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HIGHLIGHTS

• An in situ molecular foaming and activation strategy is designed and investigated for the synthesis of hierarchically porous N-doped 
carbon foams (HPNCFs).

• The prepared HPNCFs possess 3D macropores, uniform micropores and mesopores, ultrahigh surface areas and high N contents and 
show high performances in supercapacitors and  CO2 capture.

ABSTRACT Hierarchically 
porous carbon materials are 
promising for energy storage, 
separation and catalysis. It is 
desirable but fairly challeng-
ing to simultaneously cre-
ate ultrahigh surface areas, 
large pore volumes and high 
N contents in these materi-
als. Herein, we demonstrate 
a facile acid–base enabled 
in situ molecular foaming and 
activation strategy for the synthesis of hierarchically macro-/meso-/microporous N-doped carbon foams (HPNCFs). The key design for the 
synthesis is the selection of histidine (His) and potassium bicarbonate (PBC) to allow the formation of 3D foam structures by in situ foam-
ing, the PBC/His acid–base reaction to enable a molecular mixing and subsequent a uniform chemical activation, and the stable imidazole 
moiety in His to sustain high N contents after carbonization. The formation mechanism of the HPNCFs is studied in detail. The prepared 
HPNCFs possess 3D macroporous frameworks with thin well-graphitized carbon walls, ultrahigh surface areas (up to 3200 m2 g−1), large 
pore volumes (up to 2.0 cm3 g−1), high micropore volumes (up to 0.67 cm3 g−1), narrowly distributed micropores and mesopores and high 
N contents (up to 14.6 wt%) with pyrrolic N as the predominant N site. The HPNCFs are promising for supercapacitors with high specific 
capacitances (185–240 F g−1), good rate capability and excellent stability. They are also excellent for  CO2 capture with a high adsorption 
capacity (~ 4.13 mmol g−1), a large isosteric heat of adsorption (26.5 kJ mol−1) and an excellent  CO2/N2 selectivity (~ 24).
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1 Introduction

Porous carbon materials have received wide interest because 
of their attractive physicochemical properties, easy compat-
ibility with other elements, and low cost and toxicity, as 
well as wide applications in energy storage and conversion, 
adsorption and catalysis [1–7]. A well-controlled pore struc-
ture is significantly important for these materials in vari-
ous applications. Taking supercapacitors and  CO2 capture 
as examples [4, 8–13], which are important for upgrading 
fossil fuel utilization in a greener and more sustainable way, 
uniform micropores and high surface areas are desirable to 
provide abundant active sites for enhanced storage of small-
sized ions and gas molecules. However, the accessibility of 
micropores within thick carbon walls is low, even inacces-
sible for bulk molecular diffusion [4, 14, 15]. To overcome 
this limitation, creating mesopores in microporous carbon 
walls to establish short diffusion paths and large pore vol-
umes is effective, especially so for improving charge storage 
at a high current density [16, 17]. In addition, a macroporous 
network can act as a molecule- or ion-buffering reservoir for 
shortening diffusion time [14]. Therefore, it is attractive to 
construct hierarchically macro-/meso-/microporous carbon 
materials (HPCs) with well-defined structures and ultrahigh 
surface areas to further enhance their potential.

There are a series of methods reported in the literature for 
the synthesis of HPCs [18]. Based on the type of precursors 
adopted, three general methods can be categorized. The first 
method is the use of preformed carbon nanomaterials, such 
as graphene, for the construction of low-density HPCs in the 
form of aerogels [19, 20]. These materials possess moder-
ate surface areas and lack of control in the micro-/mesopore 
structure. The second method is carbonization of natural 
biomass or synthetic polymers [21, 22]. For example, car-
bonization of natural biomass can result in various interest-
ing HPCs [23–34]. Control of the pore size and distribution 
in these HPCs is relatively difficult. In addition, their carbon 
walls are often relatively thick such that the accessibility 
of the micropores may be restricted. The third method is 
the templating synthesis starting from molecular precur-
sors [35–38]. Various templates can be adopted to confine 
the carbonization of different precursors. In particular, the 
dual templating approach, in which colloid nanospheres and 
surfactants act as the hard and soft templates, is capable of 
synthesizing ordered hierarchical structures with uniform 
and controllable pore sizes [35, 39–42]. Nevertheless, this 

templating method is complicated, costly and time-consum-
ing. Comparatively, the salt templating approach starting 
from molecularly mixed precursors and salts, sometimes 
combining with ice templating, chemical blowing and leav-
ening, is general and cost-effective for generating various 
HPCs with interesting structures [43–55]. During carboniza-
tion of the precursors, the diffusion and growth of the salts 
or their thermal decomposition products play the templating 
role generating hierarchical pores. The resulted HPCs often 
possess broad pore size distributions with variable surface 
areas. In order to improve the microporosity and surface 
area of HPCs, post-activation with various chemical acti-
vators, especially KOH, is often adopted. A disadvantage 
for post-activation is the high dosage of activator and the 
non-uniform mixing between carbon and activator, which 
can subsequently result in uneven activation and excessive 
etching. In spite of the above development, it is still fairly 
challenging to simultaneously create ultrahigh surface areas, 
uniform micro-/mesopores and large pore volumes in HPCs.

