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Fig. S1 (a) The TEM image of NiSe2/Ni(OH)2-2h. The Ni(OH)2 nanoflakes grow 

around the Ni(OH)2 octahedra; (b) the crystal structure of NiSe2 (100) and Ni(OH)2 

(110). On the NiSe2 (100) plane, the distance between two nearest Ni atoms are 2.98 

Å, half of the distance on Ni(OH)2 (110). Therefore, it is likely that the Ni(OH)2 (110) 

plane can grow on the NiSe2 (100) plane; (c, d) The SAED image on Ni(OH)2 

nanoflake and NiSe2 octahedra. The SAED rings of the Ni(OH)2 nanoflake indicate its 

polycrystalline feature. However, the SAED image on the NiSe2 octahedra exhibit 

clear diffraction spots, indicating the single crystal feature of the NiSe2, and 

meanwhile, the polycrystalline rings of Ni(OH)2 are also observed, implying the 

epitaxial growth of Ni(OH)2 on NiSe2. 

 

Fig. S2 (a) HRTEM images of NiSe2 domain. The inset is the FFT image of the 
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zoom-in NiSe2 domain, and the square spots imply that this image is the top view of 

(001) plane of NiSe2; (b) Profile plots of the calibration for measuring the spacings in 

panels; (c) The crystal structure of NiSe2 on (001) plane. Ni atoms are in the similar 

position compared with the spots in FFT image. 

 

Fig. S3 (a) The PDOS of Ni atoms at the Ni(OH)2/NiSe2 interface and in bulk NiSe2, 

as well as in bulk Ni(OH)2. It is clear that the PDOS of Ni-Ni(OH)2-bulk presents 

typical forbidden gap, implying its unsatisfied conductivity. The Ni-interface and Ni-

NiSe2-bulk, however, present conductive feature. (b) The PDOS of Se atoms at and 

near the interface, as well as in the bulk. There is no forbidden gap, indicating the 

conductive feature. 

 

Fig. S4 (a) XRD patterns of prepared samples from either pure hydrogen peroxide 

aqueous solution or pure potassium hydroxide aqueous solution. It is obvious that 

NiSe2/Ni(OH)2 composite cannot be produced under either condition. (b) XRD 

patterns of untreated and treated NiO in the H2O2 and KOH solution. It is obvious that 

NiO maintains unchanged. 

http://springer.com/40820


Nano-Micro Letters 

S4/S13 

 

 

Fig. S5 XPS spectra of NiSe2 and NiSe2/Ni(OH)2-2h. We can clearly observe a series 

of characteristic peaks from 0 to 450 eV, which are assigned to Se 3s, Se 3p, Se 3d, 

and Se auger. The characteristic peak at 531.85 eV of NiSe2 precursor is attributed to 

O 1s, associated with the oxidation in the air. It is noteworthy that NiO cannot convert 

to Ni(OH)2 under the same preparation condition (Fig. S4b). The disappeared 

characteristic peaks of Se 3s/3p/3d/auger and enhanced characteristic peaks of O 1s in 

NiSe2/Ni(OH)2-2h indicate the formation of Ni(OH)2. 
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Fig. S6 (a-d) SEM images and (e-f) TGA curves of NiSe2/Ni(OH)2-1h, 

NiSe2/Ni(OH)2-2h, NiSe2/Ni(OH)2-3h, and NiSe2/Ni(OH)2-6h 

In this work, TGA tests were employed to investigate the mass ratio of NiSe2 and 

Ni(OH)2 in NiSe2/Ni(OH)2 composites. The TGA measurements were under the O2 

condition in the temperature range from 40 to 900 °C. The corresponding reactions 

during hydrolysis are as follow:  
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Ni(OH)2  →  NiO + H2O (volatile) 

NiSe2 + O2  → NiO + SeOx (volatile) 

Herein, the molecular mass of Ni(OH)2, NiSe2 and NiO are 92.71, 216.61 and 74.71, 

respectively. The dehydration of Ni(OH)2 and oxidation of NiSe2 occurred in the 

temperature range from 40 to 400 °C and from 400 to 900 °C, respectively. Assuming 

the mass percentages of Ni(OH)2 and NiSe2 are M and N in a NiSe2/Ni(OH)2 

composite, the TGA value changes can be calculated based on the following 

equations:  

