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HIGHLIGHTS

• Different nanotechnologies and nanomaterials with their efficient applications in functional food development are summarized.

• Nanotechnologies boosted the food, medicine, and biotechnology sector through enhanced food bioavailability, food processing, 
packaging, and preservation are also reviewed.

• This comprehensive review on nanotechnologies in food science describes the recent trend and future perspectives for future functional 
nanofood research and development.

ABSTRACT Nanotechnology is a key advanced technology enabling contribution, 
development, and sustainable impact on food, medicine, and agriculture sectors. Nano-
materials have potential to lead qualitative and quantitative production of healthier, 
safer, and high-quality functional foods which are perishable or semi-perishable in 
nature. Nanotechnologies are superior than conventional food processing technologies 
with increased shelf life of food products, preventing contamination, and production of 
enhanced food quality. This comprehensive review on nanotechnologies for functional 
food development describes the current trends and future perspectives of advanced 
nanomaterials in food sector considering processing, packaging, security, and storage. 
Applications of nanotechnologies enhance the food bioavailability, taste, texture, and 
consistency, achieved through modification of particle size, possible cluster formation, 
and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutra-
ceuticals, synergistic action of nanomaterials in food protection, and the application of 
nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the 
impact of nanomaterials in biological systems are also discussed. 
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1 Introduction

Nanotechnology is the technology applied in the manipula-
tion of nanomaterials for several purposes, which plays a 
crucial role in the food and agriculture sectors, contributes 
to crop improvement, enhances the food quality and safety, 
and promotes human health through novel and innovative 
approaches [1]. Owing to the unique physical, chemical, and 
biological properties with large surface–volume ratio as well 
as the altered solubility and toxicity when compared with 
their macroscale counterparts, engineered nanometer-sized 
particles have gained more attention in medicine, agro-food 
sectors, sewage water treatments, and other industries [2, 3]. 
Silver (Ag), gold (Au), zinc oxide (ZnO), titanium dioxide 
 (TiO2), and carbon nanoparticles are manufactured as much 
as tenfold that of other nanomaterials in amount due to their 
potential antimicrobial characteristics, being used in air fil-
ters, food storage containers, deodorants, bandages, tooth-
pastes, paints, and other home appliances [3, 4]. Besides, 
the potent antibiotic activity of nanosized copper oxides 
(nCuO) has resulted in the wide application in commercial 
nano-biocide products [5]. Nanomaterials are tiny particles 
ranging from 1 to 100 nm in size, insoluble or bio-persistent 

in nature, synthesized through various routes, and used in 
numerous fields including medicine, electronics, agriculture, 
and food industries [6]. Different sized nanoparticles are 
used in nanotechnologies of food science for potential pro-
duction and processing of healthier, safer, and high-quality 
foods (Fig. 1).

Food wastage leads to major losses in the food industry. 
Food and Agriculture Organization of the United Nations 
reported that more than 1.3 billion metric tons of con-
sumable food is lost or wasted every year throughout the 
supply chain, mainly because of inferior post-harvest tech-
niques, storage, transport facilities, and market and con-
sumer wastage of food [7]. Apart from enhancing the food 
production rate, it is mandatory to tackle food wastage for 
the purpose to solve the food crisis caused by the emerging 
population and environmental issues. The major cause for 
food wastage is microbial contamination and food spoil-
age that reduces the food quality and affects food secu-
rity, decreases shelf life of food products, and increases 
the risks of food-borne diseases [8]. In food industry, 
nanotechnology is applied for all practices: food produc-
tion, processing, storage, and distribution (Fig. 2). It pro-
vides enhanced security by using nanosensors to detect 

Fig. 1  Different sized nanoparticles used in nanotechnologies of food science. This figure was modified and adopted from Ref. [255] with per-
mission
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any pathogen or containments in food. Nanotechnology-
enhanced food packaging offers an improvement over con-
ventional packaging that uses plastic barriers, and at the 
same time its functional components such as antimicrobial 
activities provide increased shelf life to the food products. 
It is also involved in the detection of food toxins, flavor 
production, and color formation [9]. Nanotechnology-
based smart and intelligent systems provide localization, 
sensing, reporting, and remote control of food items with 
improved efficiency and security. Furthermore, nano-based 
delivery systems improve the nutraceutical values of the 
food components. Apart from their roles in food industry, 
nanomaterials also promote plant growth. For instance, 
 TiO2 was shown to enhance the growth of many plants, 
gold nanoparticles increased the yield of seeds in Arabi-
dopsis, and cellulose nanocrystals boost seed germination 
owing to their high water uptake potential [10].

The effective antimicrobial nature of biologically 
synthesized metallic nanoparticles not only controls the 
plant diseases, but also decreases environmental pollu-
tion. Nanomaterials, like carbon nanotubes, act as poten-
tial antimicrobial agents. Aggregates of carbon nanotubes 
caused cellular damage or death of E. coli by puncturing 
the cell when in direct contact with the bacterium [11]. 
The implementation of nano-biosensors in the detec-
tion of carcinogenic pathogens to prepare high-quality 
and contamination-free food has been widely reported. 
In this review, the potential utilization and applications 
of nanotechnology with different nanomaterials in food 
sector considering processing, preservation, storage, and 
security in terms of enhanced shelf life and quality are 

discussed. The potential applications of nanotechnology in 
nutraceuticals, the diagnosis of food pathogens as well as 
the possible harmful effects of nanotechnology in human 
and animal health are reviewed.

2  Nanotechnology in Food Processing

Nanofood refers to the food generated by using nanotechnol-
ogy in processing, production, security, and packaging of 
food. Nanotechnology has immense potential in the post-
harvest food processing. It enhances food bioavailability, 
taste, texture, and consistency, or conceals the unpleasant 
taste or odor, and modifies the particle size, size distribution, 
possible cluster formation, and surface charge [12]. Edible 
nano-coatings (~ 5 nm thin coatings) can be used in meat, 
fruits, vegetables, cheese, fast food, bakery goods, and con-
fectionery products, in which they serve as gas and moisture 
barriers. In addition, they provide flavor, color, enzymes, 
antioxidants, anti-browning compounds, and a prolonged 
shelf life to the manufactured products. Various bakery 
goods, coated with edible antibacterial nano-coatings, are 
available [13, 14]. Nanofilters have been used to remove 
color from beetroot juice while retaining the flavor and the 
red wine, and to remove lactose from milk so that it can 
be substituted with other sugars, making the milk suitable 
for lactose-intolerant patients. Nanoscale filters help in the 
elimination of bacterial species from milk or water without 
boiling. Nanomaterials used for developing nanosieves can 
be used for the filtration of milk and beer [9, 14].

Nanotechnology is used in the production of healthier 
food containing low fat, sugar, and salt to avoid food-borne 
diseases. It was reported that silicon dioxide  (SiO2) and  TiO2 
were allowed as food additives in bulk quantities (E551 and 
E171, respectively) [15]. The shelf life of tomato has been 
increased by the bionanoencapsulated quercetin (biode-
gradable poly-D,L-lactide), and this approach should be 
extended to increase the shelf life of other vegetables and 
fruits [16]. Nanogreen tea, Neosino capsules (dietary sup-
plements), Canola active oil, Aquanova (micelle to enhance 
the solubility of vitamins (A, C, D, E, and K), beta-carotene, 
and omega fatty acids), Nutralease (fortifying nanocarriers 
to carry nutraceuticals and drugs) are the common com-
mercialized nanotechnology-based products in the market. 
Similarly, fortified fruit juices, oat nutritional drinks, nano-
teas, nanocapsules containing tuna fish oil in breads, and 
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nanoceuticals slim shakes are few commercially available 
nano-processed foods in the market which are widely sold 
in the USA, Australia, China, and Japan [17, 18]. Nanotech-
nology in production of commercial nanofood products and 
their applications in various food science technologies are 
shown in Table 1.

3  Nanotechnology for Food Packaging

Packaging industry contributes largely to the world econ-
omy; nearly 55–65% of $130 billion was spent on food and 
beverage packaging in the USA [19]. In recent years, the 
application of active and intelligent packaging systems in 
the muscle-based food products, which are prone to contami-
nation, has increased tremendously. The aim of packaging 
meat and muscle products is to suppress spoilage, bypass 
contamination, enhance the tenderness by allowing enzy-
matic activity, decrease weight loss, and retain the cherry red 
color in red meats [20]. The advent of nanosensors provides 
food spoilage or contamination alarm to the consumers by 
detecting toxins, pesticides, and microbial contamination in 
the food products, based on flavor production and color for-
mation [21]. Most of the nanoparticles used for packaging 
in food industry have potential antimicrobial activity, acting 
as carriers for antimicrobial polypeptides and providing pro-
tection against microbial spoilage. Packaging material made 
of a coating of starch colloids filled with the antimicrobial 
agent acts as a barrier to microbes through the controlled 
release of antimicrobials from the packaged material [22].

