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HIGHLIGHTS

• 3D flower‑like architecture assembled by  NH4V4O10 nanobelts (3D‑NVO) was fabricated.

• The  Zn2+ ion was intercalated into NVO cathode within the interlayer region  (NH4V4O10 ↔ ZnxNH4V4O10).

• The 3D‑NVO cathode could deliver a large reversible capacity of 485 mAh g−1 at a current density of 100 mA g−1 for zinc‑ion battery.

ABSTRACT Given the advantages of being abundant in resources, envi‑
ronmental benign and highly safe, rechargeable zinc‑ion batteries (ZIBs) 
enter the global spotlight for their potential utilization in large‑scale energy 
storage. Despite their preliminary success, zinc‑ion storage that is able 
to deliver capacity > 400 mAh g−1 remains a great challenge. Here, we 
demonstrate the viability of  NH4V4O10 (NVO) as high‑capacity cathode 
that breaks through the bottleneck of ZIBs in limited capacity. The first‑
principles calculations reveal that layered NVO is a good host to provide 
fast  Zn2+ ions diffusion channel along its [010] direction in the interlayer 
space. On the other hand, to further enhance  Zn2+ ion intercalation kinet‑
ics and long‑term cycling stability, a three‑dimensional (3D) flower‑like 
architecture that is self‑assembled by NVO nanobelts (3D‑NVO) is ration‑
ally designed and fabricated through a microwave‑assisted hydrothermal 
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method. As a result, such 3D‑NVO cathode possesses high capacity (485 mAh g−1) and superior long‑term cycling performance (3000 
times) at 10 A g−1 (~ 50 s to full discharge/charge). Additionally, based on the excellent 3D‑NVO cathode, a quasi‑solid‑state ZIB with 
capacity of 378 mAh g−1 is developed.

KEYWORDS Zinc‑ion battery; Ammonium vanadate; NH4V4O10

1 Introduction

Battery technologies are the key to delivering significant 
advances in a wide range of industries, from portable elec‑
tronics and electric vehicles to renewable power [1–5]. Given 
the looming concerns over the availability and safety hazards 
of lithium resources, rechargeable zinc‑ion batteries (ZIBs) are 
relatively abundant in resources and environmental benign as 
compared to alkaline metals. To add in the easy manufacturing 
process, good safety characteristics and mature recycling pro‑
cess, ZIBs are the cost‑effective solution for stationary appli‑
cations in the long run as well [6–9]. Nevertheless, for most 
ZIBs, their specific capacity, cycling stability and rate capabil‑
ity are limited by cathode materials [10–13]. Developing cath‑
ode materials with outstanding electrochemical performance is 
imperative but yet remains a major challenge to be overcome.

The exploration focus of ZIB cathode materials remains 
on manganese‑based oxides, such as α‑MnO2 [14, 15], 
β‑MnO2 [16], γ‑MnO2 [17], α‑Mn2O3 [18],  Mn3O4 [19], 
and  ZnMn2O4 [20, 21], which can deliver initial charge/
discharge capacities up to 200–350 mAh g−1 under low 
rates. Nevertheless, their capacities decay drastically owing 
to the Mn dissolution via the disproportionation reaction 
upon repeated electrochemical cycling. Recent advances 
in reversible  Zn2+ ion (de)intercalation in  VO2 [22, 23], 
 V2O5 [24–26],  V2O5·nH2O [27, 28],  Zn0.25V2O5·nH2O [29], 
 H11Al2V6O23.2 [30],  Ca0.25V2O5·nH2O [31],  LiV3O8 [32], 
 Na0.33V2O5 [33],  Na2V6O16·3H2O [34],  Mn0.15V2O5·nH2O 
[35],  K2V8O21 [36], and  VS2 [37] have motivated further 
exploration into vanadium‑based cathodes for ZIBs. For 
example, a freestanding paper cathode of layered calcium 
vanadium oxide bronze demonstrates 340 mAh g−1 at a 
low current density [31] and layered  Na2V6O16·3H2O as 
the host for  Zn2+ ion conveys ~ 300 mAh g−1 (current rate: 
180 mA g−1) and a high‑rate performance [e.g., operating at 
14.4 A g−1 (128 mAh g−1)] [34]. Despite current achieve‑
ments, their reversible capacity is still far from being satisfac‑
tory (< 400 mAh g−1) owing to tardive  Zn2+ diffusion.