On the other hand, doping of nitrogen (N) in porous 
carbon materials can increase the electronic conductivity, 
wettability and basicity, which is highly desirable for super-
capacitor and selective  CO2 capture [16, 56–60]. There are 
two major methods for N doping in carbon materials. The 
first method is post-treatment under high temperatures by 
exposing preformed carbon materials in ammonia or other 
N-containing substances [61, 62]. This method may cause 
uneven distribution of N and structure change. The more 
common method is in situ doping by directly pyrolysis of a 
single N-containing organic precursor or precursor mixture 
[35, 60, 63–67]. Although a series of porous N-doped car-
bon materials have been reported, the construction of three-
dimensional HPCs with ultrahigh surface areas, large pore 
volumes, and high N contents sustained at high carboniza-
tion temperatures is still highly demanded.

In this work, we demonstrate an acid–base enabled in situ 
foaming and activation strategy for the synthesis of hierar-
chically macro-/meso-/microporous N-doped carbon foams 
(HPNCFs). Our concept for the synthesis design lies in the 
following aspects. First, the selected amino acid (His) as 
the carbon precursor shows a self-foaming behavior under 
heat treatment, and the selected salt PBC undergoes decom-
position releasing  CO2 to facilitate the foaming process, 
allowing the formation of 3D macroporous frameworks 
with thin walls. Second, the PBC/His acid–base reaction 
allows a molecular mixing for subsequent in situ uniform 
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activation to generate narrowly distributed micropores and 
mesopores. Third, the imidazole moiety of His allows the 
sustain of a high N content after carbonization. The forma-
tion mechanism of the HPNCFs is illustrated by a detailed 
study. The resultant HPNCFs possess attractive properties, 
including 3D foam structures constructed by thin carbon 
walls, ultrahigh surface areas (~ 3200 m2 g−1), large pore 
volumes (~ 2.0 cm3 g−1), narrowly distributed micropores 
and mesopores and high N contents (~ 14.6 wt%). They are 
promising for supercapacitors showing high specific capaci-
tances, a good rate capability and an excellent stability, as 
well as attractive for  CO2 capture with a large adsorption 
capacity and an excellent  CO2/N2 selectivity.

2  Experimental Section

2.1  Preparation of HPNCFs

The HPNCFs were prepared by a simple acid–base enabled 
in situ foaming and activation method. The details of the 
chemicals adopted for the synthesis can be found in Support-
ing Information. Briefly, a certain amount (0.9687–3.8748 g) 
of PBC was dissolved in deionized water (100 mL), and 
then, 2.0 g of His was added into the above solution. After 
completely dissolved, the obtained clear solution was 
transferred to an eggplant-shaped steaming bottle. The 
solvent was removed at 50 °C under a reduced pressure 
of 20–50 mbar in a rotary evaporation unit. The resulted 
mixture was collected in a ceramic boat and was subject 
to a thermal treatment in a tube furnace. The sample was 
heated from room temperature to various target temperatures 
(400–900 °C) with a heating speed of 2 °C min−1 and kept 
isothermal at the target temperature for 3 h under flowing 
 N2 atmosphere (~ 60 mL min−1). Then, after natural cool-
ing, the obtained composites were soaked in water at 60 °C 
overnight, followed by filtration, washing with deionized 
water and ethanol several times and drying in a vacuum oven 
at 60 °C for 10 h, leading to the final samples, which were 
denoted as HPNCF-X-Y, where X stands for the molar ratio 
of PBC/His, and Y for the carbonization temperature (in 
°C), respectively. A control sample was also prepared by 
carbonizing pure His without the addition of PBC follow-
ing the same procedure. The characterization details of the 
obtained samples are provided in Supporting Information.

2.2  Electrochemical Tests

The electrochemical tests were measured on a CHI 760e elec-
trochemical workstation to evaluate the supercapacitor charge 
storage performance of the HPNCFs. In the measurement 
system, a Pt plate was used as the counter electrode, and 
a Hg/HgO electrode was served as the reference electrode. 
The working electrode was fabricated from the mixture of a 
specific HPNCF sample (80 wt%), a conductive agent (acety-
lene black, 10 wt%) and a binding agent PTFE (10 wt%). To 
prepare the working electrode, the mixture was dispersed in 
2.5 mL of ethanol in an ultrasonic cleaner to form a uniform 
slurry and then was dried at 80 °C for 2 h to evaporate the 
liquid. The dried black powder was pressed onto a neat nickel 
foam (~ 1 × 1 cm2) to obtain a thin electrode membrane. The 
composite foam was then dried in a vacuum oven at 60 °C 
for 12 h. Cyclic voltammetry (CV), galvanostatic charge and 
discharge (GCD), electrochemical impedance spectroscopy 
(EIS) and cyclic tests were carried out through a three-elec-
trode system from 0.0 to − 1.0 V with a 6.0 M KOH solution 
as the electrolyte. CV experiments were conducted under 
different sweep rates of 5–100 mV s−1. EIS was carried out 
over a frequency range of 100–0.01 Hz with a 5.0 mV AC 
potential amplitude. The specific capacitance (Cs, F g−1) of 
the work electrode is calculated by using Eq. 1:

where I stands for the current density (A g−1), Δt is the 
discharging time (s), ΔV is the potential range in volt and m 
for the mass (g) of the active HPNCF material, respectively.

2.3  CO2 Adsorption Tests

The gas adsorption performance for  CO2 and  N2 was evalu-
ated by measuring the adsorption/desorption isotherms of 
single components and 273 and 298 K on the Micromeritics 
ASAP 2020 analyzer. The capacity was retrieved from the 
adsorption isotherms. The adsorption selectivity was calcu-
lated by using Henry’s law. The isosteric heat of adsorption 
(ΔHads) was calculated by using the Clausius–Clapeyron 
equation (Eq. 2):

where T1 and T2 (K) are the two temperatures for adsorption 
isotherms measurement, P1 and P2 are the pressure points 
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on the two isotherms wherein the adsorption capacities are 
the same.