Nanoparticles are used as carriers to introduce enzymes, 
antioxidants, anti-browning agents, flavors, and other bioac-
tive materials to improve the shelf life even after the package 
is opened [23, 24]. Few metals and metal oxide nanopar-
ticles (inorganic nanoparticles), namely iron, silver, zinc 
oxides, carbon, magnesium oxides, titanium oxides, and 
silicon dioxide nanoparticles, are widely utilized as anti-
microbials and in some conditions as food ingredients [21]. 
Nanomaterials and their applications in food products are 
listed in Table 2. The production of reactive oxygen spe-
cies (ROS) by  TiO2 is detrimental to pathogenic microbes, 
making it an effective antimicrobial agent. Enhanced heat 
resistance, low weight, and mechanical strength, and an 
increased barrier against  O2,  CO2, moisture, UV radiation, 
and volatiles can be achieved with the use of nanocompos-
ites. Nanocomposites are commonly utilized for packaging 

and coating purposes [25, 26]. Numerous nanoparticles such 
as  SiO2, clay and silicate nanoplatelets, carbon nanotubes, 
starch nanocrystals, graphene, chitin or chitosan nanopar-
ticles, cellulose-based nanofibers, and other inorganics are 
filled in a polymeric matrix, making the matrix lighter and 
fire-resistant with improved thermal properties and low per-
meability to gases [1]. Nanoparticles (100 nm or less) are 
included in plastics to enhance their properties. Polymer 
nanocomposites are thermoplastic polymers composed of 
2–8% nanoscale incorporations, such as carbon nanopar-
ticles, nanoclays, polymeric resins, and nanoscale metals 
and oxides. The extremely reactive nature of nanocompos-
ites over their macroscale counterparts is due to the high 
surface-to-volume ratio [27]. Silver in the silver zeolite is 
responsible for the antimicrobial activity via the production 
of ROS, and the ceramics coated with the silver zeolite are 
used in food preservation, decontamination of materials, and 
disinfection of medical products. The sustained antimicro-
bial performance of silver-based nanocomposite is superior 
to silver zeolite [28, 29]. Utilization of carbon nanotubes 
facilitates the elimination of  CO2 or assimilation of unpleas-
ant flavors. Furthermore, nanoclay in the nanocomposites 
(bentonite), used in the production of bottles and other food 
packaging materials, significantly enhances the gas barrier 
features and thereby inhibits oxygen and moisture from dif-
fusion, drink destabilization, and spoilage of food materials 
[30, 31].

The inclusion of active nanoparticles into the polymer 
matrices increases the performance of the food packaging 
material and provides functional attributes such as anti-
oxidant, antimicrobial, and scavenging which results in the 
longer shelf life of the packed food products [22]. The uti-
lization of nanocrystals developed by Nanocor (Arlington 
Heights, USA) in nanocomposite plastic beer bottles is to 
reduce the loss of  CO2 and inflow of  O2 into the beer bot-
tles, like the natural biopolymer-based nanocomposites [32, 
33]. The incorporation of clay nanoparticles into the eth-
ylene–vinyl alcohol copolymer and polylactic acid (PLA) 
biopolymer was shown to improve the oxygen barrier and 
increase the shelf life of food materials [34]. The organi-
cally modified nanoclays incorporated in the polymer matrix 
provide mechanical strength and serve as a barrier to gases, 
volatiles, and moisture [35]. Interestingly, PLA bionanocom-
posite produced from the incorporation of nanofillers into 
the biodegradable polymer PLA showed more rapid bio-
degradation than its counterpart PLA without nanofillers. 
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Table 2  List of nanomaterial-based biosensors with their application in food science and food nanotechnology

Nanomaterials Analyte Samples References

Silicon dioxide Act as food colorant, hygroscopic, anticak-
ing, and drying agent.

Food preservation and packaging [185]

Titanium dioxide Used as whitener in dairy products (e.g., 
milk and cheese)

Food preservation and packaging [186]

Zinc oxide Reduces the oxygen flow inside the packed 
containers

Food preservation and packaging [186]

Silver nanoparticles Acts as antibacterial agent, absorbs, 
and decomposes ethylene in fruit and 
vegetables

Food preservation and packaging [187]

Inorganic nanoceramic Used in cooking (frying) Food preservation and packaging [188]
Polymeric nanoparticles Used as bactericidal and efficient delivery 

mechanism
Food preservation and packaging [158]

Chitosan Used as coating agent for mandarin, straw-
berries, and fresh fruits

Anti-fungicide [189]

Gold nanoparticles AuNPs Integration of DNA or enzymes or anti-
bodies with Au NP

Pathogens
Glucose

Food storage applications
Meat and dairy industries
Fruit juice

[190]

SWCNT (single-wall carbon nanotubes) Integration with biomolecules
Fructose
Methyl parathion
and chlorpyrifos

Wine
Honey
Phosphate-buffered solution

[191]
[192]

MWCNT (multi-walled carbon nanotubes) Integration biomolecules
Paraoxon
Fructose

Food industry
Phosphate-buffered solution

[193]

CdTe QDs (cadmium telluride quantum 
dot nanoparticles)

Integration biomolecules Food industry [194]

Cu and Au NPs Pathogens Surface water [195]
ZrO2 NPs Parathion Phosphate-buffered solution [196]
Exfoliated graphite nanoplatelet xGnPs Glucose Phosphate-buffered solution [192]
Glyco-NPs E. coli Phosphate-buffered solution [197]
Quantum dots, QDs Salmonella typhi Chiken carcass wash water [198]
Gold nanorods Pseudomonas Sodium chloride [199]
Silica particles coated with silver shells E. coli Water [200]
Au NPs Mycobacteriumavium subsp. paratuber-

culosis
Milk [201]

CdTe QD 2,4 D (herbicide) Phosphate-buffered solution [202]
(CdSe)ZnS core shell QDs Paraoxon (insecticide) CH3OH/H2O (v/v) solvent [203]
Au NPs Paraoxon (insecticide) Glycine buffer [204]
Fe3O4 MNPs Glucose Acetate buffer solution [205]
CdTe QDs Glucose Phosphate-buffered solution [203]
CdSe@ZnS NPs Maltose Buffer solution [206]
Silver zeolite Antimicrobial agent Preservations, disinfectors, and decon-

taminants
[29]

Al2O3, La, Nano Water purification and soil cleaning Oxidation of contaminants [207]
Colloidal metals Food supplements Enhanced uptake [208]
Graphene Nanoplate-based nanocomposites Detects contaminants in food [209]
Cellulose nanocrystals Biocompatible high water uptake Food packaging [210]
Magnetic nanoparticles Large specific surface area Pathogen monitoring [211]
Carbon nanotubes Optical, electrical, mechanical, and ther-

mal conductivity
Food inspection and vacuum proof food 

packaging
[16]
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Mechanical, thermal, and barrier properties of the packaging 
material have been significantly increased by the inclusion 
of polymer–clay nanocomposites [36]. Obstruction of oxi-
dation, and regulations of moisture migration, respiration 
rate, microbial growth, volatile flavor, and aromas are greatly 
influenced by the application of nanotechnology in the pack-
aging industries [19].

Potential antimicrobial activities were reported for the 
chitosan-based nanocomposite films, particularly silver-con-
taining nanocomposites [37]. Garlic essential oil filled in the 
PEG-coated nanoparticles can be utilized for the restriction 
of store-product pests [38]. The shelf life of the food product 
has been increased efficiently by applying phytoglycogen 
octenyl nanoparticles included with the Ɛ-polylysine [39]. 
Application of silicate nanoparticles in food packaging acts 
as a barrier to gases or moisture and thus decreases food 
spoilage and drying [40]. Water-based nanocomposites 
forming 1–2-µm nano-coatings on food packaging materials 
act as a barrier to oxygen. Nanoemulsions are used in food 
packaging and decontamination of food packaging equip-
ment. Glycerin included with nanomicelle-based products 
eliminates pesticide residues from fruits and vegetables and 
oil/dirt from cutlery. The addition of nanoemulsified bio-
active and flavors to beverages does not affect the product 
appearance [37, 41]. Different food pathogens like gram-
negative bacteria are significantly controlled by nanoemul-
sions. Active and intelligent packaging systems are widely 
used. Various nanoformulation approaches and their applica-
tions in food products are presented in Table 3.

3.1  Active Food Packaging Systems

The active packaging systems consist of moisture regu-
lating agents,  CO2 scavengers and emitters, oxygen scav-
engers, and antimicrobials. Active packaging systems are 
developed depending on the purpose of the storage [42]. 
For example, overwrap packaging systems are used for 

short-term chilled storage, while modified atmosphere 
packaging (MAP) systems, vacuum packaging, MAP 
systems utilizing 100%  CO2, and bulk gas flushing are 
employed for long-term chilled storage. Low-density poly-
ethylene (LDPE) and polypropylene (PP), the commer-
cially used polymeric films for packaging, are inert, are 
hydrophobic, and have less surface energy [20]. Surface 
modifications with functional properties and polar groups 
for the inclusion of antimicrobial substances are essen-
tial to eliminate food spoilage [43]. Factors such as lipid 
oxidation, dehydration, discoloration, and loss of aroma 
should be considered in the case of processed meats; addi-
tives are included in the packaging systems to extend and 
maintain the shelf life of meat products [20]. Potential 
for the development of metallic-based nanocomposites in 
active food packaging is described in Fig. 3.

