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HIGHLIGHTS

• Two-dimensional materials including TMDCs, hBN, graphene, non-layered compounds, black phosphorous, Xenes and other emerging 
materials with large lateral dimensions exceeding a hundred micrometres are summarised detailing their synthetic strategies.

• Crystal quality optimisations and defect engineering are discussed for large-area two-dimensional materials synthesis.

• Electronics and optoelectronics applications enabled by large-area two-dimensional materials are explored.

.

ABSTRACT Large-area and high-quality two-dimensional crystals 
are the basis for the development of the next-generation electronic 
and optical devices. The synthesis of two-dimensional materials in 
wafer scales is the first critical step for future technology uptake by 
the industries; however, currently presented as a significant challenge. 
Substantial efforts have been devoted to producing atomically thin 
two-dimensional materials with large lateral dimensions, controlla-
ble and uniform thicknesses, large crystal domains and minimum 
defects. In this review, recent advances in synthetic routes to obtain 
high-quality two-dimensional crystals with lateral sizes exceeding 
a hundred micrometres are outlined. Applications of the achieved 
large-area two-dimensional crystals in electronics and optoelectronics 
are summarised, and advantages and disadvantages of each approach 
considering ease of the synthesis, defects, grain sizes and uniformity 
are discussed.

KEYWORDS Two-dimensional materials; Large-area; Electronics; Optoelectronics; Defect engineering

   ISSN 2311-6706
e-ISSN 2150-5551

      CN 31-2103/TB

REVIEW

Cite as
Nano-Micro Lett. 
          (2020) 12:66 

Received: 19 November 2019 
Accepted: 2 February 2020 
© The Author(s) 2020

https://doi.org/10.1007/s40820-020-0402-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-020-0402-x&domain=pdf


 Nano-Micro Lett.           (2020) 12:66    66  Page 2 of 34

https://doi.org/10.1007/s40820-020-0402-x© The authors

1 Introduction

Synthesis of high-quality and atomically thin materials in 
large areas is a subject of an intensive and ongoing inves-
tigation. Controllable growth of ultrathin two-dimensional 
(2D) materials in large areas enables design and integration 
of electronics devices with complex components, providing 
enhanced interfaces for optical and heterostructure devices 
[1]. Detrimental consequences on device performances are 
due to the non-uniformity and formation of defects in 2D 
crystals during synthesis. The thickness of 2D crystals is 
influential in optical, vibrational and electronic properties. 
Therefore, the control in thickness and uniformity of synthe-
sis is instrumental for the reliability of device performance 
[2–7]. According to laws of thermodynamics, synthesis 
at temperatures above 0 K will result in the formation of 
defects in all crystals [8, 9]. Controllability in both thick-
nesses and defects are primarily managed by engineering 
the reaction kinetics and thermodynamics conditions dur-
ing the synthesis process. Here, we report on the recent 
advancements in the synthesis of large-area 2D materials 
including transition metal dichalcogenides (TMDCs), hBN, 
emerging materials (black phosphorous, Xenes, bismuth 
compounds), non-layered materials and graphene. Here, we 
refer to “large-area” as lateral dimensions larger than 100 µm 
and “ultra-thin” with thicknesses of smaller than 10 nm.

Advantages and disadvantages of synthetic approaches 
considering challenges in thickness control and the resultant 
crystal quality are discussed by characterising the defects, 
disorders and grain sizes. Finally, the overview of applica-
tions in electronics and optoelectronics exploited by printing 
large-area materials in 2D are provided.

2  Record Lateral Dimensions

The quest to enhance lateral and crystal domain sizes is 
depicted in Fig. 1a, b. The first exfoliated graphene mon-
olayer by Novoselov et al. in 2004 and consequently, several 
TMDCs such as  MoS2 and  NbSe2 in 2005 isolated in 2D 
below 100 µm in lateral dimensions [10]. As illustrated in 
Fig. 1a, these three materials’ dimensions have expanded 
to more than three orders of magnitude by chemical vapour 
deposition (CVD) synthesis [11]. Many emerging materials, 
such as borophene and Mxene, are yet to be realised larger 

than a hundred microns (Fig. 1a) [12]. Emergence of liquid 
metal (LM) synthesis is shown by arrows to the synthesis 
of GaS and 2D oxides by using liquid metals as a reaction 
solvent (Fig. 1a) [13, 14]. Metal oxides and hydroxides are 
an important category of materials with versatile and unique 
optical and electronic characteristics, which Sasaki group 
has pioneered synthesis of these materials including titanium 
oxide, manganese oxide and niobium oxides in suspensions 
with the largest reported dimensions of tens of micrometres 
for a 2D stoichiometry of titanium oxides  Ti0.87O2

0.52− [72].
Figure 1b represents 2D materials synthesised in large 

lateral dimensions exceeding 100  µm and thickness of 
below 10 nm. Several novel materials such as borophene 
and Mxene and novel methods including soft chemical pro-
cesses are added to Fig. 1b. Synthesis methods for the novel 
materials are expected to continue to be optimised. Crystal 
domain sizes for many of the included materials in Fig. 1b 
have not been reported or optimised. As presented in Fig. 2c, 
when considering crystal domain sizes, the list of large-area 
printed materials reduces to CVD, ME and MBE methods.

Altogether, the CVD method holds promise for the syn-
thesis of many 2D materials with large crystal domains 
including TMDCs, graphene and hBN (Fig.  1b, c) [11, 
17–19].

Material categories and different synthesis routes to 
achieve them in the 2D large-area are detailed in the fol-
lowing section.

3  Large‑Area 2D Materials Synthesis

Extensive efforts have been dedicated to the synthesis of 
atomically thin materials with laterally large dimensions. 
Various approaches are investigated which can be typi-
cally assorted into two categories which entail top–down 
and bottom–up techniques. The most notable top–down 
approaches are exfoliation techniques, including liquid 
exfoliation and mechanical cleavage. Liquid exfoliation 
presents challenges in balancing produced quality vs large-
area yield of 2D flakes. Agglomerations, limited-sized 
2D sheets with arbitrary shapes and random distribution 
on substrates, have been drawbacks of liquid-phase exfo-
liation [73, 74], Mechanical exfoliations, however, have 
been a benchmark for high-quality exfoliated 2D sheets, 
and innovative approaches have enhanced the lateral size 
and controllability in patterned transfer [20–24]. However, 
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bottom–up approaches, such as CVD, prevail as the most 
potent technique so far. This method is industry-relevant 
and applicable to many materials with ease of operation. 
However, numerous operating parameters require thorough 
knowledge and engineering to obtain high-quality crystals. 

Key metrics include (1) amounts, morphologies and stoi-
chiometries of the precursors [5, 25], (2) temperature of the 
precursors and substrate [5, 25, 26], (3) location and distance 
between of inlet, precursors and substrate [4], (4) pressure 
of the reaction chamber [5], and (5) carrier gas types and 
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flow rates [4, 27, 75, 76], (6) type and preconditioning meth-
ods of the substrate [17, 18, 76, 77]. Engineering and tun-
ing these parameters for the synthesis of each material will 
enhance controlling nucleation and growth rates leading to 
more homogenous growth with fewer defects and large 2D 
sheet sizes. Generally, a balance between precursor mass 
flux rates and materials growth rate should be established 
[78] to minimise the nucleation rate initially and maximise 
the growth rates afterwards.

The synthesis routes are firstly discussed for TMDCs, 
which present as a promising category of semiconductors 
with several demonstrated optoelectronics applications. 
Recently, synthesis of 2D hexagonal boron nitride (hBN) 
has made a significant enhancement in crystal size which is 
explored in detail followed by emerging materials that have 
been produced in large lateral sizes with intriguing proper-
ties such as black phosphorus (BP) and 2D Xenes. Progress 
in the synthesis of bismuth compounds as promising mate-
rials for topological insulators is discussed. Most materials 
are not intrinsically layered and present with challenges to 
achieve them as 2D using conventional exfoliation or vapour 

phase methods. However, the emergence of novel synthe-
sis routes has provided them as stratified 2D layers which 
are presented in this review. Finally, graphene synthesis is 
discussed. Despite being gapless, large-area synthesis of 
graphene as the most popular 2D material can offer insights 
into the large-area synthesis of other semiconducting 2D 
materials.