3  Results and Discussion

3.1  HPNCFs Formation Mechanism

To synthesize the HPNCFs, an acid–base enabled in situ 
foaming and activation strategy has been proposed 
(Scheme 1). To demonstrate the formation mechanism 
and the unique features of resulted HPNCFs, the synthe-
sis process with its intermediates has been analyzed. First, 
PBC and His can partially neutralize each other by the 
reaction between the bicarbonate ions of PBC and the car-
boxylic group of His (Eq. 3, and Scheme 1A, B). This can 
be validated by the decreased pH values of the mixed PBC/
His solutions compared with the pure PBC solutions (Fig. 
S1) and the observed  CO2 gas bubbling during mixing 
PBC and His in water. Such a neutralization reaction ren-
ders the molecular mixing of His and PBC (Scheme 1B), 
further revealed by the formation of a uniform PBC/His 
composite with evenly distributed C, O, N and K elements 
(Fig. S2). Such a molecular mixing is beneficial for in situ 
foaming and chemical activation. The wide-angle XRD 
pattern of the dried PBC/His mixture shows a group of 
diffraction peaks different from those of the pure PBC and 

His (Fig. S3), indicating the formation of a new phase 
probably assigned to the potassium salt of His. Next, the 
solid is subject to heating for in situ foaming, carboniza-
tion and chemical activation. During the heating process, 
sophisticated physicochemical changes are involved. Pure 
His is stable up to ~ 270 °C, followed by melting, polym-
erization and gradual carbonization at increasing tem-
peratures (Fig. 1A, curve a). The PBC/His mixture shows 
a gradual mass loss at 100–270 °C (Fig. 1A, curve b), 
attributed to the decomposition of PBC releasing  CO2 and 
 H2O as shown in Eq. 4, indicating that the foaming prob-
ably starts at about 270 °C. The TG curve of PBC with a 
weight loss of ~ 30 wt% at 100–210 °C further validates 
the gas releasing process (Fig. 1A, curve c). This gas for-
mation process may partially overlap with the melting of 
His, facilitating in situ foaming of the molten/dissolved 
His liquid (Scheme 1C), leading to the development of a 
macroporous spongy structure, similar to the leavening 
process [52]. The optical image after the heating treatment 
verifies the occurrence of foaming and the formation of a 
3D macroporous foam (Fig. 2A). At 270–600 °C, the ther-
mal behaviors of pure His and the PBC/His mixture are 
similar (Fig. 1A, curves a and b), indicating that chemi-
cal activation does not obviously occur at this stage. In 
this stage, condensation of His occurs with continuous 
weight loss due to the removal of water,  CO2 and volatile 
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Scheme 1  Schematic illustration of the synthesis process of the HPNCFs: A precursor selection, B the composite obtained after molecular mix-
ing by acid–base reaction, C the composite obtained after in situ foaming at low temperatures, D the composite obtained after in situ carboniza-
tion and chemical activation at high temperatures, E the HPNCFs obtained after washing by water, and F structure model of the HPNCFs and 
their applications in  CO2/N2 separation and charge storage
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N-containing molecular fragments. These released gases 
can lead to increased porosity in the 3D foams. The wide-
angle XRD pattern of the composite obtained at 400 °C 
reveals the formation of a  K2CO3·1.5H2O phase (JCPDS 
No. 11-0655) (Fig. 1B, curve a), indicating the decomposi-
tion of PBC. At a temperature of 600 °C, two crystalline 

phases assigned to  K2CO3·1.5H2O and  K2CO3 (JCPDS 
No. 49-1093) (Fig. 1B, curve b) can be observed. The 
C, N, O, and K elements are still uniformly distributed 
in the composite (Fig. S4a-c). The FTIR spectra of the 
composites obtained at 400 and 600 °C show several bands 
~ 2950, 2450, 1430, 840, and 710 cm−1 (Fig. S5a, b), indi-
cating the presence of  K2CO3. In the temperature range 
of 700–900 °C, the TG curves of pure His and the PBC/
His derived mixture are significantly different (Fig. 1A, 
curves a and b), because dramatic chemical activation 
occurs at this stage with the carbonaceous walls becom-
ing increasingly thinner (Scheme 1D). At a temperature 
of 700–900 °C, His can be carbonized. Meanwhile, potas-
sium oxide  (K2O) can be formed because of the decom-
position of  K2CO3 and the reaction of  K2CO3 with carbon 
as shown in Eqs. 5 and 6. The produced  K2O and  CO2 
can in situ react with carbon as shown in Eqs. 7 and 8, 
generating plenty of small pores and potassium (K). The 
K vapor can diffuse into the carbon matrix and interca-
lated into graphitic layers, leading to continuous reaction 
with oxygen-containing carbon walls. The wide-angle 
XRD patterns of the composites obtained at 700–900 °C 
show the formation of various crystalline phases includ-
ing  K2O (JCPDS Nos. 26-1327 and 27-0431), K (JCPDS 
Nos. 89-3993 and 89-4080) and  K2CO3 (minor) (Fig. 1B, 
curves c-e), confirming the occurrence of dramatic chemi-
cal activation. It should be pointed out that further decom-
position of  K2CO3 decomposed from pristine PBC can-
not be observed at 700–900 °C for pure PBC (69 wt% 
remained, Fig. 1A, curve c), indicating that the presence of 
carbon can promote the decomposition of  K2CO3 into  K2O 
and K. From the PBC/His mixture with a molar ratio of 
2.0, a low residual of only ~ 10.4 wt% at 900 °C confirms 
the formation and escape of K vapor. The elements are 
still uniformly distributed in the composites obtained at 
700–900 °C (Fig. S4d-f), indicating that uniform chemical 
activation can be achieved. The FTIR spectra of the com-
posites obtained at 700–900 °C show that the bands attrib-
uted to  K2CO3 become weakened (Fig. S5c-e), in accord-
ance with the result that  K2CO3 can be converted to  K2O 
and K in this temperature range. Interestingly,  N2 sorption 
results show that the composites obtained at 400–900 °C 
possess no detectable porosity (Scheme 1D, Fig. S6a, b). 
This is mostly because the generated pores in the carbon 
walls by activation are occupied by K,  K2O and other 
salts, verifying the occurrence of in situ molecular level 
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activation. SEM images confirm the formation of a foam 
structure in the composite obtained at 900 °C, with the 
presence of a 3D macroporous structure inside and hollow 
carbon capsules on the surface originating from gas foam-
ing (Fig. 2B, C). Finally, washing with water results in the 
HPNCFs (Scheme 1E). The foam structures are well main-
tained (Fig. 2D, E). Moreover, due to the presence of an 
imidazole moiety in His, a high N content (6.31 wt%) can 
be sustained even at 900 °C. The HPNCFs are suitable for 