The rich chemistry of ammonium vanadate  (NH4V4O10, 
NVO) arising from the double layers of  V4O10 and vana‑
dium in high oxidation state makes it a great potential 
candidate for accommodating  Zn2+ ions. In addition, 
the pillaring effect of  NH4

+ ions enlarges the interlayer 
spacing or “gallery” space (Fig. S1) [38], which promote 
 Zn2+ ion diffusion along the tunnel (i.e., favorable elec‑
trochemical capacity and electrode kinetics). The suc‑
cessful reversible storage of  Li+ ( rLi+ = 0.74 Å) [39–41], 
divalent  Mg2+ ( rMg2+ = 0.72 Å) [42], as well as larger‑sized 
 Na+ ( rNa+ = 1.02 Å) [43, 44], and  Ca2+ ( rCa2+ = 1.00 Å) [45] 
in  NH4V4O10 as verified by theoretical calculations and 
experimental electrochemical measurements further pre‑
dicts the feasibility of taking up  Zn2+ cations with similar 
size ( rZn2+ = 0.76 Å).

To prove the above prediction, we firstly performed the 
first‑principles calculations to evaluate the  Zn2+ ion interca‑
lation behaviors in monoclinic NVO. Similar to the accom‑
modation of  Na+ ions [46], the intercalated  Zn2+ ions ener‑
getically prefer the rest gallery space and sites. Using bulk 
Zn as the reference state, the binding energy was calculated 
to be − 3.18 eV, which is much stronger than that in layered 
 V2O5 (− 2.06 eV) [47]. Figure S1 illustrates three possible 
migration paths: diffusion between two VO layers (i.e., along 
[010] and [100] directions) and that through VO layer (i.e., 
[001] direction). It is found that the migration of a  Zn2+ ion 
directly along [100] direction seems impossible because the 
path is blocked by the  NH4

+ ions. Although the  NH4
+ ion 

that resides in the lattice spacing may be skirted between two 
 NH4

+ ions via diffusion, intercalation of  Zn2+ ion at this site 
is extremely unstable as the initially placed  Zn2+ ion would 
relax spontaneously to a nearby gallery site. Therefore, this 
possibility could be safely ruled out. The migration energy 
barrier, which reflects  Zn2+ ion diffusivity, is determined 
by the maximum energy along each diffusion path. Figure 1 
shows the calculated results of  Zn2+ diffusion along [010] 
direction and through a VO layer in monoclinic NVO. Nota‑
bly, lower energy barrier (0.63 eV) is demonstrated when 
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 Zn2+ ion diffuses along the [010] direction. In contrast, dif‑
fusion of a  Zn2+ ion through a VO layer is also hindered 
as steric effect imposes a significantly large energy barrier 
(2.89 eV) for ion migration [48]. These results clearly sug‑
gest the feasibility of monoclinic NVO in providing fast 
 Zn2+ ion intercalation along the [010] direction within the 
interlayer region.

The electrochemical performance of ZIBs, especially 
at high charging/discharging rates, is mainly determined 
by the  Zn2+ ion solid‑state diffusion process (i.e., rate‑
determining step) in the electrode materials. Thus, it is 
highly desirable to minimize the dimensions of NVO active 
materials in order to accelerate the  Zn2+ ion kinetics. Thus, 
we attempt to synthesize one‑dimensional (1D) NVO nano‑
belts to achieve this goal. Meanwhile, to avoid the agglom‑
eration of NVO nanobelts, NVO nanobelts are designed 
to self‑assemble into three‑dimensional (3D) flower‑like 
architecture (abbreviated as 3D‑NVO, Fig. 2a), which can 
maintain structural integrity during repeated  Zn2+ (de)
intercalation. Although there are some reports on the fab‑
rication of 1D NVO [43, 49, 50], engineering them into 

3D‑NVO presents a great challenge but might bring a 
significance to the development of electrode materials for 
ZIBs and quasi‑solid‑state ZIBs.