3.1  TMDCs

TMDCs are a promising class of materials for next-gener-
ation electronics and optoelectronics due to their excellent 
electronic and optical properties [79]. CVD is the most 
comprehensively studied technique. Depositing the metal 
precursors before chalcogenisation results in the production 
of centimetre-scale atomically thin and uniform crystals 
of  NbSe2 [2] and  PdSe2 (Fig. 2a–c) [28]. Grain boundary 
sizes of synthesised  NbSe2 were in orders of few nanometers 
including the tilt grain boundary defects of 5–7 pair inter-
links [2]. The quality of the precursor is a critical factor in 
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achieving a balance between nucleation and growth rates for 
maximising produced domain size [25]. Taking  MoS2 as an 
example,  MoO3 thin film as the precursor was deposited first 
using a solution-processed method. Evaporation of  MoO3 
thin film located above the target substrate at 800 °C reduced 
the nucleation density and produced single-crystal domains 
of up to 500 µm (Fig. 2d–f) [25]. On the contrary, direct sul-
phurisation of bulk Mo foil results in highly defective  MoS2 
[80]. Enhanced chalcogenisation is commonly achieved by 
using  H2 in addition to an inert gas such as Ar in carrier gas 
mixture. Mixing  H2 in the carrier gas is not required during 
the CVD synthesis. However,  H2 gas assists as a reducer of 
the oxide precursors during the chalcogenisation process, 
especially for a less reactive chalcogen precursor such as Se. 
High crystalline quality 2D  WSe2 is grown in centimetres 
at 850 °C using powder precursors and introducing  H2 gas 
for activation of the selenisation process [27]. In addition to 
the enhancement of crystal quality, uniformity as another 
important quality indicator that can be improved through 
adjusting each of the CVD parameters including tempera-
ture gradient, confined space, precursor amount and distance 
between precursor and substrate [26, 29, 30, 81–83]. For 
instance, multi-temperature zone configuration is reported 
as an optimisation approach [26]. Using this strategy, Lan 
et al. [26] produced large-area uniform  WS2 monolayers. 
Centimetre-sized 2D  WTe2 with uniform thickness was 
also synthesised in three-zone temperature CVD system. 
The thickness was effectively controlled by  WCl3 precursor 
amount and distance between precursor and substrate [5]. 
Uniformity in CVD synthesis of 2D TMDCs can also be 
enhanced by minimising the gradient of reactant across the 
target substrate. The gradient of the reactant was reduced by 
using a confined space of an inner tube to reduce gas veloc-
ity [4]. Using this technique, Guo et al. [4] synthesised cen-
timetre-scale 2D  ReS2 with uniform and controllable thick-
ness. In addition to enhancement in uniformity and reduction 
in defects, the CVD process can offer growth of selective 
phases. Zhou et al. [3] used CVD method to selectively grow 
two distinct phases of  MoTe2, i.e. 2H and 1T depending on 
the oxidisation state of the Mo precursor used, resulting in 
high phase purity and uniformity. Recently, noble transition 
metal dichalcogenides such as  PtSe2 have also been synthe-
sised and become available in large areas [84]. Using the 
CVD process, Wagner et al. [84] have grown large-area 2D 
 PtSe2, however, with nanometre-sized grains. As a common 
practice, the CVD grown atomically thin layers are required 

to be transferred to the desired substrate or to be stacked 
vertically as heterostructures. Shim et al. [23] discovered 
a universal method of layer-resolved splitting (LRS) tech-
nique to transfer uniform and continuous monolayers of 
 WS2,  WSe2,  MoS2 and  MoSe2 with 5 cm diameters. Growth 
of large-area emerging TMDCs for applications in quan-
tum physics including charge density wave (CDW) order 
enhancements has also been realised by CVD methods. 
 TiSe2 and  TaSe2 monolayers with areas of 5 × 105 µm2 and 
wafer-scale, respectively, have been synthesised featuring 
CDW enhancement [31, 32].

In addition to CVD, several other methods are used for the 
synthesis of TMDCs. Pulse laser deposition (PLD) is recently 
reported to produce centimetre-sized  MoS2 with precise thick-
ness control enabling the fundamental study of thickness-
dependent photoresponce of high-quality 2D  MoS2 [7] Simi-
larly, wafer-scale 2D  WSe2 obtained PLD method is shown to 
provide defined control in thicknesses and to produce uniform 
2D sheets (Fig. 3a–c) [33]. Large-area  MoS2 has been prepared 
by control of oxide nucleation and growth using thermal and 
plasma-enhanced ALD (PEALD) following with sulphida-
tion step [34]. Keller et al. [34] explored the crystal quality 
optimisation by varying sulphidation temperatures, treatment 
with piranha and multi-step annealing processes (Fig. 4a–c). 
In the top–down gold-mediated mechanical exfoliation (ME) 
approach, Javey et al. [24] isolated monolayers of TMDCs, 
including  MoS2 as an example resulting in single crystals with 
flake lateral dimensions of up to 500 µm. The schematic is 
shown in Fig. 4d containing steps 0–6. During this process, 
gold is evaporated onto a TMDC bulk crystal. As gold has 
a strong binding affinity towards chalcogens (particularly 
sulphur), the TMDC top layer can be delaminated together 
with the gold layer when it is peeled off. Later, gold is etched 
away, leaving a large-area TMDC monolayer behind [24]. This 
method is recently extended to produce spatially controlled 
exfoliation method for TMDCs such as  WS2 and  MoS2 [86] 
and reported separately for Mo- and W-based chalcogenides 
as well as GaSe [85]. Using this method, Velický et al. [85] 
exfoliated centimetre-sized monolayers from bulk crystals, 
enhancing the size of flake and feasibility of ME for large-scale 
production of TMDCs (Fig. 4e–h). It has been demonstrated 
that the gold-mediated exfoliation is sensitive to air exposure 
due to the weakening of vdW forces that are used for exfolia-
tion (Fig. 4e–h) [85]. Mechanical shaking is demonstrated to 
produce single-crystal monolayer 1T-TaS2 with lateral sizes 
exceeding 100 µm. This method produces large monolayers 
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with manual shaking of Li intercalated crystals for a few sec-
onds and can potentially be expanded to other TMDCs [87].

This section presents achievement of the large-area high-
quality TMDCs crystals readily available to be incorporated 
into practical industrial applications. Many of these methods 
investigate the growth or isolation of single TMDCs; however, 
further, development is needed to produce heterojunctions and 
Janus structures in large-scale as both of these two types of 
structures are of great interest for high-performance electronic 
and optical applications [88–90]. Enlarging the overlapping 
areas for these structures augments their performances by pro-
viding larger effective areas. Heterojunctions may be achieved 
in CVD processes by separation of the precursors and plac-
ing them into separate chambers. Then, opening and closing 
outlets sequentially multiple times during the growth step can 
produce larger effective lateral heterojunction areas.

3.2  hBN

hBN has been widely investigated in fundamental sci-
ence and used for device applications as an insulator, 
gate-dielectric, passivation layer, tunnelling layers, con-
tact resistance, charge fluctuation reduction and Coulomb 

drag [91]. There are many recent reports on the synthesis 
of high-quality hBN on a wafer-scale [17, 18, 35, 75–77, 
92] focusing on the minimisation of the structural defects 
and grain boundaries which impedes high-performance 
electronics due to charge scattering and trap sites. Similar 
to TMDC, CVD is still the most powerful synthesis route 
for producing large-area hBN with large grain sizes and 
minimum grain boundary formation [17, 35, 36, 77, 93].

Importance in underlying substrate crystals in CVD 
growth such as Cu, Cu-Ni alloy and Fe foils has been 
known to enable large-area growth of hBN, however, pre-
viously resulted in the formation of a significant amount 
of wrinkles and grain boundaries [36, 94]. Wang et al. 
explored the effect of the substrate crystal symmetry on 
growing large-area crystal domains with reduced defects 
[17]. It is found that the Cu (110) substrate with a lower 
order of symmetry than that of hBN (with three orders 
of symmetry) providing 100 cm2 single-crystal domains 
[17]. The framework enabled unidirectional growth of 
large and uniform monolayers of hBN with highly aligned 
nucleation and domain growth guided by substrate crystal 
edge-coupling phenomena [17]. hBN is also shown to form 
circular grains on liquid metals compared to triangles on 
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solid substrates. Large-area single-crystal hBN was grown 
on liquid Au [35] which provides a flat surface and allows 
rotations and alignments, utilising attractive Coulomb 
interactions between B and N atoms (Fig. 5) [35]. The 
similar phenomena of crystal self-alignment are witnessed 
on liquid Cu [76].

Other engineering attempts to enhance quality or 
thickness control of large-area hBN growth during CVD 

synthesis include layer growth controlled by cooling rates 
[96] and the removal of oxygen from the reaction chamber 
[75]. Stitching of defects in hBN has been demonstrated 
by Cui et al. [97] to provide a larger effective area after 
synthesis. The stitching process entails selective ALD 
deposition of LiF on defects and grain boundary sites of 
hBN which produced chemically and mechanically stable 
hybrids for electrochemical Li plating [97]. Metal–organic 
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chemical vapour deposition (MOCVD) framework also 
offers a wafer-scale synthesis on Ni (111) substrates with 
sub-nanometer roughness of 0.605 nm; however, with 
average grain sizes of 75 µm [37]. Other than CVD and 
MOCVD, hBN has been synthesised by plasma-enhanced 
ALD [98] yet amorphous with a relatively large thickness 
of 20 nm [98]. After synthesis, the grown layers require 
transferring to the desired substrate. A reliable trans-
fer method ensuring the integrity of large-area 2D hBN 
remains a challenge. Cun et al. transferred wafer-scale (4 
inches) single-crystal hBN with a reliable performance 
involving a two-step protocol of electrochemical treatment 
and hydrogen bubbling [18]. The previously explained 
LRS transfer method has been used to transfer large-area 
hBN [23].