The MAP is one of the important packaging systems 
widely operated for the distribution, storage, and mainte-
nance of meat products under cold condition [20]. MAP 
technology enhances the shelf life and quality of the 
meat products by replacing the air compassing the meat 
products with formulated gas mixtures. In general, the 
non-inert gases such as  O2 and  CO2 are used in the MAP 
technology and their profiles change over time, influenced 
by factors like the type of product, respiration, materials 
used for packaging, size of the pack, storage conditions, 
and package integrity [43]. The uniform dispersion of clay 
nanoparticles on the transparent plastic film produced by 
Chemical giant Bayer (Leverkusen, Germany) prevents  O2, 
 CO2, and moisture from reaching fresh meats and other 
foods. Several patents on the applications of nanomate-
rials in the food packaging have been filed in the USA, 
Europe, and Asia, and most of them report the utiliza-
tion of nanoclays and nanosilver [44]. The inclusion of 
allyl isothiocyanate and carbon nanotubes into the active 
packaging systems decreases microbial contamination and 
color changes, regulates oxidation, and helps in the storage 
of shredded, cooked chicken meat for 40 days [42].

Table 2  (continued)

Nanomaterials Analyte Samples References

Allyl isothiocyanate and carbon nanotubes Antimicrobial packaging Enabled effective storage of shredded 
cooked chicken meat

[212]

Nanolaminates Food-grade film Improve the texture properties of foods 
and serve as carriers

[113]
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3.2  Smart/Intelligent Food Packaging Systems

Smart packaging systems respond to environmental stimuli 
by repairing or alerting the consumer regarding the con-
tamination or the presence of pathogens. Nanoparticles 
are used in the development of nanosensors to detect food 
contaminants. Custom-made nanosensors are used for food 
analysis, detection of flavors or colors, drinking water, and 
clinical diagnosis [45]. Application of nanosensors in food 
packaging aids in tracing the physical, chemical, and bio-
logical modifications during food processing. Specifically 
designed nanosensors and nanodevices utilized in smart 
packaging help in detecting toxins, chemicals, and food 
pathogens [46]. The intelligent packaging systems with 

sensors and indicators are also used to track and give infor-
mation regarding the quality of the packaged foods during 
storage and transport. Various functional nanomaterials, 
used as nanosensors and active packaging materials that 
provide significant mechanical and barrier properties, are 
potential targeted nutrient delivery systems [47]. With the 
advent of sensors, sensor-based indicators for integrity, 
freshness and time–temperature monitoring and radio fre-
quency identification were used in the meat industry [20]. 
It has been reported that smart or intelligent packaging 
retains the food quality during distribution. The response 
to modifications associated with the internal or external 
environmental stimuli is registered by the specific sen-
sor. Integrity (package integrity determination), freshness 

Table 3  Different types of nanoformulations and their applications in food industries

Nanostructured materials Nanoparticles Methods Applications References

Low-density lipoproteins Fish oil Microencapsulation Food additives—mask odor of 
tuna fish oil

[213]

Biopolymers (proteins or poly-
saccarides)

Micelles Microemulsions Produce glycerides in food 
products

[214]

Biodegradable biopolymeric 
NPs

Polylactic acid Encapsulation Encapsulate and deliver drugs, 
vaccines, and proteins

[176]

Liposomes Phospholipids Encapsulation Integrate food antimicrobials 
for the protection of food 
products

[215]

Liposomes Nanoliposomes Nanoencapsulation Lipid-based carriers for anti-
oxidants

[216]

Food components integrated 
with droplets

Colloidal dispersions of droplet Nanoemulsions Flavored food products. Milk 
fortified with vitamins, min-
erals, and antioxidants

[129]

Polymer matrices reinforced in 
the nanofillers

Nanoclays, nanooxides, carbon 
nanotubes, and cellulose 
microfibrils

Nanocomposites Biodegradable packaging [176]

Fine emulsion droplets Reducing the size of fat 
globules

Homogenization or micoflu-
idization

High-pressure homogeniz-
ers in producing finer milk 
emulsions

[176]

High-intensity ultrasound 
waves

Oil and water nanoemulsions Ultrasound emulsification To change the characteristics of 
treated matters

[179]

PLA NPs Curcumin and quercetin Encapsulation As bio-stabilizer [107]
PLA NPs Leaf extract Encapsulation Developed a greener approach [107]
Stevioside np PEG-PLA nanoparticles Nanoencapsulation Developed an antidiabetic 

nutraceutical
[217]

Podophyllotoxin and etoposide Poly-d,l-lactide nanoparticles 
(PLA NPs)

Encapsulation Anticancer activity [218]

BSA NPs Tea polyphenols, catechin, and 
epicatechin

Encapsulation
Nanoformulations

Enhance stability and bioavail-
ability

Antioxidant potential

[110]

Canola oil Vitamin E Nanoemulsions Nutritional benefits and oxida-
tive stability

[219]
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(quality of the packaged products), and time–temperature 
(time and temperature dependent changes) indicators are 
commonly used in the food packaging applications. These 
indicators are monitored throughout the production and 
distribution chain in order to maintain the quality and 
enhance the shelf life of products. Barcodes developed 
with the help of nanoparticles, called nanobarcodes, can 
be used as ID tags [48].

Nanosensor application in packaging provides details of 
enzymes generated during the degradation of food com-
pounds that makes food unsuitable for human intake. Pack-
aging improves the shelf life of the food products by prevent-
ing air and other enzymes from entering and decreases the 
use of artificial preservatives. It also helps in the elimination 
of the ripening hormone known as ethylene to enhance the 
shelf life of food products [49]. The nanosensors in the smart 
packaging systems are used for the detection of gases, chem-
ical contaminants, aromas, temperature and light intensity, 
pathogens, or the products of microbial metabolism [50]. 
Analytical techniques such as GC/MS, portable headspace 
 O2, and  CO2 gas analyzers are available to investigate the gas 
phases in the MAP products. However, these methods have 
certain demerits; optical sensor-based approaches are more 
effective than these methods in real-time packaging pro-
cesses or large-scale usage [20, 43]. Food rotting is a major 
concern in the food industry; it is caused mainly by bacteria 
that result in the release of unpleasant odor, which may be 
difficult to detect with human nose, and sometimes rotting 
food may lead to poisoning. In order to detect the odors 

generated due to food poisoning, highly sensitive biosensors 
are required [51]. For example, the device electronic nose 
functions like a human nose which utilizes sets of chemi-
cal sensors attached to a data processing system. Methods 
to determine chemical and physical characteristics of pears 
and fruit odors using the electronic nose signal have been 
reported [52]. Interestingly, electronic nose can be used to 
detect variations in the aroma of strawberry fruit, osmotic 
dehydration, and the quality of milk during processing. This 
device is used for a highly accurate determination of vola-
tiles and monitoring the quality control processes in food 
industry. Nanosensors were applied in the European project 
GOODFOOD (2004–2007) for food safety and quality con-
trol applications [53].

4  Mechanism of Nanoparticle Activity

Common factors such as product nature (formulation), pro-
cessing conditions (intrinsic factors), type of package and 
storage and distribution crucially affect the shelf life of a 
food product [54]. Intrinsic factors like water activity, pH, 
microbes, enzymes, and the level of reactive compounds 
can be regulated by using specific raw materials and ingre-
dients and appropriate processing parameters. Temperature, 
total pressure, light, partial pressure of various gases, rela-
tive humidity, and mechanical stress (human handling) are 
the common extrinsic factors that influence the rate of deg-
radation reactions during food material storage [55]. It is 
worth noting that the microbial growth mostly occurs on 
the surface of the perishable foods, including muscle-based 
foods, and therefore, utilization of antimicrobial packaging 
efficiently controls the microbial growth compared to the 
application of antimicrobials as food additives. Furthermore, 
antimicrobial packaging effectively interacts with the food 
product as well as the environment [56]. Nanoparticles are 
widely used in the packaging systems due to their potential 
antimicrobial properties. Most of the nanoparticles produce 
ROS, thus damaging the microbes present on the surface 
of food and packaging materials. Antimicrobial nanoparti-
cles, namely Cu, CuO, MgO, Ag, ZnO, Pd, Fe, and  TiO2, or 
nanoemulsions/nanoencapsulations enclosing natural anti-
microbial substances that can be adhered to via electrostatic, 
hydrogen bonding, and covalent interactions are developed 
to produce antimicrobial packaging systems. Several chemi-
cal modifications and deposition processes are being used 

UV-Blocking
Ethylene

Scavenging

Functions

N
A

N
O

TE
C

H
N

O
LO

G
IE

S 
IN

 F
O

O
D

 S
C

IE
N

C
E

A
C

TI
VE

 F
O

O
D

 P
A

C
K

A
G

IN
G Nano particles

Feasible inorganic carries of metallic-based nanostructures

Metallic-based nanocomposites with organic & inorganic polymers

Hall
oys

ite

Cloisi
te

Kao
lin

ite

Zeolite
s

Zirc
onium

phosp
hate

Montm
orill

onite

O2 scavengingAntimicrobial

Cu CuO MgO ZnO Pd Fe TiO2Ag

Fig. 3  Potential for the development of metallic-based nanocompos-
ites in active food packaging



 Nano-Micro Lett.           (2020) 12:45    45  Page 12 of 34

https://doi.org/10.1007/s40820-020-0383-9© The authors

for the attachment of silver NP onto the surface of the plas-
tic substrate that facilitates slower release of silver ions to 
reduce their inclusion in the food [43].