2  Experimental

2.1  Synthesis of 3D‑NVO

In a typical synthesis, 2 mmol ammonium metavanadate 
 (NH4VO3) and 2 mmol oxalic acid  (H2C2O4) were added 
into deionized (DI) water (30 mL) under magnetic stir‑
ring, creating a kelly green solution. Then, it was put into 
an autoclave (50 mL) and placed in a microwave oven 
heated under 180 °C for 30 min. Afterward, the product 
was washed with DI water and ethanol and then frozen 
under liquid nitrogen to subject a vacuum drying process 
for about 48 h.

2.2  Calculation Methods

Vienna Ab‑Initio Simulation Package was adopted to 
conduct first‑principles calculations. The spin‑polarized 
Perdew–Burke–Ernzerhof generalized gradient approxi‑
mation was used for the exchange–correlation functional 
[51–53]. Van der Waals correction was included using 
the Grimme scheme (D2) for simulations of monoclinic 
NVO (space group: C2/m) [54]. The lattice parameters 
of NVO were calculated to be a = 11.79 Å, b = 3.68 Å, 
c = 9.93 Å and β = 99.49°, consistent well with experi‑
mental values. A (1 × 2 × 2) supercell involving 152 
atoms  (N8H32V32O80) was constructed to simulate diffu‑
sion behavior of zinc ions in NVO. It was relaxed with 
force convergence criteria of 0.01 eV Å−1. Moreover, 
500 eV cutoff energy and Γ‑centered 3 × 5 × 2 k‑mesh 
were used. The climbing image nudged elastic band 
method was adopted to achieve the pathway with the 
minimum energy for Zn ion diffusion [55]. Because of 
the strong electronic correlations in the localized d orbit‑
als of V ions, an effective parameter of U–J = 4.0 eV was 
applied for an on‑site Coulomb interaction, which was 
believed to be able to provide more appropriate descrip‑
tion of electronic properties in vanadium oxides [56].
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Fig. 1  Calculated minimum energy paths of  Zn2+ ion diffusion along 
a [010] and b [001] in monoclinic  NH4V4O10. Orange and black balls 
represent  NH4

+ ions and the most energetically favorable pathway for 
 Zn2+ ion intercalation, respectively. The VO layers are indicated by 
red polyhedrons. (Color figure online)
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2.3  Materials Characterization

The X‑ray diffraction (XRD) patterns were acquired from 
an advanced X‑ray diffractometer with Cu Kα radiation 
(Bruker D8). A field‑emission scanning electron micros‑
copy (SEM) system (Hitachi, Model SU8220) was used 
to investigate the morphology of the products. To further 
determine their microstructures, transmission electron 
microscopy (TEM) characterization (FEI, Model Talos 
F200S) operating at 200 kV was carried out. The X‑ray 
photoelectron spectroscopy (XPS) was measured on 
ESCALAB 250Xi (Thermo Fisher).