The synthesis of large-area monolayers of single-crystal 
hBN has undoubtedly been achieved. However, the methods 
are enabled by substrate engineering. Since hBN is an insu-
lating material and primarily used in conjunction with other 
2D materials as capping or passivating layers, either direct 
deposition or reliable transfer methods are necessary to be 
shown for each of the synthesis methods. Similar to liquid 
metal mechanical transfer methods [14], transfer of the hBN 
sheets from the surface of liquid Au should be trialled [35]. 
Possibility of substituting liquid Au as a substrate with other 
liquid metals under ultra-high vacuum to avoid oxide and 
contamination formations should be explored to reduce the 
working temperatures and costs of the liquid metals.

3.3  Emerging Materials

3.3.1  Black Phosphorus

Black phosphorus (BP) has high motilities in room tempera-
ture with tunable bandgap featuring intriguing properties 
to be incorporated in device applications [38]. Large-area 
stratified crystals of black phosphorous with lateral dimen-
sions of up to 600 µm were synthesised using a custom 
configuration. Li et al. used red phosphorous powder as a 
precursor and deposited on a sapphire substrate. Then, red 
phosphorous films were firstly covered by hBN and then fol-
lowed by annealing at 700 °C in 1.5 GPa pressure to convert 
to BP. The thermodynamics was engineered to ensure hBN 
crystal remained unchanged and operating temperatures 
were below the melting point of BP. Domain sizes range 
from 40 to 70 µm with mobility of ~ 200 cm2  V−1  s−1 at 
90 K [38]. Similar to TMDCs [24], BP was exfoliated using 
a top–down approach through the gold-mediated exfoliation 
with lateral sizes exceeding 100 µm (Fig. 6a–c) [21]. How-
ever, this method resulted in sheet breakages, random distri-
bution of flakes and less control in thicknesses [21]. Other 
compounds of BP have been synthesised in wafer–scale. 
Black arsenic-phosphorus (b-AsP) sheets with thicknesses 
of 6–9 nm are synthesised at wafer-scale using molecular 
beam deposition (MBD) [22]. Produced thin films are poly-
crystalline or amorphous; however, the crystal quality can 
be further enhanced by annealing (Fig. 6d) [22].
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[95]. Copyright 2019, Wiley
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3.3.2  Xenes

2D Xenes are the technologically significant emerging class 
of 2D materials in the design of fundamentally novel low-
energy nanoelectronics, spintronics and devices featuring 
room temperature quantum spin hall effects [99, 100]. This 
class of materials offers versatile properties including semi-
conducting, superconducting, trivial and topological insu-
lating phases. The materials including silicene, germanene, 
tellurene, borophene, stanene, bismuthene, plumbene, etc., 
are examples of the monoelemental crystals of silicon, ger-
manium, tellurium, boron, tin, bismuth and lead, respec-
tively. Only a few of these materials have been realised in 
2D large lateral dimensions (> 100 µm) including silicene 
[39], germanene [101] and tellurene [40] development of 
large-scale synthesis strategies for others such as borophene 
[41], stanene [102] and plumbene [103], bismuthene [104] 
is ongoing.

Interestingly, large-area syntheses of 2D Xene materials 
are achieved using different methods which lack universality. 

Silicene is synthesised using MBE on Ag(111)/mica sub-
strates (Fig. 7a) [39]. Germanene layers have been synthe-
sised in a three-stage synthesis. In the first stage,  Si0.65Ge0.35 
is epitaxially deposited. In the second and third stage, the 
film is immersed in  N2 plasma and annealed, respectively, to 
produce atomically thin large layers of Germanene (Fig. 7b) 
[101]. Most of the growth methodologies rely on synthesis 
directly on substrates, and solution-based synthesis of large-
area materials are rarely found. Wang et al. [40] developed 
2D tellurene sheets in suspensions with a high yield of prod-
ucts featuring high mobility of up to 700 cm2  V−1 s−1 in 
room temperature (RT).

Borophene is emerging 2D sheet of boron suitable for 
applications in high performance and flexible optoelectron-
ics [41, 42, 106, 107]. Wu et al. [41] synthesised 2D boro-
phene crystals on Cu (111) with MBE method at ultra-high 
vacuum (2 × 10−10 torr) with a maximum achieved single 
crystal with areas of up to 100 µm2. However, compared 
with other 2D Xenes, borophene has yet to achieve lateral 
dimensions exceeding tens of micrometres [42].
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Bismuthene, stanene and plumbene have not been 
achieved in large areas; however, they can potentially be 
derived from their large-area 2D metallic sheets. For exam-
ple, the synthesis of 2D bismuth layers in large areas is dis-
cussed in the next section; however, the referenced articles 
lack direction in achieving crystal structures that are simi-
lar to bismuthene. Further synthesis optimisation and sub-
strate engineering are needed to achieve them as 2D Xenes 
crystals.

3.3.3  Bismuth Compounds

Bismuth is a post-transition metal which its compounds 
are increasingly gaining attention due to their topological 
insulating (TI) properties for future low-energy electron-
ics device integration. Several methods for the synthesis 
of large-area bismuth compounds have been investigated 

entailing PLD, MBE, CVD and LM. PLD produces centi-
metre scale, Bi Sheets, with relatively good crystal qual-
ity and high mobility of 220 cm2 V−1 s−1 [108] (Fig. 8a). 
This may potentially provide pathways to the synthesis 
of bismuthene layers. MBE methods are widely adopted 
growth methods of bismuth selenides and tellurides with 
the large-area coverages for the study of TI behaviour [43, 
44]. However, MBE is expensive to operate, difficult to 
integrate to industry and results in several X–Bi–X–Bi–X 
(X = Te and Se) quintuple layers (QL) with relatively small 
domains [43, 44, 110]. Ultra-high vacuum condition ena-
bles an in situ analysis of these materials and to protect 
against n-type doping if exposure to air which is an advan-
tage of MBE over CVD methods [111]. Extensive research 
is still underway using MBE to achieve high-quality TI 
crystals including  Bi2Te3 and  Bi2Se3 which are the mate-
rial of choice for the study of magneto-transport properties 
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due to strong spin–orbit coupling (Fig. 8b) [109]. How-
ever, several critical 2D compounds of Bi including 
chalcogenides have not been realised with lateral sizes 
larger than 100 µm by CVD methods [112]. Sub-milli-
metre single crystals of  Bi2O2Se have been synthesised 
by low-pressure CVD (LPCVD) with ultra-high mobility 
of 29,000 cm2 V−1 s−1 at 1.9 K and 450 cm2 V−1 s−1 in 
RT [45]. Space-confined CVD method using stacked mica 
substrates for growth of BiOI with more than 100 µm grain 
sizes is synthesised [46]. Space confinement is an effective 
method to obtain uniform thicknesses of 2D sheets dur-
ing the CVD growth. In a space-confined environment, a 
narrow gap is created for reactants to reduce and control 
the nucleation density and growth rates [113]. Choosing a 
substrate can also enhance more homogenous nucleation 
rates such as atomically flat mica with no dangling bond 
to make BiOI [46]. 2D  Bi2O2Se with high stability in air 
and high-motility semiconducting are grown on mica at 
LPCVD using  Bi2O3 powder and  Bi2Se3 bulk precursors 
with large domain sizes and ultra-high mobility. Messaela 
et al. [15] synthesised monolayer of bismuth oxide with 
sub-nanometre thicknesses using LM-based exfoliation 

(Fig. 8c, d). Molten Bi surfaces developed a highly crys-
talline with large lateral dimension and thinnest reported 
layers of α-Bi2O3 [15].

Considering Moore’s law approaching its limits, emerging 
materials provide avenues to overcome current technologi-
cal challenges and limitations. Several new materials have 
emerged, providing avenues for the exploration of novel het-
erostructures and next-generation electronics and optoelec-
tronics devices. Many of the emerging 2D materials yet to be 
realised in large areas exceeding 100 µm lateral dimensions 
including borophene, stanene, plumbene and bismuthene. 
A method to achieve these monoelemental structures can 
be through reduction reactions which should be attempted 
[114, 115].