The potential surface charge of engineered water nano-
structures (EWNS) can deactivate Salmonella enterica, 
Escherichia coli, and Listeria innocua effectively on the 
surface of stainless steel and on tomato without influencing 
the sensory quality of food, operating via ROS production. 
The degradation of EWNS results in the formation of water 
vapor, hence lowering the risk of hazardous environmen-
tal problems [57]. The inorganic (ZnO,  TiO2, and Ag) and 
organic (chitosan and essential oil) nanomaterials are also 
used for food product preservation. Since polymer matrices 
control the release of active components, they regulate the 
function of nanocomposites. Polymers such as polyolefins, 
nylons, ethylene–vinyl acetate (EVA) copolymer, polyethyl-
eneterephthalate (PET), polystyrene (PS), polyamides, and 
polyimides have been used for nanocomposite production 
[58]. For example, silver NPs immobilized in cellulose and 
collagen sausages casings showed potential bactericidal 
activity against E. coli and Staphylococcus aureus, but they 
were not harmful to humans and the environment [55]. Such 
superior antimicrobial activity against E. coli and S. aureus 
had been demonstrated with silver–polyamide nanocompos-
ites, where the antimicrobial efficiency lasted for 28 days. 
The antimicrobial nature of the nanocomposite is signifi-
cantly affected by the characteristics of the polymer and 
NP [59]. Various types of nanoparticles that could help to 
prevent, detect, or treat bacterial infections like silver, gold, 
and tiny magnetic particles help to trigger or capture bacte-
rial pathogens and help to prevent bacterial spread in hospi-
tals and human body, providing an attractive way to rapidly 
detect bacterial biomolecules in a point-of-care compatible 
setting [43, 59]. The details about different nanotechnology-
based solutions that could help to prevent, detect, or treat 
bacterial infections are presented in Fig. 4.

The LDPE films coated with silver NPs using a layer-
by-layer method have a significant antimicrobial potential 
against S. aureus (gram-positive) and Pseudomonas fluo-
rescens (gram-negative) [60]. Similarly, significant antimi-
crobial functions against L. monocytogenes, E. coli O157: 
H7, S. aureus, and S. typhimurium were observed in the chi-
tosan–silver nanocomposite prepared by the solvent cast-
ing method [37]. ZnO-encapsulated halloysite–polylactic 
acid nanocomposite comprising packaging films exhibited 
enhanced mechanical and antimicrobial activities [61]. 

Pathogenic bacteria species such as E. coli, Listeria mono-
cytogenes, and P. aeruginosa residing in the meat products 
were deactivated by the LDPE/ZnO+Ag nanocomposites. In 
addition, the application of these nanocomposites enhanced 
the shelf life of the chicken breast fillets and slowed down 
the bacterial growth and lipid oxidation. It was reported that 
the improved quality of lemon with lower total soluble sol-
ids and punch force, enhanced titratable acid, firmness, and 
peel shear forces were found when they were coated with 
the chosen clay nanocomposites during cold storage [62].

The storage conditions and duration also influence the 
antimicrobial activities of the nanocomposite films. For 
example, the stability and antimicrobial activity of pullulan 
films incorporated with NP (silver or ZnO NPs) and oregano 
or rosemary essential oils were studied at various tempera-
tures (4, 25, 37, and 55 °C) for 7 weeks against the common 
food pathogens such as L. monocytogenes and S. aureus 
[63]. Their results illustrated that the antimicrobial poten-
tial of the pullulan nanocomposite films was maintained at 
low temperature (< 25 °C), and reduced greatly at > 25 °C. 
Some studied showed that the migration of Ag from the Ag/
PVC films to the chicken meat was least (8.85 mg/kg or 
0.84 mg dm−2), below the legal migration limits provided by 
the European Union for plastic films [64]. Food packaging 
with low silver concentration, having an enhanced and stable 
bioavailability is a challenge for the application of silver 
in food packaging. The citrate-mediated silver complex is 
the most commonly used standardized silver formulation for 
antimicrobial purposes [65].

4.1  Antimicrobial Properties of Nanoparticles

Several nanoproducts are available in the market to con-
trol the microbial growth. For instance, the four crucial 
food-related pathogens such as E. coli O157: H7, S. typh-
imurium, Vibrio parahaemolyticus, and L. monocytogenes 
were effectively inhibited by the nanosilver product known 
as  NanoCid® L2000 (Nano Nasb Pars Company, Tehran, 
Iran) [66]. Nanotechnology Consumer Product Inventory has 
listed many nanomaterial-related antimicrobial disinfectants. 
Most of the antimicrobial products found in the list contain 
nanosilver as the main antimicrobial agent [67]. The antibac-
terial activity of silver nanoparticles alone and the silver NP 
embedded in the carboxymethylcellulose film showed that 
AgNPs embedded in the carboxymethylcellulose film were 
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more potent as bactericidal than the AgNPs alone, which 
was suggested that antibacterial activity of AgNPs can be 
used food packaging [68]. Nanoengineered surfaces (antimi-
crobial coatings) are one of the efficient agents to suppress 
the growth of biofilms and enhance the quality and safety of 
the food. The nanoscale silver,  TiO2, and ZnO or nanoscale 
topography is used for surface cleaning in the food industry. 
The biocontamination problems existing in poultry farming, 
food processing, and food transportation were effectively 
controlled by the UV-C ultraviolet light-activated  TiO2 [69]. 
The pathogen transmission is mainly through air and may be 
involved in poultry meat contamination at different stages 
of slaughtering and processing [50]. The incorporation of 
microbicidal materials such as silver and other metals in the 
nanofiber mats revealed a significant antimicrobial potential 

[69]. Nanoenabled membranes, nanophotocatalysts, and 
nanoadsorbents are used for the purification of water in the 
wastewater treatment [70].

4.2  Synergistic Antimicrobial Effects of Nanoparticles

The combinatorial use of two or more nanoparticles provides 
a synergistic effect exhibiting potent antimicrobial activity 
compared to a single nanoparticle. Silver NPs combined 
with titanium dioxide and carbon nanotubes effectively 
combat E. coli and Bacillus cereus spores, respectively 
[71]. B. cereus spores present on the surfaces of aluminum 
and polyesters were destroyed by the silver-doped  TiO2 NP. 
The molds and airborne bacteria caught in the air filters are 
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destroyed by the silver-doped  TiO2 NP [72]. Enhanced anti-
microbial activity against E. coli and S. aureus was achieved 
by the stabilization of silver NP with SDS or PVP. Silver 
NP coatings have been used on the surfaces of refrigerators 
and storage containers [73]. Several food-related pathogens, 
such as Vibrio parahaemolyticus, Salmonella choleraesuis, 
and Listeria monocytogenes, are shown to be affected by 
the UV-activated  TiO2 NP Photoactivation of  TiO2, report-
edly caused biocidal activities against toxic food microbes 
[74, 75].

4.3  Synergistic Antimicrobial Activity with Natural 
Derivatives

Several studies have shown the synergistic antimicrobial 
activities of various nanoparticles (silver, gold, zinc, chi-
tosan, platinum, iron, copper, carbon nanotubes) with the 
essential oils (natural derivatives) [76]. Researchers have 
formulated an essential oil (EO) droplet emulsified with gold 
NP; also they utilized NP for the encapsulation of pepper-
mint EOs and cinnamaldehyde [77, 78]. Similarly, thymols 
containing EO of Lippia sidoides were nanoencapsulated 
in the chitosan–gum NPs and are used in chemical, phar-
maceutical, and food industries [79]. Magnetic nanofluid 
was produced by fusion of EOs and iron oxide NPs [80]. 
Oregano EO nanoencapsulated with the chitosan NPs was 
studied for its antimicrobial activity as well as the releasing 
pattern of Eos [81]. The antimicrobial activity of thymol was 
increased when encapsulated with the zein-sodium caseinate 
NPs [82]. The antibacterial and antifungal activity of the 
EOs is increased through nano-complex of various types of 
NPs. The eugenol and cinnamaldehyde incorporated in the 
poly (D,L-lactide-co-glycolide) (PLGA) NPs were shown to 
have potent biocidal activity against Salmonella and Listeria 
[83]. Similarly, the combinatorial preparation of liposome-
based NP and Origanum dictamnus essential oil was highly 
effective in controlling gram-positive and gram-negative 
bacteria [84]. Several essential oil derivatives of Santolina 
insularis such as γ-terpinene, carvacrol, p-cymene, thymol, 
and their combination with phosphatidylcholine liposome 
NPs were prepared by researchers, and they have been effec-
tive in controlling the growth of microbes [85].