supercapacitors and  CO2 adsorption (Scheme 1F). The 3D 
macropores act as buffer reservoirs for guest molecules, 
the mesopores enhance mass transfer, and the micropores 
and N sites offer high specific surface areas and abundant 
active sites.
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3.2  Morphology and Structure of HPNCFs

All the HPNCFs possess a 3D hierarchically macro-/meso-/
microporous structure. By using the sample HPNCF-2.0-
900 obtained with a PBC/His molar ratio of 2.0 at 900 °C 
as a typical example, the wide-angle XRD pattern shows 
two weak and broad diffraction peaks at ~ 25 and 44º cor-
responding to (002) and (100)/(101) planes of graphitized 
carbon (Fig. 3A, curve a). No other peaks can be detected, 
implying that the K-containing substances can be washed 
off by water. The Raman spectrum of the sample displays 
two distinct bands at ~ 1341 cm−1 (D band) and ~ 1586 cm−1 
(G band) (Fig. 3B, curve a). The first one can be assigned 
to carbon of amorphous or defective nature, and the second 
one to sp2 hybridized carbon of graphitic nature. The inten-
sity ratio of the D and G bands (ID/IG) is 0.97, indicating a 
good graphitization degree. The sample shows a 3D foam 
morphology with interconnected macropores inside and 
some hollow carbon capsules on the surface (Fig. 2D, E). 
The carbon skeleton is made up of thin and smooth carbon 
plates (Fig. 2F). The thickness of the carbon plates is down 
to ~ 300 nm (Fig. 2G). Such an open 3D thin foam structure 
accounts for the ultralow density (about 0.03 g cm−3) of 
the sample. TEM and dark-field scanning TEM (DF-STEM) 
images show the presence of uniform micropores and small 
mesopores within the carbon plates (Fig. 2H, I), which are 
originating from the etching of carbon by chemical activa-
tion. The micropores are in a highly disordered orientation, 
and they are distributed uniformly throughout the carbon 
plates because of the in situ chemical activation. HRTEM 
image shows that very short and randomly orientated 
(002) graphitic layers with a d-spacing of ~ 0.37 nm can be 
observed (Fig. 2J). Two very weak diffraction rings indexed 
to the (002) and (101) crystal plate of graphitic carbon can 
be observed in the selected area electron diffraction (SAED) 
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pattern (inset in Fig. 2I), further indicating that the carbon 
walls are moderately graphitized.

Heat treatment at 700–900 °C with a fixed PBC/His molar 
ratio of 2.0 does not obviously influence the overall mor-
phology and structure of the resultant HPNCFs. An obvious 
difference is that the thickness of carbon plates becomes 
thinner with the increase in temperature (Fig. 4A, B, and 
2F). This can be explained by two facts. The first one is that 
the carbon yield of His decreases sharply with the increase 
in temperature. The second one is that the chemical activa-
tion becomes increasingly violent at higher temperatures. 
The wide-angle XRD patterns show that the sample obtained 
at 800 °C possesses the best resolved (002) diffraction peak 
(Fig. 3A). This is because a higher temperature induces bet-
ter carbonization, but also triggers more intensive chemical 
activation increasing structure disorder. The medium tem-
perature of 800 °C balances the two factors leading to the 
most carbonized walls. The Raman spectra of the samples 
obtained at 700–900 °C are similar, with the lowest ID/IG 
ratio observed for the sample obtained at 700 °C (Fig. 3B), 
which is due to the more intensive activation at higher tem-
peratures causing loss of graphitic order.