3.4  Non‑layered Materials

Atomically thin 2D materials with non-layered structures 
possess exciting properties. Significant advances in the 
development of non-layered ultrathin 2D materials such as 
noble metals, metal oxides and metal chalcogenides have 
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been seen in recent years. Due to the hardship of strong 
in-plane bonds breaking (e.g. covalent, metallic and ionic 
bonding) and the lack of intrinsic anisotropic growth driv-
ing force, it is still a great challenge to synthesise ultrathin 
2D nanosheets with non-layered structures. In this point of 
view, a bottom-up technique such as wet chemical synthe-
sis, ionic layer epitaxy (ILE), liquid metal-based exfoliation, 
CVD, PVD, sputtering and templated synthetic strategy has 
been successfully developed and continuously optimised to 
break the thermodynamic equilibrium state and control the 
aggregation kinetics, which consequently leads to the ani-
sotropic growth of atomically thin non-layered nanocrystals 
[116–118]. However, large area, high-quality and homoge-
neous production of non-layered 2D sheets has proven to 
be a key challenge. Only very few numbers of articles have 
addressed such a challenge so far. Indium tin oxides (ITO) 
which is an important class of 2D transparent conductive 
oxides have been synthesised in 2D and large scale using 
a simple sputtering method [47]. Wang et  al. proposed 
the wafer-scale growth of CoO nanosheets and large-area 
ZnO nanosheets using adaptive ionic layer epitaxy (AILE) 
method. In AILE, at a two-phase interface (basically a 
water–air), an ionic amphiphilic molecular monolayer is 
engaged, and crystals grow at the interface absorbed by 
electrostatic and covalent interactions between the pre-
cursor ions and the functional groups on the amphiphilic 
molecules (Fig. 9i–iv) [48]. Initially, tiny nanocrystals are 
generated and self-organised stochastically into a continu-
ous amorphous film (Fig. 10vi). These nanocrystals then 
attach to each other through the interatomic bonds between 

high energy facets at an aligned orientation (Fig. 10vii–viii). 
Finally, the amorphous film is fully crystallised, and a sin-
gle-crystal nanosheet is hence generated (Figs. 10ix) [49]. 
However, a small number of nanoparticles (Figs. 9v, x, 10i) 
were sparsely distributed on top of the nanosheet due to the 
transfer and drying process. Additionally, such a process 
limits to a few types of nanomaterials and cannot be readily 
extended to others due to the rigorous synthetic conditions, 
such as concentrations of reactants, surfactant selection and 
reaction temperature and time [116]. This method also led 
to a large area of defects as observed from the TEM image 
in Fig. 10v. 

Alsaif et al. synthesised large-area 2D SnO/In2O3 het-
erostructures by touching the surface oxide layers from the 
liquid tin and indium onto the substrate separately [16]. LM 
synthesis is also shown to produce centimetre-scale gal-
lium oxide  (Ga2O3) that can be isolated from the liquid Ga 
surface [50, 51]. Metal inclusions were observed on  Ga2O3 
nanosheet, which was removed by a simple mechanical 
ethanol washing method (Fig. 11). During the cleaning 
procedure, a beaker of ethanol was heated to 78 °C. The 
 SiO2/Si wafer with an exfoliated 2D  Ga2O3 sheet was then 
plunged in the hot ethanol and gently wiped out the metal 
inclusions with the help a wiping tool (cotton bud). Exfoli-
ated non-layered  Ga2O3 was converted to  GaPO4 utilising 
a simple CVD process at low temperatures (300–350 °C). 
The 2D nanosheets were uniform, continuous and thermally 
stable up to 600 °C [50]. Using similar LM synthesis strat-
egy, Syed et al. [51] also successfully synthesised atomi-
cally thin wafer-scale gallium nitride (GaN) with a thickness 
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of 1.3 nm and indium nitride (InN) with the thickness of 
2 nm. In this article, isolated  Ga2O3 sheets were converted 
into GaN using a high-temperature ammonolysis reaction 
at 800 °C, where urea was used as an ammonia precursor 
(Fig. 11). More recently, LM synthesis methods were used 
to produce another non-layered compound 2D  Ga2S3 [52]. 
It is also demonstrated that liquid metals can act as a reac-
tion solvent and dissolve other metallic elements. In the air, 
the surface of liquid metals forms an ultrathin oxide layer 
with the composition that is dominated by the metal oxide 
with more favourable energy of the reaction. Using this phe-
nomenon, Zavabeti et al. [14] transferred large-area surface 

oxides of several metals, including  Gd2O3,  Al2O3 and  HfO2 
by vdW touch transfer exfoliation. The liquid metal frame-
works, however, are suffered from low solubility of other 
metallic elements such as Mo and W. In addition, several 
other elements are energetically not favourable to achieve. 
Another state-of-the-art method to produce 2D nanosheet 
suspensions has been pioneered by Sasaki group to pro-
vide 2D oxide sheets of titanium, manganese and niobium 
(Fig. 12) [72, 119]. Ma et al. [72] extended the protocols to 
achieve several other 2D elemental hydroxides.

Template-based synthesis methods have been widely 
used for the growth of anisotropic nanocrystals in which the 
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crystal growth can be confined in a specific dimension [120, 
121]. A continuous and uniform amorphous basic alumin-
ium sulphate (BAS) layer was first coated on the graphene 
oxide (GO) surface through a homogeneous deposition 
method. After that, GO was removed from the composite, 
and the BAS layer was converted into  Al2O3 nanosheet by 
calcination at 800 °C. The precipitation is a slow process 
and usually, takes several hours to precipitate (BAS) all the 
aluminium ions. Such a slow reaction rate allows fine-con-
trol of the thickness of the deposited BAS layer on the GO 
sheets. Recently, Li et al. [122] reported the growth of large-
area 2D transition metal phosphides (TMPs)  (Co2P,  MoP2, 
 Ni12P5 and  WP2) with the aid of water-soluble salt crystals 
as growth templates (Fig. 13i–iv). The 2D TMPs showed 
well-defined exposed crystal facets, such as the ( 130 ) facet 
for  Co2P, the (010) facet for  MoP2, the (010) facet for  Ni12P5 
and the (001) facet for  WP2. The area of 2D morphology is 
over 50 μm2 with a thickness of 4, 2, 5, 1.8 and 2.3 nm for 
 Co2P,  MoP2,  Ni12P5 and  WP2, respectively. It was suggested 
that both the salt crystal geometry and lattice matching could 
guide and promote the lateral growth of 2D TMPs, while 
the thickness could be well-balanced by the raw material 
supply [15]. However, this technique did not afford smooth 
and compact 2D nanosheets. Additionally, well matching of 
lattice planes between target 2D nanosheets and template is 
the critical requirement for the formation of 2D anisotropic 
nanosheets.

Another typical method that has been extensively used 
for the synthesis of non-layered 2D materials is hydro-
thermal synthesis. The large-scale  Co3O4 nanosheets with 
a thickness of less than 3 nm have been prepared by a 

nonsurfactant and substrate-free hydrothermal method 
into a homogeneous reactor with the subsequent thermal 
annealing treatment [123]. In this method, cobalt ammo-
nia complexes reconstruct under a high concentration of 
ammonia during hydrothermal conditions which were used 
to fabricate 2D  Co3O4 nanosheets. The area and thickness 
of  Co3O4 are up to 30 μm2 and 2.9 nm, respectively. Feng 
et al. [123] explored that hydrothermal temperature and 
hydrothermal time have significant impacts on the mor-
phology and yield. In this process, 140 °C is the optimum 
temperature to form high-quality 2D sheets. At lower tem-
peratures, residues of reaction byproducts remained in the 
interlayers of the 2D nanosheets. On the other hand, at 
higher temperatures, ammonia becomes ionised; hence, 
dissociative ammonia is impotent in the 2D nanosheet 
formation [123].