M 
216.61−74.71

216.61
, from 40 to 400 °C 

N 
92.71−74.71

92.71
, from 400 to 900 °C 

In NiSe2/Ni(OH)2-2h, the TGA value decreased 3.8% from 40 to 400 °C and 51.7% 

from 400 to 900 °C. Therefore, the calculated mass percentages of NiSe2 and Ni(OH)2 

are 78.9% and 19.6% respectively. It is worth mentioned that the summation of the 

two values are a bit lower than 100%, and we suggest it is due to small amount of 

adsorbed water. Thus, the molar ratio between NiSe2 and Ni(OH)2 can be calculated: 

NiSe2: Ni(OH)2  =
78.9%

216.61
:
19.6%

92.71
= 1.72: 1 

The mass percentages of NiSe2 and Ni(OH)2 and molar ratios between them within all 

electrode materials are calculated, and the results are shown in the Table S1. 

Table S1 The calculated mass percentages of NiSe2 and Ni(OH)2 and the molar ratios 

between them based on the TGA results 

 
Mass percentage of 

NiSe2 

Mass percentage of 

Ni(OH)2 

Molar ratio 

between NiSe2 and 

Ni(OH)2 

NiSe2/Ni(OH)2-1h 83.1% 16.5% 2.16 : 1 

NiSe2/Ni(OH)2-2h 78.9% 19.6% 1.72 : 1 

NiSe2/Ni(OH)2-3h 76.3% 23.2% 1.41 : 1 

NiSe2/Ni(OH)2-6h 43.8% 48.4% 0.387 : 1 
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Fig. S7 (a-f) CV curves of NiSe2, NiSe2/Ni(OH)2-1h, NiSe2/Ni(OH)2-2h, 

NiSe2/Ni(OH)2-3h, NiSe2/Ni(OH)2-6h, and PPD-rGO; (g-l) GCD curves of NiSe2, 

NiSe2/Ni(OH)2-1h, NiSe2/Ni(OH)2-2h, NiSe2/Ni(OH)2-3h, NiSe2/Ni(OH)2-6h, and 

PPD-rGO  
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Table S2 Impedance fitting results of electrode materials 

 Rs CPE-T CPE-P Rct Wo-R Wo-T Wo-P 

NiSe2 0.499 0.0267 0.818 0.521 1.594 0.919 0.433 

NiSe2/Ni(OH)2-1h 0.473 0.0642 0.822 0.309 1.252 0.811 0.483 

NiSe2/Ni(OH)2-2h 0.566 0.0934 0.859 0.222 0.601 0.703 0.475 

NiSe2/Ni(OH)2-3h 0.526 0.0359 0.907 0.318 0.899 0.646 0.479 

NiSe2/Ni(OH)2-6h 0.648 0.0329 0.899 0.304 0.958 0.524 0.467 

 

Fig. S8 b-value calculated from the oxide peak current. The fitting formula is: 𝑖 = a ∗

𝑣𝑏. It is clearly that all electrode materials present distinct battery-type behaviors. The 

b-values for all electrodes are close to 0.5, indicating their battery-type behavior. 

Table S3 Calculated b-value of prepared electrode 

 a b Reduced chi-sqr 

NiSe2 0.604 0.503 1.64E-8 

NiSe2/Ni(OH)2-1h 0.891 0.564 8.07E-7 

NiSe2/Ni(OH)2-2h 1.315 0.573 3.013E-6 

NiSe2/Ni(OH)2-3h 0.817 0.516 2.20E-6 

NiSe2/Ni(OH)2-6h 0.541 0.510 1.78E-6 
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Fig. S9 (a-d) Calculated EDLC contribution of NiSe2/Ni(OH)2-2h by a traditional 

method under a scan rate of 5, 10, 20, and 25 mV s-1. The strange shapes for all 

electrodes indicate that the equation of i = k1v+ k2v
0.5 cannot be applied to the whole 

CV. 