2.4  Electrochemical Measurements

The electrochemical performance of the 3D‑NVO materi‑
als was tested by assembling them into coin‑type cells in 
air. Typically, 80 wt% 3D‑NVO was mixed with 10 wt% 
carbon nanotubes and 10 wt% poly(vinylidenefluoride) 
(PVDF) in the solvent of N‑methylpyrrolidone (NMP). 
The as‑formed slurry was then pasted onto the titanium 
foils (diameter: 1 μm) to achieve the cathode part, which 
was later coupled with zinc foils anode and 1 M Zn(ClO4)2 
in propylene carbonate (PC) as the electrolyte, for com‑
plete coin‑cell configuration. In addition, quasi‑solid‑state 
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ZIBs were assembled using the as‑prepared 3D‑NVO 
cathode, zinc foil anode, and the electrolyte of solid poly‑
mer membranes. The solid membranes were prepared as 
follows: (1) 0.264 g Zn(ClO4)2 and 0.75 g PVDF were 
initially dissolved in 10 mL N, N‑dimethylformamide 
(DMF) under magnetic stirring, (2) adding 1 mL of zinc 
bis(trifluoromethanesulfonyl)imide (Zn(TFSI)2, 1 M) in 
1‑ethyl‑3‑methylimidazolium bis(trifluoromethylsulfonyl)
imide (EMIMTFSI), and (3) the mixed solution was 
poured into the mold and dried at vacuum oven for 8 h 
under 80 °C. The tests were carried out on a Neware bat‑
tery system, and the discharging/charging profiles were 
performed within 0.3–1.5 V (vs.  Zn2+/Zn). Cyclic vol‑
tammetry was performed with a IVIUM electrochemical 
workstation.

3  Results and Discussion

In this paper, 3D‑NVO cathode materials were successfully 
synthesized by reacting ammonium metavanadate  (NH4VO3) 
with oxalic acid  (H2C2O4) in aqueous solution through a 
one‑pot microwave‑assisted hydrothermal method. Figure 2b 
shows the XRD pattern of 3D‑NVO sample. All the diffrac‑
tion peaks are readily assigned to a pure monoclinic struc‑
ture of  NH4V4O10 (JCPDS Card No. 31‑0075), agreeing well 
with the literature [49, 57]. The intensity of (001) peak is 
extremely high, which illustrates the preferential exposure of 
(001) surface facets. Its elemental composition and chemical 
states were further identified by X‑ray photoelectron spec‑
troscopy (XPS). V, N, and O elements are presented, and two 
peaks at approximately 401.2 and 530.2 eV are the charac‑
teristic binding energies of N and O, respectively (Fig. S2). 
Meanwhile, high‑resolution XPS spectrum of V 2p in Fig. 2c 
is split into the overlapped  V5+  (2p3/2: 517.4 eV) and  V4+ 
 (2p3/2: 516.4 eV) peaks, displaying the average vanadium 
oxidation state of + 4.74, proving the sectional reduction of 
pentavalent vanadium by oxalic acid [58].

SEM and TEM were employed to examine the morphol‑
ogy and microstructure of the as‑prepared 3D‑NVO. The 
low‑magnification SEM image in Fig. 2d reveals the uni‑
form 3D microflower‑like morphology of the 3D‑NVO, and 
each of them shows a diameter in the range of 4–10 μm. 
Magnified SEM image (Fig. 2e) and TEM examination 
(Figs. 2f and S3) indicate that hierarchical microflowers are 
constructed by numerous NVO nanobelts with a length of 

2–5 μm and a width of 100–200 nm. Moreover, a lateral‑
lying nanobelt found in Fig. 2f displays the side view of the 
nanobelt and its thickness is estimated to be around 20 nm. 
The high‑resolution TEM (HRTEM) observation further 
demonstrates that the interplanar spacing of the layered 
NVO along c‑axis direction is as large as 0.93 nm (inset 
of Fig. 2f). The selected‑area electron diffraction (SAED) 
pattern of an individual NVO nanobelt (Fig. 2g) unveils sin‑
gle‑crystalline character by showing well‑defined diffraction 
spots (zone axis: [001]). HRTEM image glimpsed from the 
middle of a nanobelt (Fig. 2h, upper panel) exhibits two sets 
of lattices with d‑spacings of 0.184 and 0.193 nm, matching 
well with the (020) and (− 205) planes of monoclinic NVO, 
respectively. In addition, from the HRTEM observation on 
the edge of a nanobelt (Fig. 2h, bottom panel), we can see 
the lattice fringes (d‑spacing of 0.184 nm for (020) planes) 
perpendicular to the length of the nanobelt, illustrating the 
preferential orientation growth along the [010] direction. 
Furthermore, Fig. 2i depicts the scanning TEM (STEM) and 
the corresponding elemental mapping of a NVO nanobelt, 
indicating uniform distribution of V, N, and O elements.