Non-layered crystals incorporate an abundant library 
of materials which require more investigation to enable 
achieving them in stratified large-area 2D morphologies. 
Novel synthetic methodologies include liquid metals [14] 
and soft chemical processes [72, 119]. For liquid metal 
synthesis, gallium as a solvent should be substituted with 
another metal with less energy of reaction and as well 
as providing high-entropy liquid metal alloys with higher 
loading of added reactants. The reactive gas and solvents 
surrounding liquid metal alloys can also be modified to 
offer other compositions than oxides. The soft chemical 
processes developed by Sasaki group can also be possibly 
applied to a more variety of elements to achieve 2D lay-
ered oxides that are otherwise challenging to obtain [124].
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3.5  Graphene

Graphene as the first isolated 2D material provides an 
extensive account of synthesis optimisation. Lack of band-
gap in graphene has limited its use in logic devices and the 
successful integration into large-area novel electronic and 
optoelectronic devices. Therefore, scientists have either 
engineered graphene to induce a bandgap or used it in het-
erostructures [125, 126]. This review will only summarise 
large-area graphene synthesis, providing valuable insight 
that may be applied to the synthesis of other semiconduct-
ing 2D materials. Similar to the synthesis approaches of 
other 2D materials, CVD holds promise for large-scale 
production of high-quality single crystals of graphene with 
uniform thickness. Metallic surfaces are found to be one 
of the appropriate substrates to realise large-area growth 
[53, 127]. Vlassiouk et al. [128] exploited the evolution-
ary selection approach in the Czochralski process to obtain 
foot-long single-crystal quality graphene on Cu-Ni alloy 
surfaces [127]. In this method, the fastest growing domain 

orientation dominates the crystal facet direction with growth 
rates as high as 2.5 cm h−1 [127]. Xu et al. [11] synthesised 
metre-sized graphene single crystals on Cu (111). Since Cu 
(111) has the same rotational symmetry of C3 as graphene 
with only 4% lattice mismatch, it provides a suitable surface 
for the growth of large-area single crystals [11]. However, 
most of the industrial Cu foils feature polycrystalline, and 
additional thermal annealing is needed to increase the Cu 
(111) facet size (Fig. 14a–d) [11]. Liquid metal melts can 
be used as an effective substrate for the synthesis of large-
area CVD grown 2D materials with minimum imperfec-
tions [35, 76]. Similarly, molten copper foil is used as a 
substrate for the large-area synthesis of graphene with less 
grain boundary formation [129]. Interestingly, during the 
synthesis, highly aligned 2D graphene domains are produced 
in the direction of the gas flow (Fig. 14e–i) [129]. Sun et al. 
improved the synthesis growth rates up to four times. They 
reduced the synthesis temperature using carbon feedstock 
substitute precursors rather than methane, hence producing 
millimetre-sized single-crystal graphene [130]. Apart from 

(i)

(ii)

Co2 oCP 2P MoP2 Ni12P5 WP2
1 µm

[120] [010] [010] [010]

(001)
(003)

(001)
(100)

(100)

(100)

(001)
(210)

(iii)

0.261 nm
(210)

0.351 nm
(001)

)v()vi(

Co2P MoP2 Ni12P5 WP2

(vi)

WashHydrogenation

KCl/NaCl

(NH4)2HPO4

Metal-precursor

Metal Phosphide

Salt template
(KCl/NaCl)

2 nm 1 µm 1 µm 1 µm

Fig. 13  Large-area synthesis of 2D metal phosphides. (i) Schematic representation of the synthesis process and optical images of 2D metal 
phosphides. (ii) TEM (inset: the corresponding SAED pattern) and (iii) HRTEM images of 2D  Co2P. TEM images (inset: the corresponding 
SAED pattern) of 2D  MoP2 (iv),  Ni12P5 (v) and  WP2 (vi). Adapted with permission from Ref. [122]. Copyright 2018, The Royal Society of 
Chemistry Publishing Group



 Nano-Micro Lett.           (2020) 12:66    66  Page 16 of 34

https://doi.org/10.1007/s40820-020-0402-x© The authors

CVD, large-area graphene has been made using PLD [131], 
laser irradiation methods [131] and enhanced ME (Fig. 15) 
[20]. Enhanced ME method provided large-area monolay-
ers of graphene and  Bi2Sr2CaCu2Ox (BSCCO) monolayers. 
In this method, the surface was treated with plasma, and 
the sticky tape was left at elevated temperature to enhance 
the sticktion and consequently, vdW exfoliation. Several 
reliable transfer methods are used for transferring a large-
area 2D graphene enabling device integration [132–134]. 
Shivayogimath et al. used laminator and polyvinyl alcohol 
polymer foil to transfer large-area graphene from Cu foil. 
Authors extended the method to transfer multilayer hBN 

from Cu and Fe foils [132]. Wang et al. [133] introduced 
a novel strategy to use the wetting-induced transfer of gra-
phene sheets from solvent interfaces. Karmakar et al. [134] 
transferred centimetre-scale graphene sheets from Cu foil to 
 SiO2/Si substrates using the copolymer-assisted technique. 
Roll to roll transfer of large-area patterned graphene was 
demonstrated by Choi et al. [135] as a promising method for 
commercially viable transfer technique to flexible substrates. 
Graphene and its derivatives, for example, GO, reduced gra-
phene oxide (rGO) and functional graphene oxide (fGO) 
have been investigated for integration into functional 
devices. Nevertheless, they are also used as a template for 
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crystal monolayer of graphene. Adapted with permission from Ref. [129]. Copyright 2019 American Chemical Society
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large area producing other 2D materials [54, 136]. GO has 
been recognised as a common template for synthesis of 2D 
materials, as it holds a large amount of oxygen-containing 
functional groups and shows strong affinity towards the inor-
ganic materials [120, 136]. Also, it is highly dispersible in 
the solvent, which could direct the growth of high-quality 
ultrathin nanosheets. Huang et al. demonstrated the syn-
thesis of ultrathin 2D  Al2O3 nanosheets with the thickness 
of ~ 4 nm and size > 10 μm by duplicating the shape of GO 
[136].

Graphene as a popular 2D material currently holds the 
record in achieved lateral sizes of the single crystal [11]. 
Several of the synthetic methods should be employed to 
achieve semiconducting 2D materials as well as using the 
large-area synthesised graphene and its derivatives as a tem-
plate for producing other large-area single crystals.

4  Defect Formations and Crystal Quality

The periodic arrangement of atoms in crystal structures 
may not occur in a perfect regular lattice due to the pres-
ence of defects. Variety of low-dimensional defects exist in 
2D materials that are summarised as: (I) zero-dimensional 
(0D) point defects including vacancies, antisites, substi-
tutional impurities and adatoms. (II) One-dimensional 
defects (1D) include grain boundaries, twin boundary, 
edges and dislocations. (III) 2D defects, including holes, 
scrolls, wrinkles and folds [137].

These low-dimensional defects substantially influence 
device performances. Single crystals or crystal with a low 
density of defects are usually defined as high quality. How-
ever, defects provide an additional feature to effectively engi-
neer some of the optical and electronic properties of 2D 
materials. Therefore, tremendous efforts have been devoted 
to controlling the defect formation during the synthesis of 
2D materials [138].

4.1  Defects Formation and Engineering During 
the Synthesis

ME 2D materials from high-quality crystals feature intrinsic 
point defects with less controllability on the defects gen-
eration [139]. MBE offers precise control over morphology 
and is shown by Loh et al. [140] to be an effective method 
to control the stoichiometry of niobium selenide by con-
trolling flux ratio and substrate temperature during growth 
on Au (111) substrate. For the chemical growth processes, 
several structural defects are inherently created according to 
the thermodynamic conditions of the related synthetic strate-
gies [141]. CVD provides highly crystalline 2D TMDs but 
with inherent defects. CVD is a relatively fast technique to 
synthesis large-area 2D materials, and the thermodynamic 
conditions can be altered for the controlled generation of 
these defects. For example, intrinsic 0D point defects in the 
crystal structure of TMDs during CVD and thermal reduc-
tion/sulphurisation growth are elucidated in Fig.  16a–c 
[141–143]. Zhang et al. and Yu et al. demonstrated changing 
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Fig. 15  ME isolation of graphene. Schematic illustration of a modified ME route and optical images of the isolation of the large-area graphene 
and BSCCO monolayers using the same technique, respectively. In this technique, the  SiO2/Si surface was cleaned with  O2 plasma, followed by 
annealing and peel-off. Adapted with permission from Ref. [20]. Copyright 2015, American Chemical Society
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in the thermodynamic condition during the CVD synthe-
sis of  WS2 to control structural defects [138, 144]. Lauhon 
et al. varied the growth condition (temperature of sulphur 
and exposure time) during the conversion of  MoO3 to  MoS2 
to modify the stoichiometry during CVD [145]. To achieve 
defects growth, conversion from transition metal oxide to 
chalcogenides is the preferred method since the degree of 
chalcogenisation can be controlled more effectively [145]. 
The substrate has a profound effect on the quality of the 
CVD grown 2D TMDCs [146]; as shown by van der Zande 
et al. [146], preconditioning of substrate can increase the 
size and crystal quality of the synthesised  MoS2. As a result, 
 MoS2 with large size grains of up to 120 µm is synthesised, 
and defects at the mirrored twin boundaries are characterised 
as a periodic line of 8–4–4 ring defects (Fig. 17a) [146].