PBC/His molar ratios of 0.75–2.5 with the fixed tempera-
ture of 900 °C also have no obvious influence on the overall 
morphology and structure of the resultant HPNCFs. There 
is also a general trend that the carbon plates become increas-
ingly thinner with the increase in PBC dosage (Fig. 4C–F). 
This is because of the decreased carbon yield and the more 
violent chemical activation with higher PBC dosages. The 
wide-angle XRD patterns show that the intensity of the 
(002) diffraction peak decreases with the increase in the 
PBC/His ratio (Fig. S7A), because the enhanced chemical 
activation can result in increased carbon etching. The Raman 
spectra show a general increasing trend for the ID/IG ratio 
with the increase in the PBC/His ratio (Fig. S7B), further 
revealing that the enhanced chemical activation reduces gra-
phitic order.

3.3  Textural Properties

All the HPNCFs possess ultrahigh surface areas, high 
micropore surface areas, large pore volumes and narrowly 
distributed micropores and small mesopores (Fig. 5 and 
Table 1). The representative sample HPNCF-2.0-900 dis-
plays  N2 adsorption/desorption isotherms of combinative 
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types I and IV (Fig.  5A), indicative of a hierarchical 
meso-/microporous material. Notably, at P/P0 < 0.1, there 
is a sharp and large  N2 uptake because of the  N2 filling 
in micropores. At a P/P0 range of 0.2–0.5, there is a  N2 

condensation step with a slight H2-type hysteresis in the 
desorption branch, indicating the presence of uniform and 
small mesopores. The sample possesses an ultrahigh spe-
cific surface area of ~ 2634 m2 g−1 and a large total pore 
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volume of ~ 1.83 cm3 g−1. Moreover, the micropore sur-
face area and micropore volume are up to 823 m2 g−1 and 
0.46 cm3 g−1. These parameters are highly competitive 
compared with many HPCs in the literature (Table S1). 
The corresponding pore size distribution (PSD) curve of 
the sample reveals two narrow peaks centered at ~ 0.91 
and 1.8 nm and a third peak centered at ~ 4.0 nm (Fig. 5B). 
In a sharp contrast, the control sample prepared from His 
without the addition of PBC is predominantly micropo-
rous (pore size < 0.8 nm) with a much lower surface area 
of 400 m2 g−1 and a significantly smaller pore volume 
of 0.25 cm3 g−1 (Fig. S6d). This result confirms the high 
efficiency of the acid–base enabled in situ chemical acti-
vation method.

All the HPNCFs obtained at 900 °C with various PBC/
His molar ratios of 0.75–2.5 possess hierarchical meso-/
micropores (Fig. 5A–D and Table 1). The sample HPNCF-
0.75-900 is mainly microporous showing predominant type 
I  N2 adsorption/desorption isotherms (Fig. 5A). With the 
increase in the PBC/His molar ratio, the resultant samples 
are more obviously mesoporous, indicating the intensi-
fied chemical activation and carbon wall etching with the 
increase in PBC (Fig. 5A-D). With the PBC/His molar 
ratio increased from 0.75 to 2.5, the total surface area 
increases from 2056 to 2793 m2 g−1, and the total pore vol-
ume increases sharply from 0.94 to 1.99 cm3 g−1 (Table 1). 
However, the micropore surface area decreases from 1611 to 
760 m2 g−1 (Fig. 5C and Table 1), and the micropore volume 
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Fig. 4  SEM images of A HPNCF-2.0-700, B HPNCF-2.0-800, C HPNCF-0.75-900, D HPNCF-1.0-900, E HPNCF-1.5-900, and F HPNCF-
2.5-900
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decreases from 0.66 to 0.43 cm3 g−1 (Fig. 5D and Table 1). 
On the other hand, with the increase in the PBC/His molar 
ratio, the PSD curves show that the mesopore size increases 
from 2.3 to 4.0 nm, and the micropore size also increases to 
some extent (Fig. 5B and Table 1). The above trends clearly 
confirm that the increase in PBC can enhance the chemical 
activation to etch more carbon walls and generate pores with 
increased sizes.

All the HPNCFs obtained with a fixed PBC/His 
molar ratio at 700–900  °C possess similar hierarchi-
cal meso-/micropores (Fig. 5E–H, S8 and Table 1). At a 
low PBC/His molar ratio of 1.0, there are clear increas-
ing trends for the total surface area (2162–2686 m2 g−1), 
micropore surface area (1261–1348 m2 g−1), total pore 
volume (1.01–1.29  cm3  g−1) and micropore volume 
(0.54–0.60 cm3 g−1) with the temperature increased from 
700 to 900 °C (Fig. 5E–H, and Table 1), while the pore 
size increases slightly (Fig. 5F, Table 1). Differently, at 
a high PBC/His molar ratio of 2.0, with the temperature 
increased from 700 to 900 °C, while the total pore volume 
(1.66–1.83 cm3 g−1) and pore size (3.1–4.0 nm) increases 
obviously, the total surface area (3209–2634  m2  g−1), 
micropore surface area (1381–823 m2 g−1) and micropore 
volume (0.67–0.46 cm3 g−1) decrease obviously (Fig. S8 
and Table 1). Therefore, enhanced chemical activation gen-
erating more micropores can be achieved with the increase 
in temperature at a relatively low PBC dosage. Significant 
etching of carbon walls generating mesopores can be pro-
moted with the increase in temperature at a relatively high 
PBC dosage.

