Nano-Micro Letters

Supporting Information for

MoS₂ Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors

Jingyao Liu¹, Zhixiang Hu¹, Yuzhu Zhang¹, Hua-Yao Li¹, Naibo Gao¹, Zhilai Tian¹, Licheng Zhou¹, Baohui Zhang¹, Jiang Tang¹, Jianbing Zhang¹, Fei Yi¹, Huan Liu^{1,*}

¹School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People's Republic of China

*Corresponding author. E-mail: <u>huan@hust.edu.cn</u> (Huan Liu)

Supplementary Figures

Fig. S1 Home-made sensor set-up for NO₂-sensing measurement under static conditions

Fig. S2 SEM image of the flower-like MoS_2 nanosheets prepared on the alumina ceramic substrate

Nano-Micro Letters

Fig. S3 (**a**) Typical elemental mapping of MoS₂ nanosheets sensitized with QDs: (**b**) Overlap, (**c**) S, (**d**) Pb, and (**e**) Mo

Fig. S4 X-ray photoelectron spectroscopy of MoS₂ nanosheets sensitized with QDs: (**a**) Pb 4f, (**b**) S 2p, and (**c**) Mo 3d elements corresponding to Pb²⁺, S²⁻, and Mo⁴⁺

Fig. S5 (a) Repeatability curves of the MoS_2 nanosheets and the sensitized MoS_2 gas sensors exposed to 10 ppm concentration at room temperature, respectively. (b) Transient resistance characteristic of MoS_2 nanosheets and the sensitized MoS_2 gas sensors to 10 ppm NO_2

Fig. S6 Sensor response of the fabricated device using QD-sensitized MoS_2 with different molar ratio of Pb to Mo

Fig. S7 Transient relative response of MoS₂ sensors toward different NO₂ concentrations

Fig. S8 Calculation of the limit of detection (*LOD*). The linear fitting of (**a**) the MoS₂ sensor response and (**b**) the sensitized MoS₂ sensor response with NO₂ concentrations in the linear region, the *slope* was 0.031 and 0.731 ppm⁻¹, respectively. We replotted 150 data points at the baseline before the NO₂ exposure and calculated the *RMS*_{noise} to be 0.018 and 0.023, respectively. According to *LOD* calculation equation *LOD* (ppm) = $3 \times RMS_{noise}/Slope$, the *LOD* was 174 and 94 ppb for the pristine MoS₂ and the sensitized MoS₂ sensors

Fig. S9 (a) Sensor response toward 10 ppm NO₂ at different relative humidity based on the QD-sensitized MoS₂ gas sensors. (b) Real-time sensing curves toward 10 ppm NO₂ at different relative humidity based on the QD-sensitized MoS₂ gas sensors. (c) Long-term stability of the QD-sensitized MoS₂ gas sensors toward 10 ppm NO₂

Fig. S10 Ultraviolet photoelectron spectroscopy of MoS_2 nanosheet and PbS QD. (**a**) shows the full scan of the spectra. From the partial data of (**b**) showing 16.96 eV and 16.87 eV for the secondary electron onset for MoS_2 and PbS, respectively (considering the He energy of 21.22 eV), we calculated the Fermi Energy positions ($W_{\text{F-vacuum}}$) relative to a vacuum of 4.26 eV for MoS_2 and 4.35 eV for PbS. (**c**) The corresponding fits to the valence band maximum (VBM- E_v); the cut-off gave VBMs of 5.46 eV for MoS_2 and 5.20 eV for PbS

Fig. S11 UV-Vis-NIR spectra of MoS₂ nanosheet and PbS QD. (**a**) The characteristic absorption peaks appeared in visible regions were consistent with the general features of TMDs with trigonal prismatic coordination, which confirmed the 2H polytype of MoS₂ nanosheet. The intercept was interpolated in (a) of $(\alpha hv)^2$ as a function of photon energy hv showing the intersection between the linear fit and the photon energy axis gives the value to energy band gap (E_g) of 1.5 eV for MoS₂. (**b**) The excitonic peak in 992 nm confirming conservation of strong quantum confinement in PbS QD, and the calculative E_g was 1.25 eV according to the formula $E_g=1240/\lambda$

Nano-Micro Letters

Fig. S12 Initial energy band structure of PbS QD and MoS₂ nanosheet before mutual contact. $E_{\rm F}$ denotes the Fermi level, $W_{\rm F}$ is the work function in the ambient air, and $E_{\rm C}$ and $E_{\rm V}$ are the conduction band edge and valence band edge

Fig. S13 (a) SEM cross-section morphology of the 3-layer QD-sensitized MoS_2 thin film. (b) NO₂-sensing properties of the fabricated sensors using QD-sensitized MoS_2 with different deposition layers