Leong et al. demonstrated the importance of precursor 
reactant rations in the development of 0D defects during 
the CVD synthesis of  MoS2 [149]. For this synthesis, rea-
gents’ molarity ratios were varied and as a result, pro-
viding different stoichiometry of  MoOxS2-x. This strategy 
theoretically enabled engineering the defects for different 
precursor Mo/S molarity ratios of 4:2, 4:4 and 4:8 as elu-
cidated in Fig. 17c [149]. Consequently, the Mo/S ratio of 
4:2 provided the highest amount of defects in the crystal 

shown as  MoS2  DH in Fig. 17c [149]. Xie et al. developed 
a scalable pathway to engineering defects in 2D  MoS2 
using a high concentration of precursors and different 
amounts of thiourea. The thiourea was used both to reduce 
Mo(vi) to Mo(iv) as well as stabilising the morphology 
[150]. The number of active sites of defect-rich 2D  MoS2 
was then engineered by adjusting the concentrations of 
precursors and thiourea and reached 13 times more than 
that of bulk 1.785 × 10−3 mol g−1 (Fig. 17d) [150]. Yin 
et al. developed liquid-ammonia-assisted lithiation chem-
ical synthesis to produce metallic 1T phase  MoS2 with 
active edge sites and sulphur vacancies. The defects from 
the chemical synthesis include holes as shown in Fig. 17b 
[148]. Generally, in transition metal sulphides, sulphur 
deficiencies create n-type doping and transition metal 
deficiency causes p-type doping which can be achieved 
by adjusting precursor ratios and stoichiometries. As a 
result of this adjustment, different intrinsic 0D defects 
can form during CVD synthesis which will be explored in 
Sect. 4.2. Besides intrinsic defects during synthesis, the 
defects can be generated post-synthesis intentionally using 
plasma, ion/electron beam, laser and sputtering [151–158] 
which can potentially be used for creating large-area 2D 
heterojunctions and local sites with spin–orbit effects for 
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VS2 MoS2 (b)

(c)

1 nm

Fig. 16  Intrinsic 0D defects of 2D TMDCs during the CVD growth. a Annular dark-field (ADF) images of CVD grown of  MoS2 monolayer. 
Point defects and fully relaxed structural model (inset) of mono-sulphur vacancy  (VS), disulphur vacancy  (VS2), antisite defects where a Mo atom 
substituting an  S2 column  (MoS2), vacancy complex of Mo and nearby three sulphur  (VMoS3), vacancy complex of Mo nearby three disulphur 
pairs  (VMoS6), and a  S2 column substituting a Mo atom  (S2Mo). Purple, yellow and white circles indicate Mo, top layer S and bottom layer S, 
respectively. Adapted with permission from Ref. [141]. Copyright 2013, ACS Publications. b HRTEM images of point defects in 2D  WS2 struc-
ture generated during growth of the oxide and consequent conversion to sulphide. Inset shows the corresponding fast Fourier transform (FFT) 
of the TEM micrograph. Adapted with permission from Ref. [143]. Copyright 2013, ACS Publications. c HRTEM micrograph of a 2D  WS2 
grown by thermal reduction/sulphurisation method with yellow circles highlighting the intrinsic point defects. Adapted with permission from 
Ref. [142]. Copyright 2015, ACS Publications
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applications in high-performance optoelectronics and 
quantum computing.

4.2  The Influences of Defects on the Electronic 
and Optical Properties of 2D Materials

Several properties of 2D materials are affected by the defects 
including optical, electronic, magnetic, chemical, vibrational 
and thermal. The grain boundaries and defects hinder elec-
tronic performances, including transport [159], which large-
area 2D materials consequently affected critically from their 
presence. However, reports indicate the presence of defects 
and less-ordered crystals can potentially promote highly effi-
cient and fundamentally novel electronic and optoelectronic 
devices [160].

Yu et al. demonstrated n-type doping  WS2 as a result of 
structural defects generated during the CVD process [144]. 
In addition to electronics n-type doping, the induced charge 
defects enabled by the structural imperfection changed the 
optical behaviour produced PL quenching and blue shift in 
some regions of the synthesised 2D  WS2 flakes (Fig. 18a–d) 
[144].

Van der Zande et al. produced large grain sizes of  MoS2, 
enabling the study of boundary defects. Two distinct PL 
was observed corresponding to different doping types of 
crystal at boundaries. The mirrored boundary line defects 
with 8–4–4 membered ring structures are Mo rich giving 
rise to n-type doping, and on the other hand, the tilt bound-
ary line defects with 5–7 membered ring structures are S 
rich giving rise to p-type doping of the grain boundaries. 
This, in turn, will cause PL quenching/enhancement with 
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increase/decrease in electron density, respectively [146]. 
Interestingly, the mirror boundary defects reduced PL quan-
tum yield, and in contrast, tilt boundary defects enhanced 
PL quantum yield [146]. This result indicates a significant 
effect of defects on optical electronics properties from being 
n-type to p-type semiconductor. In addition to the diverse 
doping type effects, various point defects that are shown in 
Fig. 16a–d are demonstrated to be more favourable to form 

under different conditions (Fig. 18e). These 0D defects can 
create in-gap states as shown in Fig. 18f [141]. Electronic 
transport characteristics are shown to be affected by local-
ised trap states caused by defects and grain boundaries [145, 
163]. As a result, many of the electronics and optoelectron-
ics properties can substantially be influenced by defects.

Similar to CVD grown defects, increasing defect using ion 
bombardments of TMDCs lead to PL intensity quenching 
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[138, 164–166]. Raman intensity dependency at sulphur 
vacancies in  MoS2 is shown to create a pronounced in-gap 
state measured by scanning tunnelling microscopy for ME 
2H–MoS2 (Fig. 8i, j) [161]. The density of states calcula-
tions for  MoS2 and  WS2 confirms crystals showing this prop-
erty due to the point defects [167]. The bandgap of alloy 
film of  MoS2(1–x)Se2x was successfully engineered from 1.87 
and 1.55 eV by tuning x from 0 to 1 [168]. The ON-current, 
motility and resistance in  MoS2 are defect controlled with 
oxygen–argon plasma irradiation up to four orders of mag-
nitude [153]. The surface-induced defects may serve as an 
ambipolar charge trapping layer [155]. Defects generated by 
proton irradiation reduced the current and conductance of a 
multilayer  MoS2 FET device [156].

Point defects in  MoS2/WS2 created with replacements of 
S with O are demonstrated to change wetting behaviour of 
the TMD film to become more hydrophobic [142]. Xie et al. 
[150] engineered the chemical reaction for the synthesis of 
 MoS2 to generate defects using different concentrations of 
precursors and thiourea and effectively increased the cata-
lytically active edge sites. Electrochemical performance of 
the defective 2D TMDCs with active edge site is shown to 
significantly improve the catalytic performances during the 
hydrogen evolution reaction [148, 150, 169].

Magnetic properties of TMDCs are shown to be affected 
by defects from the reduction in the intensity of electron spin 
resonance spectra of  MoS2 as a result of S-vacancies [148]. 
Jin et al. [148] demonstrated porous 1T/2H phases of  MoS2 
with significantly less intensity of electron spin resonance 
than that of conventional 1T phase  MoS2 (Fig. 18g, h).

Raman study of  Ar+ plasma irradiated of  MoS2 shows a 
weakening of the interlayer interactions as well as dielec-
tric properties resulting in blue shift to E1

2g peak which is 
speculated to be as a result of structural defects [170]. On 
the other hand,  A1g peak is blue-shifted due to p-typed dop-
ing as a result of stronger oxygen bonds due to the anneal-
ing induced cracks and imperfections (Fig. 18k–m) [162]. 
Raman scattering intensity is shown to be proportional to the 
density of defects providing a route to quantify the defects 
in monolayer  MoS2 [171]. Thermal conductivity of the 
 MoS2 is shown to increase with defect mediated gold nano-
particle incorporation. The carrier transport thermal barrier 
was reduced 5.7 times after functionalisation through the 
defect sites [172]. Defect densities in a monolayer of  WS2 

are demonstrated to directly change excitonic binding energy 
by up to 110 meV and affect phonon–exciton interactions 
(Fig. 18n) [138]. Defects have profound effects on various 
properties of 2D materials which is necessary to realise for 
the design of electronics, optoelectronics and quantum-con-
fined enabled devices.

4.3  Strategies for Enhancing Crystal Domain Size

Currently, large-area uniform 2D materials with minimum 
defects and grain boundaries are readily available through 
extensive research and synthesis optimisations over more 
than a decade. Several synthetic routes, including CVD, 
MOCVD, ALD, PLD, MBE, ME and LM, have been 
explored. However, most advancements and knowledge have 
been developed in CVD synthesis due to a prime focus being 
dedicated to this method. Some of the recent techniques that 
are employed to perfect the synthesis strategies including 
the effect of substrate facet, selection and preconditioning, 
carrier gas mixture and impurities, the influence of precursor 
quantity and morphology and thermodynamics engineering 
for effective control of the growth kinetics are discussed 
here.