3.4  Chemical Composition and Surface Property

Elemental analyses reveal that all the HPNCFs are com-
posed of C as the main component and O, N, and H as the 
minor ones. The DF-STEM image and the corresponding 
elemental maps show that the elements are evenly distrib-
uted in the sample (Fig. 2K). All the samples have high N 
contents (3.9–14.6 wt%) (Table 1), because the His pre-
cursor carries a theoretical N content of 22 wt% with a 
stable imidazole ring [66]. At a fixed PBC/His molar ratio 
of 2.0, with the temperate increased from 700 to 900 °C, 
the N content of the HPNCFs decreases from 14.52 to 6.31 
wt% (Table 1), because the intensive carbonization process 
can break down the less stable N-containing moieties. At 
900 °C, the N content of the HPNCFs generally increases 
(from about 4–6 wt%) with the increase in the PBC/His 
molar ratio (Table 1). This is probably because the etching 
of carbon becomes increasingly intensive with the increase 
in PBC, rendering relatively increased N contents. On the 
other hand, all the HPNCFs possess high O contents of 
6.12–16.90 wt% (Table 1). With the increase in tempera-
ture, the O content decreases obviously. At the fixed tem-
perature, there is a decreasing trend for the O content with 
the increase in PBC dosage. This is in agreement with the 
intensified carbon etching releasing CO and  CO2 with the 
increase in PBC.

XPS survey spectra of the HPNCFs show three obvious 
bands assigned to C, N and O (Fig. 3C). The N contents 
estimated from the XPS analyses are in agreement with 
the results from element analyses. The high-resolution N 

Table 1  Summary of the textural properties and the N and O contents of the HPNCFs obtained at various PBC/His molar ratios and tempera-
tures

Sample name SBET  (m2 g−1) Smicropore 
 (m2 g−1)

Vtotal  (cm3 g−1) Vmicropore 
 (cm3 g−1)

Micropore (nm) Mesopore (nm) N (wt%) O (wt%)

HPNCF-0.75-900 2056 1611 0.94 0.66 0.77, 1.3 2.3 3.91 7.71
HPNCF-1.0-900 2686 1348 1.29 0.60 0.82, 1.3, 1.8 2.6 4.62 11.87
HPNCF-1.5-900 2730 1011 1.55 0.49 0.86, 1.4, 1.8 3.3 5.29 9.60
HPNCF-2.0-900 2634 823 1.83 0.46 0.91, 1.4, 1.8 4.0 6.31 8.03
HPNCF-2.5-900 2793 760 1.99 0.43 0.92, 1.5, 1.9 4.0 5.90 6.12
HPNCF-1.0-700 2162 1261 1.01 0.54 0.85, 1.1 2.4 14.62 16.90
HPNCF-1.0-800 2452 1298 1.15 0.57 0.82, 1.2 2.5 9.10 14.15
HPNCF-2.0-700 3209 1381 1.66 0.67 0.88, 1.8 3.1 14.52 16.48
HPNCF-2.0-800 2305 730 1.52 0.39 0.91, 1.8 3.9 9.96 13.44
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1s XPS spectra of the HPNCFs obtained at 700–900 °C 
can be well fitted into three component peaks centered at 
401.4, 400.1 and 398 eV (Fig. 3D), respectively, which can 
be assigned to graphitic, pyrrolic and pyridinic N, respec-
tively. Notably, with the increase in the temperature, the 
content of graphitic N is minimized and the content pyri-
dinic N decreases significantly (Fig. 3D). Normally, with 
the increase in heating temperature, graphitic and pyridinic 
N are the most stable N sites in N-doped carbon materials. 
In the present case, the observed opposite trend is mostly 
because the enhanced chemical activation at higher tem-
peratures breaks down the aromatic rings of the graphitic 
and pyridinic N sites. This allows a selective N-type dop-
ing in carbon materials, which will be studied in detail in 
our future work. On the other hand, the high-resolution O 
1s XPS spectra (Fig. 3E) of all the HPNCFs can also be 
fitted into three components centered at 531.7, 532.6 and 
533.7 eV, corresponding to the quinone-type oxygen (C=O, 
O-1), phenol-type oxygen (C–OH or C–O–C, O-2) and 
carboxyl-type oxygen (COO–, O-3), respectively. Among 
them, the O-2 band shows the highest intensity for all the 
samples. With the increase in the temperature, the O-2 and 
O-3 oxygen bands become weakened because of their rela-
tively lower thermal stability.

The FTIR spectra of all the HPNCFs exhibit a broad 
absorption band at 3400 cm−1 with a small shoulder at 
~ 3256 cm−1 (Fig. 3F), indicating the presence of hydroxyl 
groups probably from the sample surface and the adsorbed 
water. This peak becomes weaker with the increase in tem-
perature. A strong sharp peak at ~ 2200 cm−1 and an obvi-
ous band at ~ 1800 cm−1 can be observed for the sample 
obtained at 700 °C (Fig. 3F, curve c), mostly assigned to 
the N=C=O and C=O moieties in the sample, and there 
might be some  CO2 molecules adsorbed on the N sites 
contributing to the band at ~ 2200 cm−1. These two bands 
become significantly weakened in the samples obtained at 
higher temperatures (Fig. 3F, curves a and b), in agree-
ment with the elemental analyses and XPS results showing 
dramatically decreased N and O contents. The observed 
broad bands at ~ 1189 and at 1595 cm−1 reveal the presence 
of benzene rings, C–O (O-2) and C–N bonding configura-
tions. These two bands become gradually weakened with 
the increase in temperature because of the decreased N and 
O contents.

3.5  Performance in Supercapacitors

The HPNCFs are desirable for supercapacitors. They possess 
ultrahigh surface areas and uniform micropores for charge 
storage, uniform mesopores for fast mass transfer, and 3D 
macropores for electrolyte storage (Scheme 1F). Moreover, 
their O- and N-containing groups can facilitate the infiltra-
tion and diffusion of aqueous electrolytes. These groups can 
also provide oxidation–reduction pathways, which can sup-
ply faradaic pseudocapacitance.