The in  situ self‑assembly of NVO nanobelts into 3D 
microflowers is driven by microwave irradiation heating 
(MIH), which is a very fast (30 min). To announce the 
importance of MIH, conventional autoclave hydrothermal 
reactions (C‑HT) at different times were carried out, while 
other experimental parameters are kept the same as those 
of MIH. It was found that, as shown in Fig. S4, only NVO 
nanobelts without 3D assemblies could be produced in C‑HT 
even after prolonged reaction time of 2, 6, and 12 h (almost 
no sample was presented after 30 min of reaction). Further‑
more, under the method of C‑HT, NVO nanobelt morphol‑
ogy was also widely observed in the literature using similar 
reactants, reaction temperatures, and time [41, 42, 46, 49, 
50]. Hence, the role of MIH appears to be critical for a suc‑
cessful growth of the 3D‑NVO, which can directly interact 
with reactants by producing more homogeneous heat distri‑
bution at molecular level throughout the entire solution as 
compared to C‑HT (Fig. S5), hence reducing reaction time 
and enhancing reaction kinetics [59].

Electrochemical performance of the 3D‑NVO cathode 
was evaluated in coin‑type cells. Figure 3a shows its volt‑
age‑capacity profiles at a low rate of 100 mA g−1 for the 
first three cycles.  Zn2+ intercalation (discharge) and dein‑
tercalation (charge) are represented by the S‑shaped sloping 
curves, which correspond to solid solution processes. After 
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the first discharge, a capacity of 607 mAh g−1 is achieved, 
and followed by a charge capacity of 487 mAh g−1, denoting 
a Coulombic efficiency (CE) of 80%. As shown in Fig. 3b, 
the capacity illustrates an outstanding cycling performance 
with almost no capacity fading during the subsequent cycles, 
and the CE is close to 100% from the 2nd cycle onward. 
Remarkably, the sustained reversible capacity (485 mAh g−1, 
i.e., uptake/release of 3.5 Zn per unit formula of NVO) is 
extraordinarily high, which has not yet been achieved 
for the reported ZIB cathodes (Table  S1). Good high‑
rate performance is essential to build fast‑charging ZIBs. 
As demonstrated in Fig. 3c, the cell was run between 0.1 
and 10 A g−1. Capacities of 486, 475, 453, 411, 343, and 

246 mAh g−1 are displayed at current densities of 0.1, 0.2, 
0.5, 1.0, 2.0, and 5.0 A g−1, respectively, and the sloping 
discharge/charge profiles are also well retained at various 
rates (Fig. S6). Moreover, a capacity of 142 mAh g−1 is 
still delivered even at 10 A  g−1 (approximately 50 s to full 
discharge/charge). Particularly, even after rapid charging/
discharging, the 3D‑NVO can still recover to high capac‑
ity of 478 mAh g−1 when the rate is returned to 0.1 A g−1. 
Furthermore, the stability of this cathode at 10 A g−1 is 
superior, showing almost no capacity loss after 3000 cycles 
(Fig. 3d) and unchanged discharge/charge profiles (Fig. S7). 
In contrast, the cathode of NVO nanobelts obtained from the 
traditional hydrothermal method (Fig. S4c, d) demonstrates 
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a fast capacity decaying (only 58% capacity retention after 
300 cycles) at 10 A g−1 (Fig. S8), confirming the superiority 
of the 3D‑NVO cathode.