4.3.1  Substrate Effects

CVD method is substrate sensitive [27]. Li et al. exploited 
the balance between the symmetry of grown hBN and sub-
strate Cu (110) to obtain 100 cm2 single-crystal monolayer 
of hBN. The authors resolved a major problem of the CVD 
process regarding the formation of twin boundary defects 
due to the coalescence of the triangular-shaped grains with 
different crystallographic orientations [17, 92]. Inspired by 
crystal facet engineering, nucleation of hBN is shown to 
initiate at Cu (211) edge, which is coupled with the hBN 
zigzag crystal structure. It is also theoretically confirmed 
that the edge coupling is an energetically more favourable 
arrangement [17]. Alloying Cu with Ni as substrate, on the 
other hand, has resolved crystal orientation requirements 
for wafer-scale production of graphene, which is relied on 
evolutionary growth of favourable crystal domain [127]. 
Using liquid metals as substrates is an emerging method for 
producing large-area single crystal which is demonstrated 
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for hBN growth on liquid Au (Fig. 5) [35]. This process 
offers full coverage of up to several centimetres with smaller 
domains joining to create a large-area crystal optimised with 
respect to time [35]. Liquid metal melts such as Cu as a 
substrate produce self-aligned hBN domains and in case of 
graphene, minimised grain boundary formation, respectively 
[76, 129]. Substrate effects, such as pre-treatment with rGO, 
perylene tetracarboxylic acid tetra potassium salt and per-
ylene tetracarboxylic dianhydride to use molecular agglom-
erates as controlled seed sites, provide controlled growth of 
 MoS2 for up to several centimetres on the amorphous  SiO2 
substrate [6].

4.3.2  Precursor Effects

Precursor quantity has profound effects on CVD synthesis 
during nucleation and growth of the crystals. Lee et al. [25] 
fundamentally explored this effect by spin coating  MoO3 
precursors on substrates and placing them above the destina-
tion  MoS2 substrate. It was realised that excessive precursor 
amounts resulted in the increase in nucleation rates due to 
supersaturation of precursors. Consequently, the grain sizes 
were reduced (the blue shaded right region in Fig. 19a). 
The authors separated this regime from a thermodynami-
cally stable nucleation regime (the pink shaded left region 
in Fig. 19a) when the precursor amounts are optimised [25]. 
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This phenomenon was previously observed by Najmaei et al. 
[55] to realise the effect of  MoO3 nanoribbon precursor dis-
persion to adjust nucleation rate and growth. The authors 
fully characterised the crystal quality, considering the for-
mation of the most common defects in 2D crystals entailing 
0D and 1D defects. Creation of these defects was analysed 
during the CVD growth of  MoS2 [55]. The nucleation and 
growth were controlled by two CVD parameters of precursor 
concentration and pressure to produce large-area and grain-
boundary-free  MoS2 monolayers. Grain boundary and 5–7 
ring defects were used for identifying the mechanism that 
lies in nucleation, and growth of one-dimensional line defect 
grain boundary [55].

4.3.3  Carrier Gas Mixture Effects

Favourable effects of different gas mixtures in CVD pro-
cesses are explored. As discussed,  H2 gas effectively acti-
vates oxide precursor conversion during selenisation pro-
cess [27]. When metal is used as a precursor, the removal 
of oxygen during CVD synthesis is shown to enhance the 
stability of transition metal selenides [174]. However, Chen 
et al. [56] demonstrated oxygen-assisted synthesis when 
transition metal oxides are used as the precursor. Therefore, 
it is noteworthy to devise a suitable carrier gas mixture 
according to the type of the precursor used. The presence of 
oxygen is shown to effectively prevent the oxide precursor 
from poisoning, which is premature sulphurisation of oxide 
during the evaporation stage and eliminates the formation of 
defects during the synthesis [56]. The premature sulphuri-
sation occurs when sulphur reacts with  MoO3 and prevents 
continuous evaporation of  MoO3. In addition, oxygen etches 
away the unstable nuclei and prevents the formation of nano-
tubes and nanoparticles. Figure 19b, c elucidates optimisa-
tion of domain size and growth rates in the presence of a low 
oxygen flow rate [56].

4.3.4  Thermodynamics Effects

Recently, Zhang et al. [173] fundamentally investigated 
the surface diffusion effect on lateral growth of  WSe2. The 
authors systematically separated the growth process into 
three distinct steps, including nucleation, ripening and lat-
eral growth. In the first step, precursors are nucleated at a 
high flow rate and short duration of 30 s, followed by an 

annealing ripening step with  H2Se gas [173]. As shown in 
Fig. 19d–f during the ripening step, domain sizes increased 
by diffusion of the W adatoms and migration of  WSex clus-
ters. Consequently, cluster density and substrate coverage 
decreased. Finally, precursors were reintroduced at an opti-
mised flow rate for lateral growth and full coverage of the 
substrate (Fig. 19g, h). This multi-step process entailing 
nucleation, ripening and lateral growth steps enabled a fun-
damental study of nucleation and growth in detail. As such, 
the authors show the effect of substrate temperature on the 
domain size and density during the growth step as elucidated 
in Fig. 19i [173].

The crystal quality has been rigorously optimised in CVD 
processes; however, other methods are lacking protocols to 
obtain large-area single crystals. The investigation should be 
a focus of future explorations for other synthesis methods.

5  Electronic and Optoelectronic 
Performances of Large‑Area Synthesised 
2D Semiconductors

Each synthesis method conventionally presents with chal-
lenges; for example, CVD and MBE both suffer mostly 
from grain boundary defects and LM methods from liquid 
metal inclusions during the transfer. Nevertheless, several 
high performing devices have been reported using these 
methods including a design of a complete logical circuit 
enabled by the large-area synthesis of 2D materials [126]. 
Many promising optoelectronics components have been syn-
thesised such as FET and photodetectors which are sum-
marised below. CVD grown  Bi2O2Se features ultra-high 
mobility with on/off ratios (> 106) at room temperature 
for single crystal with sizes exceeding 200 µm [45]. Field-
effect transistors (FET) based on CVD synthesised  MoTe2 
with high-quality crystals have been made featuring on/off 
ratios of ~ 1000 and carrier mobility of 1 cm2 V−1 s−1 [3]. 
Large-area  WSe2 single crystal with areas of ~ 100,000 µm2 
demonstrates high hole mobility of 102 cm2 V−1 s−1 [30]. 
Lan et al. [26] reported large-area growth of  WS2 with low 
mobility of ~ 0.02 cm2 V−1 s−1 associated with the formation 
of 0D defects to low mobility due to increased scattering of 
charges. The summary of electrical performances of large-
area synthesised 2D semiconductors is shown in Table 1. 
As a benchmark for high-quality exfoliated 2D materi-
als, mechanically exfoliated  MoS2 has room temperature 
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mobilities of greater than 200 cm2 V−1 s−1 [176], however, 
in large-scale fabrication using most common CVD methods 
charge mobilities falls short in performances [1, 3, 55, 57].

Larger area 2D materials provide a higher effective sur-
face for optoelectronic devices, therefore, enhancing perfor-
mances. The large area can accommodate more components 
for integrated optoelectronics circuits as well as allowing 
the design of larger gaps between electrodes. Suitable bias 

voltages are needed to be selected to operate and character-
ise the optoelectronics devices when changing the distance 
between electrodes to incorporate the impedance variations 
[16].

High responsivity photodetection with fast response 
times is reported for large-area devices produced by the LM 
method, as presented in Table 2. Photodetectors with ultra-
sensitive and high detectivity of  1013 Jones and wide spectral 

Table 1  Electrical performances of large-area 2D materials

Material Method On/Off Mobility  (cm2 V−1 s−1) Bandgap (eV) Refs.

Bi2O2Se LPCVD > 106 450 at RT 29,000 at 1.9 K 0.8 [45]
MoTe2 APCVD 1000 1 at RT – [3]
MoS2 LPCVD 6 × 106 4.3 at RT – [55]
MoS2 APCVD 8 × 108 24 at RT 84 20 K – [57]
MoS2 LPCVD 6 × 106 30 at RT

114 at 90 K
1.9 [1]

ReS2 APCVD 1000 – 1.59 [4]
WSe2 APCVD 107 hole (102) electron (26) at RT 1.65 [30]
WS2 APCVD 107 electron (14) at RT 1.99 [30]
WS2 LPCVD 106 0.91 at RT 1.9 [83]
WS2 LPCVD 5.5 × 103 0.02 at RT 2 [26]
WSe2 PLD 103 0.00528 at RT – [33]
MoS2 ME – 26 at RT – [24]
ZnO AILE – hole (0.10) at RT 2.53 [49]
GaN LM–PCVD – 21.5 at RT 3.5 [51]
SnO/In2O3 LM – 37 at RT 4.08/3.65 [16]
Ga2S3 LM 100 3.5 at RT 2.1 [52]
GaS LM 150 0.2 at RT 3.1 [13]
SnO LM 300 0.7 at RT 4.2 [175]
In2S3 LM 104 58 at RT 2 [71]

Table 2  Optoelectronic performances large-area 2D materials

Materials Method Thickness Lateral size Responsivity (A  W−1) Detectivity (Jones) Response 
time (ms)

Spectral range (nm) Refs.