The researchers reported that the encapsulation of 
essential oil derivatives such as thymol and carvac-
rol within the zein nanoparticles through liquid–liquid 

dispersion method demonstrated a strong antioxidant and 
antimicrobial activity against E. coli. Nanoencapsulation 
enhances the activity of essential oil against microbes, 
and the polymeric nanoparticles, liposomes, and nanoe-
mulsions are employed for this purpose; this can be used 
to regulate the release of drug molecule [86, 87]. Potential 
biocidal activity of EO encapsulated by chitosan/cashew 
gum nanoencapsulation was found against Stegomyia 
aegypti larvae due to the slow and sustained release [88]. 
The gram-positive bacterial growth was effectively sup-
pressed by the thymol encapsulated in zein nanoparticle 
compared to thymol only [89]. Carvacrol, a monoterpenic 
phenol produced by aromatic plants, increased antimi-
crobial activity when nanoencapsulated with polylactic 
glycolic acid [90]. The gold nanoparticles linked with 
the vancomycin substituent showed more toxicity toward 
vancomycin-resistant bacteria [91]. Phytoglycogen 
NP coupled with nisin showed improved antimicrobial 
action against L. monocytogenes [92]. The application of 
pullulan film containing essential oils (2% oregano, 2% 
rosemary) and NPs (100 nm Ag, 110 nm ZnO) to fresh 
turkey, raw beef, or processed turkey deli meat resulted 
in the suppression of L. monocytogenes, S. typhimurium, 
S. aureus, and E. coli O157:H7 for more than 2 weeks 
when vacuum-packaged and stored at 4 °C [93]. PLA/
CEO/β-CD nanofilms were developed by the inclusion of 
cinnamon EO-β-cyclodextrin inclusion complex (CEO/β-
CD-IC) into the PLA nanofibers using electrospinning 
technique and showed potential antimicrobial functions 
against S. aureus and E. coli. In addition, the shelf life of 
fresh pork was increased to 8 days compared to control 
samples which had a shelf life of 3 days [94]. Nanoencap-
sulation of essential oil enhanced their physical stability 
and bioactivity, reduced the volatility and toxicity, and 
protected it from environmental interactions with oxygen, 
light, pH, and moisture [95]. Therefore, the combination 
of essential oils and nanoparticles significantly increased 
the antimicrobial properties as they complemented each 
other against various pathogens; this would be an ideal 
strategy to constrain the multidrug resistant microbes 
(MDR). The emergence of MDR pathogens results in 
increased rate of morbidity and mortality, emphasizing 
the need for alternative natural drugs. Moreover, applica-
tion of nanotechnology to the natural drug product formu-
lation may ensure slow and sustained release of drugs to 
combat MDR microbes [76–80].
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5  Applications in Nutraceutical Delivery 
and Bioavailability

Bioactive substances present in food provide immunity and 
protect against diseases. Although most of the food items 
possessed higher concentrations of bioactive molecules, 
their potency was low. It is mainly due to low bioavaila-
bility, lower solubility, and stability in the gut, decreased 
permeability, and retention time in the intestinal tract [96]. 
Nanomaterials usually consist of a wide surface area per 
unit mass and decreased particle dimension which enhances 
the biological activity, bioavailability, and solubility of the 
encapsulated food materials [16]. Nanosized iron and iron/
zinc materials used in the nutraceutical deliveries enhanced 
the bioavailability and reduced the color changes in the 
final products. The bioavailability of most of the vitamins 
(A, D, and E) and bioactive compounds such as curcumin, 
carotenoids, conjugated linoleic acids, coenzyme  Q10, and 
ω-30 fatty acids is low or unstable after intake [97]. Low 
bioavailability is due to the physicochemical and physio-
logical parameters such as bioaccessibility, absorption, and 
transformation. In general, the low bioavailability, solubil-
ity, and stability of most of the bioactive molecules such as 
antioxidants, vitamins, micronutrients, polyphenols, carot-
enoids, and food ingredients can be enhanced with the help 
of nanotechnology specifically with nanoformulations [16]. 
Most of the biologically active substances used in treatment 
of diseases are hydrophobic in nature having least bioavail-
ability. Nanotechnology-based delivery systems are used to 

enhance the bioavailability and targeted delivery of natural 
bioactive compounds (Fig. 5).

Nanoparticles are also made up of natural food-grade 
macromolecules such as proteins, surfactants, polysaccha-
rides, lipids, and phospholipids. Composite nanoparticles 
are produced by different combinations of these food-grade 
ingredients, such as lipid core with a protein referred to as 
“nanoemulsions” and lipid droplets inserted in the biopol-
ymer microspheres [95]. The efficiency, utilization, and 
stability of the bioactive food materials can be enhanced 
with the help of these food-grade nanoparticles due to their 
encapsulating nature, protection, and release of the bioactive 
food constituents [98]. Nanonutraceuticals are a combination 
of nutrition and pharmaceuticals in which the dietary sup-
plements, bioactive substances, functional foods, and herbal 
products are produced via nanoformulation approach [21]. 
Different methods were employed for the delivery of nutra-
ceuticals. Nanotubes, nanofibres, fullerenes, nanosheets, 
nanowhiskers are delivered via various vehicles such as 
liposomes, cubosome, microemulsions, solid lipid nano-
particles (SLNs), biopolymeric nanoparticles, nanosensors, 
monolayers, microgels, and fibers [99]. It is crucial to under-
stand the advantages and the significant toxicity of nanocar-
rier systems in food products. For development of effec-
tive micronutrient delivery system for food manufactures, 
a great advancement in design and fabrication of various 
food-grade nanoparticles is done by recently with the addi-
tion of notable applications [100]. Colloidal delivery-based 
foods (excipient foods) can improve the bioavailability of the 
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food, although they do not possess any biological activity 
themselves. The absorption of the bioactive agents into the 
systemic circulation increases, resulting in enhanced bio-
activity while providing powerful health benefits. In order 
to enhance the bioaccessibility, absorption, or transforma-
tion profiles of bioactive compounds in the gastrointestinal 
tract (GTI), the composition and structure of excipient foods 
are specifically designed [101, 102]. There are a number of 
nanoparticle-based delivery systems to improve the bioavail-
ability of the food with suitable encapsulation of micronutri-
ents presented in Fig. 6. The applications of nanotechnology 
in nutraceuticals and pharmaceuticals which was discussed 
by many researchers in their studies are shown in Table 4.

5.1  Nanoemulsions

Nanoemulsions are a colloidal particulate system with oil-in-
water emulsions characteristics having a very small droplet size 
that varies from 10 to 1000 nm and containing solid spheres 
with amorphous and lipophilic surfaces. The nanoemulsions 
act as excellent carriers for various bioactive compounds with 
enhanced properties compared to conventional emulsions, pro-
viding with excellent properties like high optical clarity, physi-
cal stability, and enhanced bioavailability [103]. The small 
size of nanoemulsions helps to produce or have large surface 
area which can be very important for strong interaction with 
various bioactive compounds transported in the gastrointesti-
nal tract. Also, the nanoemulsions show higher digestion rate 
compared to conventional emulsions as they are having more 
binding sites available amylase and lipase digestive enzymes in 
the gastrointestinal tract [104]. Moreover, these nanoemulsions 