The CV curves of the electrode made of the typical sam-
ple HPNCF-2.0-900 shows a quasi-rectangular shape over 
a scan rate of 5–100 mV s−1 in a potential window of − 1.0 
to 0 V by using a 6.0-M KOH aqueous electrolyte (Fig. 6A), 
indicating a typical characteristic of electrical double-layer 
capacitance (EDLC). At the scan rate of 5 mV/s, there are 
small and weak redox peaks in the CV curve at ~ − 0.4 V 
(Fig. S9), mostly because of the redox reactions induced 
by the N- and O-containing groups. The GCD curves of 
the HPNCF-2.0-900 electrode at the current densities of 
0.5–30 A g−1 show similar isosceles triangle shapes with no 
obvious IR drop (Fig. 6B), indicating a high rate capability. 
The specific capacitance of the HPNCF-2.0-900 sample at 
a current density of 0.5 A g−1 is ~ 222 F g−1. At the high 
current density of 30 A g−1, a high specific capacitance 
of ~ 150 F g−1 (~ 68% of the capacitance at 0.5 A g−1) can 
be maintained (Fig. 6C). Such performance is better than 
or comparable to those of many reported N-doped carbon 
materials (Table S1). In the Nyquist plot of the HPNCF-
2.0-900 electrode, there is no visible semicircle in the 
high-frequency range, and a steep line nearly parallel to the 
vertical axis can be observed in the low-frequency region 
(Fig. 6E), indicative of a fast charge transfer and ionic diffu-
sion process and a typical double-layer capacitance behavior 
[68, 69]. From the intercept on the X-axis, the equivalent 
series resistance (ESR), which reflects the electrolyte ionic 
resistance, the working electrode electronic resistance and 
contact resistance at the interface of electrode/electrolyte 
[70], is only ~ 0.67 Ω. To further evaluate the impedance 
of electrochemical system, in the equivalent circuit, Rs (the 
cell resistance of electrolyte and electrode) is only ~ 0.68 
Ω, and Rct (the charge transfer resistance) is only ~ 2.36 Ω 
(Fig. S10a), verifying that excellent charge transfer with a 
low resistance can be proceeded on the HPNCF-2.0-900 
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electrode. The rapid charge transfer is closely related 
to the structural features of HPNCF-2-900; that is, the 
3D macroporous carbon network with hierarchal meso-/
micropores can host large amount of electrolytes with a 
high wettability, provide abundant and accessible sites for 

charge storage and shorten the transfer paths of electrons 
and ions (Scheme 1F) [6, 28]. These features also make the 
HPNCF-2-900 electrode very stable. After 5000 cycles, the 
CV curves keep the same (inset in Fig. 6F), and only a slight 
capacitance loss of 1.84% can be observed (Fig. 6F).
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The temperature influences the supercapacitor performance 
significantly of the resultant HPNCFs. The sample obtained at 
800 °C shows quasi-rectangular CV curves at low scan rates, 
but the CV curves are much distorted at high scan rates (Fig. 
S11b). Distorted CV curves can be observed for the sample 
obtained at 700 °C at all scan rates (Fig. S11a). The specific 
capacitances of the samples obtained at 700–900 °C at a 
low current density of 0.5 A  g−1 are close (204–225 F  g−1) 
(Fig. 6D). However, the capacitance maintains only 33 and 4% 
for the samples obtained at 800 and 700 °C (Fig. 6D), respec-
tively, indicative of their poor rate capabilities because of 
their low electronic conductivity and large electric resistance. 
The Nyquist plot for the sample obtained at 700 °C shows a 
semicircle at the high-frequency region (Fig. 6E). In the low-
frequency region, the samples obtained at 800 and 700 °C 
show small slopes for the straight lines (Fig. 6E). The ESR is 
estimated to be 0.79 and 1.32 Ω for the sample obtained at 800 
and 700 °C. Besides, from the equivalent circuits (Fig. S10b, 

c), the Rs values for the samples obtained at 800 and 700 °C 
are 0.80 and 1.42 Ω, and the Rct values are up to ~ 70 and 
1750 Ω, respectively. The above results reveal that the electri-
cal resistance increases significantly for samples obtained at 
low temperatures, thus leading to the low rate capability.

For the HPNCFs samples obtained at various PBC/His 
molar ratios (0.75–2.5) at 900 °C, their specific capacitances 
are close (185–240 F  g−1) at a current density of 0.5 A  g−1 
(Fig. 6C). Generally, the samples obtained at high PBC/His 
molar ratios possess relatively higher specific capacitances, 
probably due to the enhanced surface areas. On the other 
hand, their rate capability is similar, with 60–70% capacitance 
retained at 30 A  g−1 (Fig. 6C), because these samples pos-
sess similar hierarchical macro-/meso-/micropores, as well as 
similar chemical compositions. These results indicate that the 
HPNCFs obtained at 900 °C are attractive for charge storage 
because of their hierarchical porosity, high surface areas and 
low electronic resistance.
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3.6  CO2 Capture Performance