BiOI APCVD Few layers > 100 µm 0.026 8.2 × 1011 120 473 [46]
MoS2/graphene APCVD 1L cm 2.4 – – 532 [54]
PdSe2 APCVD 1 to few layers cm 0.3 1013 at 780 nm – Up to ~ 1100 [28]
WS2 LPCVD 1L cm 18.8 – 4.5 532 [83]
WS2 LPCVD 1L cm 0.005 4.9 × 109 560 532 [26]
ReS2 APCVD 1L cm 278 – – 405 [4]
Bi2O3 LM 1L cm 400 1.1 × 1013

at 365 nm
4.3 365 [15]

SnO/In2O3 LM 1/4.5 nm mm 1047, 600, 173 5 × 109 at 280 nm 1 280, 365, 455 [16]
Ga2S3 LM 2 nm cm 240 1010 at 455 nm 100 365, 455, 565 [52]
In2Se3 CVP 3.6 nm > 200 µm 5.6 7 × 109 at 660 nm 140 365–850 [177]
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ranges are reported for  PdSe2 synthesised in centimetre 
scale with uniform thicknesses [28]. In addition, large-area 
devices enable more effective scientific investigations for 
intriguing properties of 2D materials. As such, Chen et al. 
[54] demonstrated the quench of photoluminescence (PL) in 
the large-area grown  MoS2 when forming a heterojunction 
with graphene due to charge transfer at the interface. Huang 
et al. have shown large-area grown  WSe2 with an indirect 
gap absent in monolayer. Instead, only PL emissions at A 
and B excitonic absorptions are seen, corresponding to the 
direct bandgap of a monolayer [27].

A significant prospective optoelectronics application of 
large-area 2D materials is transparent and conductive wide 
bandgap semiconductors enabling large display panels as 
well as flexible and stretchable electronics. As the thickness 
of transparent and conductive wide bandgap semiconduc-
tors such as ITO is reduced, the light absorption spectra are 
shown to decrease indicating a potential to be incorporated 
as a top contact in solar panels and smartphones to enhance 
performances, providing better brightness and lowering the 
power consumption [47]. Large-area printed 2D materials 
enable miniaturised electronic components and to fit more 
components into devices as shown in Fig. 20a, 8100 FET 
devices are fabricated within a monolayer of  MoS2 [1]. 
Multi-component logical devices are shown to be fabri-
cated from heterostructures of large-area  MoS2 monolayer 
(Fig. 20b) [126]. Large-area photodetectors are reported with 
excellent detectivities (Fig. 20c, d and g) suggesting promis-
ing pathways towards high-efficiency devices [16, 26, 83, 
177]. Large-area printing of atomically thin materials ena-
bles fabrication of multiple electronics devices resulting in 
the precise and more in-depth statistical analysis of devices 
[13, 33, 83]. LM synthesis of large-area GaS is presented 
in Fig. 20e. These layers are achieved by screen printing of 
molten gallium to transfer the surface oxides onto a  SiO2 
wafer, followed by chemical conversion and sulphurisation 
[13]. PLD methods that can potentially be used to produce 
a variety of large area are shown to produce  WSe2 with high 
uniformity (Fig. 20f) [33].

Emerging 2D magnetic materials for potential applica-
tion in spintronics, valleytronics and twistronics with large 
lateral dimensions have rarely been realised. Chu et al. [58] 
synthesised vdW epitaxial growth of single-crystal  Cr2S3 in 
a single unit cell exceeding 200 µm. This material feature 
air-stable p-type semiconductor ferromagnet with intriguing 
properties. Yu et al. synthesised 2D  VSe2 using exfoliation 

electrochemically to produce atomically thin layers with 
strong ferromagnetic properties at high curie temperatures 
for potential memory device applications [59]. Development 
of such large-area 2D magnetic materials is of interest for 
applications in quantum computing which is the currently 
lacking literature.

6  Conclusions

The quest for the synthesis of large-area atomically thin 2D 
materials with uniform thicknesses and minimum structural 
defects has effectively led to many successful reports and 
emerging strategies. This topic is the subject of extensive 
and ongoing research presenting several performance and 
scalability challenges to be adopted by industry. One major 
drawback in the development of large-area high-quality 2D 
materials is the lack of spectroscopic solutions for analysing 
the quality of the obtained large-area 2D materials in atomic 
resolution in a single measurement. Current methods to cap-
ture HRTEM at atomic resolution for centimetre-scale 2D 
materials are performed through stitching images and locally 
verifying the grain boundary sizes. In addition, electron irra-
diation during TEM has found to introduce defects in 2D 
materials even at relatively low acceleration voltages of 80 
and 60 kV [151, 152]. Besides the adverse effect of TEM in 
introducing defects, Raman laser is also shown to generate 
defect in  WSe2,  TaS2 and  TaSe2 nanosheets by damaging the 
crystal and oxidisation [179, 180]. The uniformity assess-
ment of 2D materials is measured locally using limited area 
AFM image and generalised to centimetre-scale grown 2D 
materials using an optical microscope, which is none ideal 
method of characterising large-area 2D materials.

Among synthesis methods, top–down approaches, such 
as ME, are low cost and produce high-quality exfoliated 
2D sheets exceeding half a millimetre in lateral dimen-
sions, however, lacking scalability and yield [20]. Success-
ful bottom–up approaches such as CVD have shown many 
promises to produce large-area single-crystal 2D materials 
including hBN [17, 35]. The breakthroughs in CVD syn-
thesis have been achieved by substrate facet engineering or 
using liquid metals as substrate. The former requires lattice 
matching between substrate edge, which requires extended 
investigation for other 2D materials with different crystal 
structures than that of hBN. The latter needs an inert metal 
melt as a substrate and requires the synthesis at temperatures 



 Nano-Micro Lett.           (2020) 12:66    66  Page 26 of 34

https://doi.org/10.1007/s40820-020-0402-x© The authors

higher than the melting point of substrate metal, which may 
limit the applicability to other 2D materials. Single-crystal 

TMDCs such as  MoS2 have been achieved by CVD on a 
molten glass as a substrate with lateral dimensions of more 
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than half a millimetre featuring high performances [57]. 
CVD method enables the growth of single-crystal graphene 
in record-breaking dimensions of metre sizes using Cu (111) 
as a substrate [11]. Comparing to ME, the CVD method is 
more expensive, time-consuming as well as requires dedi-
cated engineering and expertise. On the other hand, MBE 
methods are shown to be a suitable method for required 
high-quality large-area 2D materials such as topological 
insulators. Similar to CVD methods a recipe is needed for 
MBE synthesis of 2D materials with larger grain sizes. The 
most critical parameters in generating large grain size 2D 
materials using MBE methods are found to include precursor 
flux and substrate temperature [181]. MBE method, how-
ever, requires sophisticated instrumentation and is expen-
sive to operate [22, 41]. Few CVD grown 2D materials are 
reported to achieve performances comparable to that of ME 
and MBE grown materials [1, 3, 32]. MOCVD method has 
been known to produce uniform crystals in wafer-scale but 
with the drawback of smaller grain sizes than that of CVD 
[1]. Other methods such as PLD and ALD are both shown 
to offer wafer-scale synthesis with precise thickness con-
trol and uniformity, which possibly has a broad scope for 
investigation and many possible 2D materials which have 
not been previously achieved can be synthesised [33, 34]. 
Recent emerging methods enabling the large-area synthesis 
of novel 2D materials, including the low-temperature LM-
based process are in their infancy, however, can potentially 
offer pathways to production of high-quality atomically thin 
materials [14, 182]. In producing large-area uniform 2D 
oxides, ME methods do not provide a universal synthesis 
method since a majority of oxides have non-layered crys-
tal structures. Recently, CVD methods have been reported 
to produce large-area 2D oxides of  MoO3 [183] and con-
sequently, the reliable transfer techniques [184] have been 
invented to enable large-area optoelectronics and sensing 
applications using  MoO3. LM seems to be a frontier in 2D 
oxide synthesis with uniform thicknesses [47]. However, LM 
methods lacking investigation and optimisation of the crystal 
domain sizes which requires to be the focus of investiga-
tions for future device integrations. Recent outcomes pre-
sent promising advancements in CVD methods as a frontier 
technology resolving significant challenges including high 
device performances, minimum grain boundary formation, 
enhanced scalability and reliable transfer techniques, how-
ever, process costs and complexity remain as a challenge.

Large-area synthesis of 2D materials has substantial 
implications for industrial uptake which has evolved to a 
fast-developing field of science. The recent development in 
the field of quantum computing will push the materials sci-
ence explorations to optimise high-quality and large-scale 
synthesis of 2D materials systems featuring topological 
states, superconductivity and spin polarizability sites. There 
is nonetheless a vast scope for enhancing current technolo-
gies and developing emerging synthetic techniques.
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