are significantly helped in rapid transfer of naturally occurring 
hydrophobic bioactive compounds present in functional foods 
into the oil droplets. Various functional foods are the types of 
foods which significantly help to produce energy and amelio-
rate the human health problems [103]. Some examples of func-
tional food products which are already available for human 
beings are cereals with vitamins, minerals and ω-3 fatty acids, 
curds or yogurts with probiotics, milk products fortified with 
vitamin D, fruit juices enriched with various metal ions like 
iron and calcium, and breads fortified with phytosterols [105]. 
The concept of development of functional or healthier food 
product has gained more importance to optimize and enhance 
various natural bioactive compounds as food for ameliora-
tion of intrinsic health properties and bioavailability. In this 
context, excipient foods have been introduced as foods that 
are able to improve the bioactivity of foods co-ingested with 
them (Fig. 7) [102, 106]. The nanoemulsion-based approach 
effectively increases bioavailability of biologically active com-
pounds as their structures, compositions, and properties can 
be regulated. Emulsion-based systems are prepared from the 
emulsifier-coated oil droplets dispersed in water phase. The 
conventional emulsion-based systems are larger in size (oil in 
water, d > 100 nm) while the latest nanoemulsions are smaller 
in size (d < 100 nm) [24, 96]. The nonpolar domains contain-
ing a mixed micelle phase are larger in number and harbor all 
released hydrophobic bioactive compounds, thus enhancing 
their bioaccessibility [97]. The inclusion of isolated bioactive 
compounds into the emulsion-based delivery systems leads 
to enhanced bioavailability. However, the enhanced bioavail-
ability of bioactive compounds present in whole foods can be 
achieved by incorporating them into emulsion-based excipient 
systems (EES) [96, 97]. Polyphenols are the naturally derived 
secondary metabolites possessing various health benefits. The 
stability and oral bioavailability of the epigallocatechin gallate 
and curcumin were enhanced by the nanoemulsion method, 
and the nanoemulsion was used to enhance the yellow color 
pigment in turmeric [104]. The major applications of nanoe-
mulsions include curing and treatment for enzyme replacement 
therapy in the liver, infection of the reticuloendothelial system, 
cancer prevention, and vaccination [103].

5.2  Nanoencapsulation

Encapsulation of bioactive nutraceutical molecules using 
nanoformulations increased their bioavailability and 
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Fig. 6  Examples of effective micronutrient delivery system for food 
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biodistribution [107]. Nanoencapsulation is a process 
in which the substances are packed in tiny structures, 
either by nano-structuration, nano-emulsification, or 
nanocomposites that facilitate controlled release of the 
core. Different types of nanoencapsulations (nanoparti-
cles, liposomes, nanospheres, micelles, nanocochleates, 
and nanoemulsions) have been employed depending on 
the requirement. They can be used as nutritional sup-
plements, to conceal unpleasant taste, improve the bio-
availability, and permit efficient dispersion of insoluble 
supplements without the requirement for surfactants or 
emulsifiers [99, 108]. The PLA-based nanoparticles were 
used as a stabilizer in the nanoencapsulated curcumin and 
quercetin in turmeric extract [16]. Stevioside nanoparti-
cles, nontoxic natural noncaloric sweeteners, were used 
as antidiabetic nutraceutical agents [109]. The stability 
and bioavailability of the polyphenols (catechin and epi-
catechin) in tea were enhanced by encapsulating them in 
BSA nanoparticles [110]. The nanoformulation of bioac-
tive components which results in their slow release retains 
the antioxidant potential and enhances the effectiveness 
of the bioactive molecules. Most of the natural phyto-
chemicals are sensitive to different environments [111]. 
The entrapment of biologically active components (vita-
mins, antioxidants, phytochemicals, proteins, lipids and 
carbohydrates) within the nanoparticles not only gives 
protection, but also improves function and stability of the 
bioactive. These nanocapsules when dissolved release the 
active ingredients like the normal food [112, 113]. The 
encapsulation of curcumin in hydrophobically modified 
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starch results in increased anticancer activity [114]. Nano-
coating can be used as vehicles for functional ingredients 
during nanoencapsulation, whereas the nanocapsules can 
be designed to include nanoadditives, antimicrobials, and 
detoxifying agents (e.g., mycotoxin binding) in the ani-
mal feeds. Some of the compounds (e.g., octenyl succinic 
anhydride-Ɛ-polylysine) are bifunctional molecules which 
can be either utilized as surfactants or emulsifiers and can 
be used in the encapsulation of bioactive compounds or 
drugs or antimicrobials [115, 116]. Interestingly, nanoen-
capsulation using lipid molecules increased the antioxi-
dant potential through enhanced solubility and bioavail-
ability and eliminated the undesirable interactions with 
other food constituents. Nanoliposomes, nanocochleates 
and archaeosomes are commonly employed lipid-based 
nanoencapsulation systems. Nanoliposomes are potentially 
used as cargos for nutrients, enzymes, food antimicrobi-
als, and food additives [117]. Nanoencapsulation of pro-
biotics was also reported previously. The live mixtures of 
bacterial species supplemented in the food are known as 
probiotics. The common probiotic foods are cheese, fruit-
based drinks, yogurts, and yogurt-type fermented milk and 
puddings. Encapsulation of these ingredients increases the 
shelf life of the product. The designer probiotic bacterial 
species produced using nanoencapsulation technique can 
be introduced into specific regions of the GI tract where 
they bind to the specific receptors. These nanoencapsu-
lated designer probiotics may function as de novo vac-
cines, with the potential to regulate immune responses 
[118, 119].

5.3  Mixed Nanoparticle Delivery System

Several studies demonstrated the encapsulation of a bioactive 
agent using a single type of nanoparticle in the food industry. 
A mixed nanoparticle delivery system (two or more types of 
nanoparticles with various functional characteristics) can be 
more useful for certain applications. It was reported that the 
encapsulation of chemically sensitive (labile), hydrophobic, 
biologically active substances using protein nanoparticles 
followed by mixing with lipid nanoparticles is highly advan-
tageous; protein nanoparticle provides protection to the bio-
active; and lipid nanoparticles attribute a source of digestible 
triglycerides (TGs) that in turn enhances the solubility of 
the bioactive components in the gastrointestinal tract [96, 

120]. The triglycerides get hydrolyzed to free fatty acids 
and monoglycerides in the small intestine. These hydrolyzed 
products combine with the bile acids and phospholipids to 
produce mixed micelles that dissolve the hydrophobic bioac-
tive substances once they are liberated from the encapsulated 
protein nanoparticles. Few studies have reported the fabrica-
tion of either curcumin-loaded or tangeritin-encapsulated 
zein nanoparticles with antisolvent preparation followed by 
mixing with lipid NP using microfluidization [121, 122]. 
They found that enhanced solubilizing ability of the mixed 
micelle phase significantly improved the bioaccessibility of 
the hydrophobic bioactive molecules. Nanoparticle cluster-
ing is a mixture of positively and negatively charged suspen-
sion nanoparticles of proportions resulting in the formation 
of highly viscous solutions or gels (NP clusters) [123, 124]. 
The pH and ionic strength strongly influence the interaction 
between the oppositely charged particles. This concept is 
used to produce less calorie food products with enhanced or 
novel textural features. Trojan Horse NP is the entrapment 
of nanoparticles in larger particles (hydrogel beads) lead-
ing to enhanced functional features. In this delivery method, 
nanoparticles filled with biologically active substances can 
be trapped inside the larger particles and are liberated when 
they reach the site of action [125]. It was utilized to encap-
sulate nanoemulsions in larger particles (hydrogel beads) 
where the release depends on the environment [96]. In the 
upper GI tract, Trojan Horse nanoparticle systems provide 
protection to oil droplets from lipid digestion and then allow 
their release within the colon [126]. In addition, digestion 
rate of lipid droplets in the small intestine and bioaccessibil-
ity of encapsulated hydrophobic bioactive substances can 
be regulated with the Trojan Horse nanoparticle systems 
[125]. The major achievement of this system is the delivery 
of the bioactive substances to various regions of the gastro-
intestinal tract. Nanosized, self-assembled liquid structures 
are called as fortifying nano-vehicles where the expanded 
micelles (< 30 nm) are used for the targeted nutraceuticals 
such as beta-carotene, lycopene, isoflavones, coenzyme  Q10 
 (CoQ10), phytosterols, and omega-3 fatty acids [127].

5.4  Environment‑Specific NP‑Mediated Delivery

The development of diagnostic sensors and controlled 
release delivery systems requires nanoparticles which can 
alter their characteristics with response to the specific 
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environmental stimulations including ionic strength, pH, 
enzymatic activity, and temperature. Several studies have 
been carried out to develop NP that can change their prop-
erties according to the environment. For instance, bioactive 
molecules carrying lipid nanoparticles were broken down 
immediately upon contact with lipase and bioactive mol-
ecules were released under simulated GIT conditions [96]. 
The pancreatic lipase releases the bioactive substances in the 
small intestine, while the bioactive substance-filled protein 
nanoparticles were readily broken down in the stomach or 
small intestine containing proteases. Whey protein-loaded 
riboflavin, zein nanoparticle-loaded curcumin, and resvera-
trol are some of the bioactive-loaded protein nanoparticles 
[96]. In the pharmaceutical industry, pH-sensitive nanopar-
ticles have been used to deliver anticancer molecules to the 
oncogenic tissues.