The 3D‑NVO is placed in a Ragone plot (energy den‑
sity vs. power density) based on working potential, specific 
capacity, and current density for performance evaluation. 
Encouragingly, as displayed in Fig. 3e, our 3D‑NVO exhib‑
its a very high energy density of 321 Wh kg−1 at a specific 
power of 69 W kg−1. Furthermore, an outstanding power 
density of 6.9 kW kg−1 (corresponding energy density: 
90 Wh kg−1) can also be obtained. These results pass sig‑
nificantly beyond most advanced ZIB cathodes such as  VS2 
[37],  V2O5 [25],  LiV3O8 [32],  Na0.33V2O5 [60],  Zn2V2O7 
[61],  Na3V2O7(OH)2·2H2O [62], and  Na2V6O16·1.63H2O 
[63], evidencing the superior ZIBs performance of our 
3D‑NVO materials.

To understand the electrochemical  Zn2+ ion storage kinet‑
ics of 3D‑NVO cathode, cyclic voltammetry (CV) was per‑
formed under scan rates of 0.1–1.0 mV s−1 (Fig. 3f). The 
redox peaks are gradually broadened and slightly shifted 
with increasing scan rate, but the CV contour is maintained. 
Their current (i), in principle, is obedient to a power‑law 
relationship with the scan rate (ν) via the equation: i = aνb. 
When the b value is 0.5, it represents a diffusion‑controlled 
process, whereas b = 1.0 stands for a capacitive process. 
Accordingly, the data in Fig. S9 reveal a combination of 
 Zn2+ ion intercalation and capacitive reactions in the 
3D‑NVO cathode. (b values range from 0.78 to 0.86 for the 
marked cathodic and anodic peaks in Fig. 3f.) Again, based 
on the equation of i(V) = k1ν (capacitive effect) + k2ν1/2 (dif‑
fusion effect), their proportion in the total stored charge can 
be quantified (e.g., the orange area in Fig. 3g corresponds to 
the capacitive contribution). Figure 3h illustrates the contri‑
butions from the two different charge storage mechanisms, 
and we find that the capacitive contribution increases from 
40.8 to 68.4% with an increasing scan rate (0.1–1.0 mV s−1), 
which is primary factor that enables fast reaction kinetics 
and superior high‑rate performance.

To investigate the storage mechanism of  Zn2+ ion in 
the 3D‑NVO cathode, ex situ XRD experiments at differ‑
ent charge–discharge states were performed to examine 
its structural evolution (Fig. 4a). Clearly, there is no sig‑
nificant change in the XRD patterns under various states of 
discharge/charge and the characteristic peaks of  NH4V4O10 
located at around 9.0° (001), 25.5° (110), 27.7° (111), 34.0° 
(− 311), and 44.6° (− 205) are retained without detecting any 

new diffraction peaks, which is indicative of the well‑pre‑
served lamellar structure. In addition, with a careful obser‑
vation, it is found that the (001) peak is slightly shift toward 
lower angles during the discharge process, confirming the 
 Zn2+ ion intercalation reaction mechanism with an expan‑
sion of the  NH4V4O10 interlayer spacing. When  Zn2+ ions are 
completely released, this peak can be recovered, demonstrat‑
ing the reversible behavior of the  NH4V4O10 lattice layer. 
The varying of vanadium chemical states upon  Zn2+ ion (de)
intercalation was further evaluated by ex situ XPS analysis 
(Fig. 4b). At the end of the  1st discharge state, the V 2p peaks 
can be fitted to  V3+  (2p3/2: 515.5 eV) specie, which is con‑
sistent with the fully discharged product  (Zn3.5NH4V4O10) 
derived from the galvanic curve. (485 mAh g−1 corresponds 
to an uptake of 3.5  Zn2+ ion per formula unit.) Upon sub‑
sequent charging process, the V 2p spectrum almost fully 
recovers to its pristine state  (V4.74+) in Fig. 2c. The XPS V 
2p spectra under the  2nd cycle further evidence the revers‑
ible transition between  V4.74+ and  V3+ via the reaction of 
 NH4V4O10 + 3.5Zn2+ + 7.0e− ↔ Zn3.5NH4V4O10. Further‑
more, SEM images of the cycled 3D‑NVO cathode reveal 
that the pristine 3D microflower‑like structure is well main‑
tained (Fig. 4c), and the surface of NVO nanobelt is very 
smooth without experiencing severe pulverization (Fig. 4d). 
The HRTEM image with clear lattice fringes and the spot‑
ted SAED pattern suggests its highly crystalline nature is 
preserved (Fig. 4e). The scanning TEM (STEM) image and 
the corresponding elemental mapping illustrate a homoge‑
neous distribution of V, O, N, and Zn in the full discharged 
NVO nanobelt (Fig. 4f). Additionally, the crystal structure 
of  NH4V4O10 is still retained after 100 cycles at 10 A g−1 
(Fig. S10). On the basis of these ex situ XRD, XPS, SEM, 
and TEM results, we believe that the crystal structure and 
microstructure of our 3D‑NVO cathode are highly stable 
and reversible upon  Zn2+ ion intercalation/deintercalation, 
confirming superior electrochemical performance.