The HPNCFs possess high surface areas, large micropore 
volumes and high N contents. These features make them 
promising for  CO2 capture [71–74]. The HPNCFs obtained 
with a PBC/His molar ratio of 1.0 at 700–900 °C are typi-
cal for  CO2 capture because they are mainly microporous 
(Table 1). The  CO2 adsorption isotherms at 25 °C of the 
sample HPNCF-1.0-700 show gradual uptake of  CO2 with 
the increase in pressure, and a high adsorption capacity 
of ~ 3.1 mmol g−1 can be achieved at a  CO2 pressure of 
760 torr (Fig. 7A, and Table 2). The adsorption capac-
ity at a  CO2 pressure of 114 torr, the normal  CO2 partial 
pressure of industrial flue gas, is up to ~ 0.81 mmol g−1. 
The adsorption capacities at these two pressures can be 
increased to ~ 4.13 and 1.27 mmol g−1 at an adsorption 
temperature of 0  °C (Fig.  7C, and Table  2). The  CO2 
adsorption capacity of the HPNCFs decreases with the 
increase in the temperature from 700 to 900 °C (Fig. 7A, 
C), in spite of the increase in the total surface area and 
pore volume (Table 1). This is because  CO2 is a small 
acidic molecule and its adsorption capacity is more related 
to the micropore surface area and the N content. The sam-
ple obtained at 700 °C possesses the highest micropore 
surface area and N content, thus showing the best  CO2 
adsorption capacity. Because of the strong interactions 
of  CO2 molecules with the N sites and micropore walls, 
the sample obtained at 700 °C also shows the highest 
 CO2 isosteric heat of adsorption, up to ~ 26.5 kJ mol−1, 
about two times of that for the sample obtained at 900 °C 
(Fig. 7D). On the other hand, the adsorption capacities of 
 N2 on the above HPNCFs samples are quite low (Fig. 7B), 
because of the weak interactions between  N2 and the 
adsorbents. As a result, an excellent  CO2/N2 adsorption 

selectivity of ~ 24 at 25 °C on the sample obtained at 
700 °C can be achieved (Table 2). The adsorption selec-
tivity for the HPNCFs decreases with the increase in the 
temperature (Table  2), which is because of the much 
decreased N content and micropore surface area. The  CO2 
capture performance  (CO2 adsorption capacity and  CO2/N2 
adsorption selectivity) of the typical HPNCFs is competi-
tive among typical N-doped HPCs (Table S1). In addition, 
during cyclic tests in  CO2 capture on the typical sample 
HPNCF-1.0-700 (Fig. S12), both rapid adsorption and des-
orption of  CO2 processes can be observed, indicative of a 
predominant physisorption. After six adsorption–desorp-
tion cycles, 92% of the initial adsorption capacity can be 
retained, indicating a high cyclic stability for  CO2 capture.

4  Conclusions

In summary, novel HPNCFs have been synthesized by the 
acid–base enabled in situ foaming and activation strategy. 
The key of the strategy is the self-foaming nature of His and 
the  CO2 releasing behavior of PBC allowing the formation 
of 3D foam structure and the acid–base reaction enabling a 
molecular mixing for in situ chemical activation. With the 
increase in temperature, His undergoes gradual carboniza-
tion with high N contents sustained. Simultaneously, phase 
evolutions from PBC to  K2CO3·1.5H2O and  K2CO3 and then 
to  K2O and K are elucidated. The K-containing substances 
can in situ react with carbon walls to achieve uniform chemi-
cal activation. The HPNCFs possess 3D macroporous frame-
works with thin well-graphitized carbon walls, ultrahigh 
surface areas (2056–3200 m2  g−1), high micropore surface 
areas (760–1611 m2  g−1), large pore volumes (0.94–2.0 cm3 
 g−1), high micropore volumes (0.39–0.67 cm3  g−1), nar-
rowly distributed micropores (0.8–1.9 nm) and mesopores 
(2.3–4.0 nm), and high N contents (3.9–14.6 wt%) with pyr-
rolic N as the predominant N site. The increase in the PBC/
His ratio results in increases in total surface area, total pore 
volume, pore size and N content, but decreases in micropore 
surface area, micropore volume and carbon wall thickness. 
The increase in temperature results in sharp decreases in car-
bon wall thickness and N content. The temperature increase 
induces enhancement for all the textural parameters at low 
PBC/His ratios, while it leads to increase in pore volume and 
pore size but decrease in surface area at high PBC/His ratios. 
The HPNCFs are promising for supercapacitors and  CO2 

Table 2  Summary of the  CO2 capture performance of the typical 
HPNCFs

Sample name CO2 capacity at 
25 °C

CO2 capacity at 
0 °C

CO2/N2 
selectivity at 
25 °C

114 torr 760 torr 114 torr 760 torr

HPNCF-1.0-
700

0.81 3.06 1.27 4.13 24.0

HPNCF-1.0-
800

0.69 3.04 1.07 3.93 17.3

HPNCF-1.0-
900

0.56 2.63 0.83 3.41 9.0
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capture. The HPNCFs obtained at 900 °C show high specific 
capacitance (185–240 F  g−1), good rate capability and excel-
lent stability due to the high surface area for charge storage, 
low electric resistance and short paths for fast electrolyte 
and electron transfer. The HPNCFs obtained at 700 °C show 
a high  CO2 adsorption capacity (4.13 and 1.27 mmol g−1 
at 114 and 760 torr), a large isosteric heat of adsorption 
(26.5 kJ mol−1) and an excellent  CO2/N2 adsorption selectiv-
ity (~ 24). Finally, the in situ foaming and activation strategy 
may be extended for the synthesis of other carbon-based 
hierarchical structures for various applications.
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