5.5  Natural Carriers

Nano-vehicles were developed to carry out specific func-
tions. Natural nanocarrier of nutrients such as casein micelle 
is used for the delivery of hydrophobic, bioactive substances. 
For hydrophobic nutraceutical delivery in clear acid bever-
ages, β-lactoglobulin–pectin nanocomplexes and core–shell 
NP built from heat-aggregated β-lactoglobulin and nano-
coated using beet pectin for bioactive molecules delivery 
were generated [128, 129]. Milk proteins such as lactoferrin 
or bovine serum albumin-fused NP were used for the poten-
tial drug delivery across the blood–brain barrier, in vivo. 
Nanoparticles were designed for targeted delivery to specific 
region, organ, or tissues. For example, targeted delivery to 
gastric cancer (β-casein NP), intestine (BSA NP coated with 
the fatty acid), and colon (Maillard conjugates of casein and 
resistant starch) was achieved with these applications [21]. 
Soy lecithin used to produce aqueous nanodispersions acts 
as a carrier of hydrophobic bioactive, including fat-soluble 
vitamins. A sevenfold higher absorption of CoQ in the intes-
tine was observed in the nanodispersion method compared to 
conventional powder formulations [130]. Colloidosomes are 
self-connected tiny capsules forming a hollow shell in which 
bioactive or any other substances can be filled. Beta-caro-
tene encapsulated in nanolipid carriers was designed which 
permits the hydrophobic β-carotene to easily disperse and 
stabilize in beverages [131]. Nanocochleates are nanocolloid 
particles built mostly from lipids (75%) that encapsulate the 

micronutrients and provide stability, protection, and food 
with improved nutritional values. Starch like nanoparticles 
significantly improved the stability of the oil-in-water emul-
sion by preventing lipid oxidation [132].

6  Nanomaterials in Diagnostic Applications

Although the conventional molecular diagnostic methods 
are shown to have higher sensitivity and reproducibility in 
the detection of pathogens as well as their products (toxins), 
they are not used in many places due to the requirements for 
sophistication, high-cost instrumentation, and trained tech-
nicians. The unique magnetic, electrical, luminescent, and 
catalytic activities of nanomaterials are used for the devel-
opment of rapid, sensitive, and low-cost diagnostic assays 
for the detection of microbial pathogens. With the applica-
tion of nanosensors, microbial pathogen detection is rapid, 
sensitive, accurate, and low labor-intensive. In general, NPs 
are highly reactive compared to their large-sized particles; 
hence, it is worth noting to study their possible toxicity in 
living systems [133, 134].

6.1  Liposomes

The detection of bacterial toxins such as botulinum, teta-
nus, and cholera was achieved with the help of engineered 
GT1b or GM1 ganglioside-bearing liposomes which are in 
the range of ∼ 120–130 nm, and they recognize the target 
toxins. Fluorescent-labeled (rhodamine dye) liposomes were 
able to detect the lowest concentrations of toxins (1 nM) 
using fluoroimmunoassay [135].

6.2  Carbon Nanotubes

Galactose biofunctionalized single-walled nanotubes (Gal-
SWNTs), used to detect E. coli O157:H7 containing galac-
tose binding surface proteins, revealed a strong aggrega-
tion due to their multivalent interactions [136]. It was also 
reported that application of SWNT-mediated potentiomet-
ric aptamer biosensor was used for faster and label-free 
detection of live bacterial cells; 6 cfu mL−1 in milk and 
26 cfu mL−1 in apple juice [137].
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6.3  Gold Nanoparticles (Au NPs)

Gold nanoparticles are considered suitable for the adsorp-
tion of biomolecules without losing their biological func-
tions, mainly due to their large surface-to-volume ratio and 
unique physical and chemical properties. Staphylococcus 
aureus cell membrane protein (protein A) was detected by 
the AuNP-anti-protein A antibody conjugate immobilized on 
the immunochromatographic strip. This device functions in 
a rapid (< 10 min) and highly sensitive (25 ng mL−1) manner 
for the detection of protein A [138]. The detection of DNA 
from pathogenic bacteria by utilizing the cationic AuNPs 
attached to poly (para-phenyleneethynylene) (PPE) provided 
more rapid and efficient identification than conventional 
plating and culturing. PPE did not fluoresce in the bound 
state, whereas the presence of bacteria allowed electrostatic 
interactions between the bacterial surface and the AuNPs 
that led to the liberation of PPE from the bound conjugate. 
Free PPE (fluorescent signals) concentrations can be esti-
mated for the rapid quantification of bacteria [139].

6.4  Silver Nanoparticles (Ag NPs)

Application of various antimicrobial substances like met-
als provides a promising way to control undesirable growth 
of microorganisms. Basically, the heavy metals have been 
considered for providing broad-spectrum biocide effects. 
Among all the metals, the ionic silver considered to have 
largest antimicrobial activity with long-term biocide proper-
ties and low volatility with low toxicity to eukaryotic cells. 
Furthermore, in recent years, silver has gained popularity 
because of the spread of antibiotic-resistant Staphylococ-
cus aureus strains, being resistance to silver considered 
sporadic with a low clinical incidence [140]. The release 
of silver ions helps to reduce microbial load with sustain-
able development of various aseptic food containers and 
antimicrobial surfaces, providing active packaging food 
systems with promising quality. Very low amount of silver 
ions (10–100 mg Ag t/kg) is required to achieve biocidal 
effects using in water or low buffered systems. Interestingly, 
the antimicrobial activity of silver decreases rapidly in the 
presence of proteins in food system, and hence, the silver 
amount required was 50–100 mg Agt  kg−1 in realistic food 
applications [141]. For microbial inhibition activity, using 
silver ions remains inconsistent in complex food matrix 

without proper standardization or determination of minimum 
inhibitory concentration (MIC) value which leads to wrong 
claims. Also, the overuse of silver as nanoparticles leads 
to molecular basis of resistance in microorganism, which 
should be documented properly and considered in techno-
logical applications [142].

7  Toxicological Aspects of Nanomaterials 
in Food

The field of nanotechnology is growing, and along with it 
the public concern regarding the toxicity and environmental 
impact of nanomaterials is also increasing. Nanoparticle-
mediated toxicity is stimulated by dynamic, kinetic, and 
catalytic properties and by functionalization, net particle 
reactivity, agglomeration, and functional environment [121, 
122]. Nanoparticles on the surface of the packaging mate-
rial are not harmful to human beings, but their translocation 
and integration into food may affect the human health. The 
entrance/route, absorption, and distribution of NP in the 
human body with special attention to their cytotoxicity and 
genotoxicity were discussed previously [143]. Nanoparticles 
reach the animal system via skin penetration, ingestion, inha-
lation, intravenous injections or by the implanted medical 
apparatus; inside the cells, they interact with the biological 
macromolecules. Toxicokinetic issues caused by the NP are 
mainly due to their persistent, non-dissolvable, and non-
degradable nature [144]. The lack of consumer awareness, 
government guidelines, policies, and detection methods 
for nanotechnology risk assessment warrants better under-
standing of nanomaterial-based toxicity characterization and 
regulatory processes. The toxicity increases as the size of the 
metal-based NP decreases [145]. Nanoparticles are highly 
reactive substances that can readily cross the membrane bar-
riers and capillaries resulting in different toxicokinetic and 
toxicodynamic properties. Some NPs bind to proteins and 
enzymes and result in the stimulation of ROS production 
and oxidative stress. ROS accumulation causes degeneration 
of mitochondria and induces apoptosis [146]. Most of the 
NP-imposed toxicity studies carried out in animals revealed 
that NP could induce strong toxicity to various organs (liver, 
kidneys) and immune system. Lack of studies on the impact 
of NP on human health warrants extensive studies to be car-
ried out. Although silver NP has been used in many commer-
cial nanoproducts, only a few in vivo toxicological studies 
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with silver NP have been conducted using the mammalian 
models (e.g., mice and rats) [147]. Tumor-like changes have 
been observed in the human cells exposed to  TiO2 NP. Dif-
ferent cell lines of the lung, GI tract, and skin were used for 
the evaluation of nanomaterial-induced toxicity in in vitro 
conditions [148, 149].

International Conference on Harmonization (ICH) and 
Organization for Economic Co-operation and Develop-
ment (OECD) proposed the widely accepted genotoxicity 
detection methods. These methods were used to determine 
gene mutations, DNA breaks, Ames test (Salmonella-based 
mutagenicity assay), and mammalian cell assays including 
mouse lymphoma gene mutation assay (MLA), comet assay 
for apoptotic induction, micronucleus (MN) estimation, 
and in vivo animal experiments [150, 151]. Modifications 
were made in the comet assay by the utilization of bacterial 
enzymes for the detection of oxidized DNA bases and the 
quantification of oxidative DNA damage. The significant 
negative results obtained in the in vivo comet and MN assay 
as compared to in vitro comet assay are mainly due to the 
potential DNA repairing ability of animal models. How-
ever, Ames test and the chromosomal aberration tests are 
not reliable for the detection of nanoproduct related toxicity 
assessments [152, 153]. The in vitro cellular mutagenesis 
system such as the investigation of epithelial cells from the 
lungs of the treated animals utilizing bronchoalveolar lav-
age fluid (BAL), neutrophil level in bronchoalveolar lavage 
fluid from chronic inflammation, and the correlation between 
bronchoalveolar lavage fluid-based neutrophil content and 
the extent of DNA strand damage is determined by in vivo 
comet assay using lung epithelial cells of the treated ani-
mals and hypoxanthin–phosphoribosyltransferase (HPRT) 
assay. Moreover, in vivo micronucleus and comet assays are 
considered suitable for the decision-making process by the 
regulatory authorities [150, 154].