Solid‑state (quasi‑solid‑state) batteries with high safety 
are appealing great attention for energy storage applications 
[64–67]. Hence, we assembled a quasi‑solid‑state ZIB based on 
3D‑NVO cathode, zinc anode, and the electrolyte and separa‑
tor of poly(vinylidenefluoride)‑Zn(ClO4)2‑based polymer mem‑
brane (Fig. 5a). Figure 5b shows the charge–discharge curves 
at 100 mA g−1. Obviously, the profiles are the same as those of 
liquid ZIB in Fig. 3a, sharing the above‑mentioned  Zn2+ (de)
intercalation mechanism. During the first cycle, specific capaci‑
ties of 320 (discharge) and 315 mAh g−1 (charge) are achieved 
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with a CE of 98%. Remarkably, in the following cycles, the 
specific capacity is slightly increased (corresponding to the 
activation process) and stabilized at 378 mAh g−1 with CE of 
about 100% after 50 cycles (Fig. 5c), which is much higher than 

state‑of‑the‑art quasi‑solid‑state ZIBs (e.g., ~ 200 mAh g−1 for 
zinc orthovanadate array//Zn array [68], and ~ 300 mAh g−1 for 
 V5O12·6H2O nanobelts//Zn foil [69], etc.), making it promising 
for solid‑state energy storage systems.
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4  Conclusions

In summary, 3D‑NVO cathode was created with high capac‑
ity for ZIBs. Firstly, the first‑principles calculations were 
carried out to confirm feasibility of  Zn2+ intercalation into 
monoclinic NVO, in which the intercalates tend to accom‑
modate in the interlayer region of NVO along the [010] 
direction. Subsequently, to enhance the  Zn2+ ion diffusion 
kinetics and maintain the structural integrity of the elec‑
trode during long‑term cycling process, a 3D flower‑like 
architecture assembled by NVO nanobelts was designed 
and fabricated using a microwave‑assisted hydrothermal 
method. In ZIB application, this 3D‑NVO cathode can 
bring a large reversible capacity of 485 mAh g−1 (corre‑
sponds to energy density of 321 Wh kg−1) under current 
density of 0.1 A g−1. Additionally, superior long‑term (3000 
times) high‑rate cycling performance is demonstrated (i.e., 
power density: 6.9 kW kg−1). Postmortem investigation 
of cycled 3D‑NVO further identifies that 3.5  Zn2+ ion is 
taken up upon intercalation through the following reaction: 
 NH4V4O10 ↔ Zn3.5NH4V4O10 without affecting the crystal‑
linity and microstructure of the pristine 3D‑NVO. Finally, 
a high‑capacity (378 mAh g−1) quasi‑solid‑state ZIB com‑
posed of the 3D‑NVO cathode is developed.
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