 

Fig. S10 (a-e) Fitting line of NiSe2, NiSe2/Ni(OH)2-1h, NiSe2/Ni(OH)2-2h, 

NiSe2/Ni(OH)2-3h and NiSe2/Ni(OH)2-6h; The formula of the line is : i = k1v+ k2v
0.5. 

The small reduced Chi-suqr values indicate the reasonable fitting results for all 

electrodes. 
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Table S4 Performance comparison of electrode materials 

Materials Specific capacity Cycling performance journal 

NiSe2/Ni(OH)2 909 C/g at 1 A/g (1818 F/g) 85% retention after 5000 cycles This work 

Ni/Co-LDH 826 C/g at 1 A/g (1652 F/g) 100% retention after 3000 cycles [S1] 

NiSe2 417.6 C/g at 3 A/g (1044 F/g) 67% retention after 2000 cycles [S2] 

Ag-rGO/Ni(OH)2 520 C/g at 2 A/g (1040 F/g) 92.6% retention after 2000 cycles [S3] 

(Ni,Co)Se2/NiCo-

LDH 612 C/g at 2 A/g (1224 F/g) 89% retention after 3000 cycles [S4] 

NiCo2S4-C 468 C/g at 1 A/g (932 F/g) 94% retention after 3000 cycles [S5] 

NiCoSe2 450 C/g at 3 A/g (750 F/g) 89% retention after 5000 cycles [S6] 

Ni(OH)2 713.2 C/g at 1 A/g 65% retention after 4500 cycles [S7] 

Table S5 Capacity contribution of NiSe2 and Ni(OH)2 

 Mass percentage 

of NiSe2 
SC (5 A/g) 

Capacity 

contribution 

of NiSe2 

Capacity 

contribution of 

Ni(OH)2 

NiSe2 1 323 323 0 

NiSe2/Ni(OH)2-1h 83.10% 497 268 229 

NiSe2/Ni(OH)2-2h 78.90% 690 254 436 

NiSe2/Ni(OH)2-3h 76.30% 557 246 311 

NiSe2/Ni(OH)2-6h 43.80% 442 141 301 

 

Fig. S11 (a) FT-IR spectrum of GO and PPD-rGO; (b) TEM image of PPD-rGO 
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Fig. S12 (a) CV curves of PPD-rGO and NiSe2/Ni(OH)2-2h at 10 mV/s; (b) CV 

curves of assembled button asymmetric supercapacitor at different voltages 

Table S6 Performance comparison of asymmetric supercapacitor 

 Energy density Cycling performance journal 

Ni-Se-OH//PPD-

rGO 76.1 Wh/Kg at 906 W/Kg 82% retention after 8000 cycles This work 

NiCoP/NiCo-

OH//AC 34 Wh/Kg at 775 W/Kg 92% retention after 1000 cycles [S8] 

NiSe2//AC 44.8 Wh/Kg at 969.7 W/Kg 87.4% retention after 20000 cycles [S2] 

NiCo2O4//AC 69.7 Wh/Kg at 373.9 W/Kg 90.3% retention after 5000 cycles [S9] 

Ni(OH)2//AC 34 Wh/Kg at 756 W/Kg 91.5% retention after 6000 cycles [S10] 

Cu3SbS4/Ni-

5//Cu2MoS4/Ni 58.1 Wh/Kg at 636.36 W/Kg 90.7% retention after 4000 cycles [S11] 

ZnNiCo-P//PPD-

rGOs 60.1 Wh/Kg at 960 W/Kg 89% retention after 8000 cycles [S12] 

CoNi-MOF//AC 28.5 Wh/Kg at 1500 W/Kg 94% retention after 5000 cycles [S13] 

NiCoS2//AC 38.64 Wh/Kg at 1330 W/Kg 99.3% retention after 5000 cycles [S14] 

Ag-

rGO/Ni(OH)2//AC 41.2 Wh/Kg at 375 W/Kg 90.4% retention after 2000 cycles [S3] 
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