The uptake of exogenous materials, including nanomateri-
als, induced genetic damages in the cells and animal systems 
resulting in genotoxicity, which is grouped into primary and 
secondary genotoxicity. The direct contact between the NP 
and the genomic DNA without induction of inflammatory 
reactions is known as primary genotoxicity. This has been 
reported for some specific nanosilver materials, particulate 
material of asbestos, and crystalline silica [150, 151]. The 
indirect method of primary genotoxicity is via the genera-
tion of ROS in the NP-induced target cells or the reduc-
tion in intracellular antioxidants. Quartz particles induced 

primary genotoxicity through ROS generation from mito-
chondria that causes damage to DNA,  TiO2 and  C60 fuller-
enes induced genotoxicity via the formation of peroxyni-
trite and ZnO NP altered the level of hydroperoxide ions, 
ROS, malondialdehyde (MDA) concentration, and lactate 
dehydrogenase activity (LDH) which resulted in DNA frag-
mentation [155, 156]. The disruption of membrane integ-
rity, suppression of DNA repair processes, and decreased 
ATP levels leading to alternative repairing processes in the 
nucleus are also reported for primary genotoxicity [157]. 
In secondary genotoxicity, macrophages and neutrophils 
are activated by the nanomaterials that cause inflammatory 
reactions along with genetic damage. The ROS and reactive 
nitrogen species (RNS) and the mediators of phagocytes are 
responsible for the inflammation-associated DNA damages 
[151]. The ZnO NP-induced oxidative and nitrative stresses 
cause elevated inflammatory reactions and genotoxicity in 
the human monocyte cells. The long-term application of 
nanoscale granular bio-persistent particles causes chronic 
inflammation as well as secondary genotoxicity [158]. The 
physical and chemical parameters potentially affecting ROS 
generation and genotoxicity induction include particle size, 
surface, shape, charges, particle dissolution, the ions from 
nanometals and metal oxides, UV-mediated induction, 
aggregation, route of interaction with cells, inflammation, 
and pH of the medium [159]. Prolonged oxidative stress 
arising from extreme generation of ROS and obstruction in 
the regular physiological redox-regulated functions causes 
detrimental toxic effects at the cellular level which results in 
DNA damage, uncontrolled cell signaling, altered cell motil-
ity, cytotoxicity, apoptosis, and tumor formation [160]. The 
frequent exposure to NP affects various organs including 
inflammatory, immune and cardiovascular systems [161].

DNA fragmentation results from DNA single-strand 
breaks, double-strand breaks, oxidative damage, or chromo-
somal damage. The tumor suppressor gene p53 is involved in 
the cellular repairing processes via the initiation of cell cycle 
arrest, DNA repair, and senescence. Apoptosis and phago-
cytosis are involved in the degradation of severely damaged 
cells. The cells not cleared by apoptosis or phagocytosis 
result in the formation of cancerous cells. Interestingly, 
microarray and global gene expression-mediated signaling 
investigations indicated that silver NP-induced genotoxicity 
through ROS generation, DNA damage, chromosome insta-
bility, mitosis suppression, and immune response activation 
occurs through the JAK-STAT signal transduction pathway 
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[162]. The double-strand breaks, and cell cycle arrest initi-
ated by  TiO2 NP stimulated the expression of ataxia telangi-
ectasia-mutated kinase (ATM), p53, CdC-2 followed by the 
suppression of H2AX, ATM-and-Rad3-related (ATR ), cyclin 
B1 which proved the genotoxic characteristics of  TiO2 NP 
[163].

ZnO NP possesses various unique characteristics like 
semiconductor property, biocompatibility, pyroelectric, and 
piezoelectric properties. Due to their antimicrobial nature, 
they are used in the food industry for food packaging, smart 
packaging as well as in the nutritional additives. ZnO NP 
is less toxic compared to other nanomaterials used in the 
food industry. However, the potential chromosomal damage, 
single- and double-strand DNA damages were found in the 
alloy form of Cu–Zn nanoparticles (ANPs) [164, 165]. In 
plant systems, lower concentrations (10 nM) of 3-mercapto-
propanoic acid–CdSe/ZnS quantum dots induced cytotoxic-
ity and genotoxicity. The NP uptake induces the generation 
of oxidative stresses (ROS, RNS) and lipid peroxidation 
in the biological systems that play a crucial role in DNA 
damage, membrane disintegration, and cell death. The bio-
availability, fate, behavior, disposition, and toxicity of NP in 
the environment should be studied in detail to eradicate the 
problems associated with nanotechnology in food industry 
[166].

8  Safety Concerns and Regulatory Laws

Nanotechnology application in the food industry is tremen-
dous, beginning with ingredients to packaging as well as 
in the analysis of food products. Apart from their poten-
tial uses, their interaction with food system raises a con-
cern about human and animal health. The nanoformulated 
products are toxic to plants and animals, and no standard 
regulatory laws regarding their use in food and agri-sector 
have been introduced so far. Therefore, effective guidelines 
and policies are required for the safer utilization of nano-
particles in food industry. The regulatory body USFDA is 
involved in the regulation of nanofoods and food packag-
ing in the USA. Food Standards Australia and New Zealand 
(FSANZ), a regulatory body under the Food Standards Code 
actively participates in the regulation of nanofood additives 
and ingredients in Australia [167, 168]. Risk assessment of 
nanotechnology in the European Union is performed by the 
Scientific Committee on Emerging and Newly Identified 

Health Risks (SCENIHR). Regulations of the European 
Union emphasized that the nanotechnology-based food 
ingredients should undergo safety assessment before being 
authorized for human use [169]. The nanofood or food 
ingredients are completely covered by the European Union 
Novel Foods Regulation (EC 258-97). The re-evaluation 
program by European Food Safety Authority (EFSA) sug-
gested that the authorized nanoadditives before 2009 and 
food packaging materials should be treated as per the re-
evaluation program. While Japan and China are the major 
nanomaterial producing countries, they do not have proper 
nanotechnology-specific regulations [170]. The lack of food 
regulations in several countries is due to less information 
regarding exposure, availability, and toxicity to human. Due 
to the emerging regulatory problems, several countries have 
demanded a regulatory system for handling risks associ-
ated with the nanofood. Complete government guidelines 
and legislations, as well as rigorous toxicological screening 
methodologies are essential for the legal nanotechnological 
applications. A widely accepted international regulatory sys-
tem is urgently required for the regulation of the utilization 
of nanoparticles in food industry [171, 172].

9  Conclusion and Future Perspective

Nanotechnology plays a major role in the food sector through 
the quality food production ends with advanced process-
ing, packaging, and long-term storage, provided enormous 
growth in food industry through enhancement in food qual-
ity by improving its flavor and texture. The nanomaterials 
and nanosensors help the consumers providing informa-
tion on the state of the food inside and its nutritional status 
with enhanced security through pathogen detection. Most 
of the food bioactives against various diseases are hydro-
phobic in nature having least bioavailability and stability; 
thus, the nanotechnology-based delivery systems provided 
an enhanced bioavailability and targeted delivery of food 
bioactive compounds. The nanotechnology-based foods 
give significant challenges to both government and industry, 
ensuring the consumer confidence and acceptance for nano-
foods available in market. Active utilization of nanocolloidal 
particles in different branches of food industry, such as food 
quality, safety, nutrition, processing, and packaging, has 
been widely reported recently. The properties and behavior 
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of colloidal particles are important to design foods which are 
safer and healthier with improved quality and sustainability.

Nanoparticles are manufactured all over the world, though 
very few countries possess the standard regulatory rules for 
the utilization of nanotechnology in food products. Insuf-
ficient scientific exploration on nanosystems creates diffi-
culties in arriving at any conclusions regarding their effi-
cacy. The applications of nanoparticles in food packaging 
are less harmful than the utilization of nanoparticles as a 
food ingredient. There is always a threat that nanomateri-
als may enter the food chain through the air, water, and soil 
during their manufacture and usage leading to DNA dam-
age, cell membrane disruption, and cell death. So far, very 
few in vivo studies have been conducted on the effects of 
nanofoods in human and animal health. There should be 
appropriate labeling and regulations advised for marketing 
of nanofoods which can help to increase consumer accept-
ability. Thus, utilization of these nanotechnologies, if man-
aged and regulated correctly, can play a significant role in 
improving food processing and product quality which will 
benefited for human health and well-being.
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