm–2 
calculated from the linear plots between the scan rate and 
current density at 0.12 V (Fig. 5b).  Ni3FeN has significantly 
higher capacitance, reflecting a high electrochemical surface 
and, consequently, a high surface roughness, compared to 
 Ni3N (0.43 mF cm−2), NiO (0.401 mF cm−2), and  Ni3FeOx 
(0.51 mF cm−2) (Fig. S9). This is also higher than the com-
mercially available  IrO2 (3.51 mF cm−2). The larger ECSA 
should result in better exposure and enhanced utilization of 
the catalytic active sites, thus giving rise to the observed 
improved OER activity [60].

Stability is another important consideration for an effi-
cient OER electrocatalyst in alkaline solution. The long-
term stability of the  Ni3FeN and commercially available 
 IrO2 measured at a fixed overpotential of 370 mV during 
continuous operation for 10 h is summarized in Fig. 5c. Cur-
rent density values negligibly declined for  Ni3FeN (with a 
retention rate of 93.1%) compared to  IrO2 (69.1%) over the 
same time period. In addition, as displayed in the inset of 
Fig. 5c,  Ni3FeN has stable OER catalytic performance with 
negligible degradation for the OER process and onset poten-
tial after continuous scanning for 2000 cyclic voltammetry 

cycles. At a current density of 200 mA cm−2, the overpoten-
tial decreased by only 7 mV over that time. Figure 5d com-
pares the OER activity and OER kinetics estimated by Tafel 
plots with other mixed metal nitride catalysts. Our catalyst 
reveals a low overpotential along with a small Tafel slope, 
which is superior to most of the recently reported transition 
metal nitrides for the OER. The superior OER activity and 
good stability of the as-prepared  Ni3FeN likely result from 
a combination of the following factors: (1) highly active 
electrocatalyst contact area can provide abundant accessi-
ble active sites, (2) the hierarchical porosity facilitates fast 
mass transport [61, 62], (3) the presence of nitrides facili-
tates electron/proton transfer, as well as smooth ion diffu-
sion and transportation [63], (4) the synergistic effects of 
mixed metals in the ternary catalyst adjust the electronic 
structure and improve precipitation energies compared to 
single-metal materials, and (5) the favorable in situ oxida-
tion of both metals species may play an important role in 
improving the catalytic activity, with the hydroxide species 
offering favorable active sites for hydroxyl adsorption [64]. 
Compared to other catalysts, particularly  Co3FeNx,  Ni3FeN 
combines excellent OER activity, and a highly crystalline 
and mesoporous structure with monophase formation, with 
a facile synthesis method for low toxicity iron (compared to 
cobalt), all of which make our electrocatalyst a promising 
alternative for green energy hydrogen production.

3.3  Rechargeable Zn–Air Battery

To investigate the practical performance of mesoporous 
 Ni3FeN as OER electrocatalyst, a rechargeable Zn–air 
battery (ZAB) was made by mixing iron phthalocyanine 
(FePc) and  Ni3FeN with a mass ratio of 1:1 as the air cath-
ode (Fig. 6a). The RDE measurements confirmed that FePc 
shows a high intrinsic ORR activity (Fig. S10), superior to 
commercial Pt/C in 0.1 M KOH [65, 66].

Figure 6b displays the charge polarization curves of the 
two air electrodes (FePc + Ni3FeN and Pt/C + RuO2) in 
ZAB, implying a better charge performance of  Ni3FeN than 
 RuO2 as confirmed by its higher current densities at the 
same potential. In addition, the charge–discharge cycling 
tests were carried out at current density of 10 mA cm−2. As 
shown in Fig. 6c, d,  Ni3FeN + FePc exhibits a long cycle life 
as evidenced by stable fixed response even after 70 h, which 
is much longer than that (~ 20 h) of the mixed Pt/C + RuO2 



Nano-Micro Lett.           (2020) 12:79  Page 9 of 13    79 

1 3

battery. More importantly, the charging voltage of  Ni3FeN 
is always lower than that of  RuO2, even decaying slightly 
over time. After the charge and discharge cycle was per-
formed for 20 h, the charging voltage of  Ni3FeN is only 
2.05 V, much smaller than 2.36 V of  RuO2. This suggests 
the potential application of mesoporous  Ni3FeN as an OER 
electrocatalyst superior to the conventional electrodes in a 
rechargeable ZAB.

4  Conclusions

This work conclusively shows the synthesis of three-dimen-
sional (3D) ordered mesoporous  Ni3N and  Ni3FeN ternary 
nitrides from intermediate mesostructured metal oxide 

replicas with high surface areas through a hard templat-
ing method and subsequent nitridation. The products of the 
facile two-step synthesis process possessed a high degree 
of crystallinity, large specific areas, and uniform mesopore 
sizes (~ 6 nm). Ternary  Ni3FeN shows outstanding OER per-
formance with very low overpotential (259 mV) to achieve 
a 10-mA cm−2 geometric current density with small Tafel 
slope and considerable durability toward OER, which is 
superior to both mesoporous  Ni3N electrocatalysts and 
commercially available  IrO2/RuO2. The enhanced catalytic 
performance of ordered mesoporous  Ni3FeN likely derives 
from its intrinsic activity, hierarchical porosity, abundant 
active sites, large contact area between the catalyst and elec-
trolytes, synergistic tuning of electronic structure and charge 
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transport characteristics, and favorable oxidation behavior. 
Furthermore, when combining FePc and  Ni3FeN as the air 
cathode of a rechargeable ZAB, mesoporous  Ni3FeN shows 
a much lower charge voltage and a longer charge life than 
 RuO2 in a ZAB. To summarize, these findings represent an 
attractive and efficient pathway toward the development of 
high-surface-area catalysts for electrical–chemical energy 
conversion. Such a platform also extends the fundamental 
understanding of the structure–property relationships of 
metal nitrides. It paves the way for the synthesis of other 
mesoporous ternary nitrides, which could be used in various 
applications, such as rechargeable ZABs and supercapaci-
tors. Such a facile approach has the potential to provide the 
low-cost alternative energy sources necessary for the next-
generation green technologies.
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