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HIGHLIGHTS

• Surface-engineered  Li4Ti5O12 nanoparticles were synthesized by an off-stoichiometric solvothermal process.

• The electrode exhibited ultrafast charge–discharge (up to 1200C) performances in a half-cell configuration.

• A full cell consisting of the engineered  Li4Ti5O12 anode and  LiMn2O4 cathode exhibited an ultrahigh-rate capability (up to 200C), 
long cycling life (1000 cycles), and robust performances (at − 10, 25, and 55 °C).

ABSTRACT Materials with high-power charge–
discharge capabilities are of interest to overcome 
the power limitations of conventional Li-ion batter-
ies. In this study, a unique solvothermal synthesis 
of  Li4Ti5O12 nanoparticles is proposed by using an 
off-stoichiometric precursor ratio. A Li-deficient 
off-stoichiometry leads to the coexistence of phase-
separated crystalline nanoparticles of  Li4Ti5O12 
and  TiO2 exhibiting reasonable high-rate perfor-
mances. However, after the solvothermal process, 
an extended aging of the hydrolyzed solution leads 
to the formation of a  Li4Ti5O12 nanoplate-like struc-
ture with a self-assembled disordered surface layer 
without crystalline  TiO2. The  Li4Ti5O12 nanoplates 
with the disordered surface layer deliver ultrahigh-
rate performances for both charging and discharging 
in the range of 50–300C and reversible capacities 
of 156 and 113 mAh  g−1 at these two rates, respectively. Furthermore, the electrode exhibits an ultrahigh-charging-rate capability up to 
1200C (60 mAh  g−1; discharge limited to 100C). Unlike previously reported high-rate half cells, we demonstrate a high-power Li-ion 
battery by coupling  Li4Ti5O12 with a high-rate  LiMn2O4 cathode. The full cell exhibits ultrafast charging/discharging for 140 and 12 s 
while retaining 97 and 66% of the anode theoretical capacity, respectively. Room- (25 °C), low- (− 10 °C), and high- (55 °C) temperature 
cycling data show the wide temperature operation range of the cell at a high rate of 100C.
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1 Introduction

Fast charging is one of the important aspects of modern 
energy storage devices, which can enable a smooth tran-
sition from gasoline to electric vehicles without reducing 
the safety. Owing to its high safety and zero strain property, 
lithium titanate  (Li4Ti5O12 (LTO)) has attracted significant 
interest as a negative-electrode material in lithium-ion bat-
teries and capacitors [1, 2]. However, its transport properties 
(both ionic and electronic) are inherently limited and require 
significant changes for high-rate (higher than 60C) applica-
tions [3, 4]. The primary factors limiting the high-rate capa-
bility are the (1) lithium diffusion lengths in bulk particles, 
(2) poor percolated electronic conduction pathway across 
thick electrodes, and (3) electrode/electrolyte interface lim-
iting the charge-transfer kinetics [5, 6]. To improve the rate 
capability of LTO, several strategies addressing at least one 
of the above three factors have been reported. For example, 
LTO particle size reduction to the nanoscale leads to better 
kinetics owing to the smaller diffusion lengths [6]. Feckl 
et al. [7] have reported nanoscale porous LTO thin films 
providing rate capabilities up to 800C. Nevertheless, the 
maximum electrode loading was only 0.14 mg cm−2, which 
limits their commercial application. Borghols et al. [8] have 
reported an ideal LTO particle size of approximately 30 nm 
to reversibly accommodate Li ions without considerable sur-
face reconstruction. The electrical conductivity of a slurry-
casted electrode can be improved by compositing large-
surface-area and high-aspect-ratio carbon nanostructures as 
additives [9–12]. Carbon nanotubes (CNTs) as an additive 
can improve the rate capability of the electrode compared 
to the other forms of carbon [9–12]. However, it is believed 
that the crucial factor hindering the high-rate capabilities 
of electrode materials is the charge-transfer resistance at 
the electrode/electrolyte interface [13–17]. The electrode/
electrolyte interface enabling rapid charge-transfer kinetics 
is regulated by the surface chemistry of the nanoparticles in 
the electrode. Wang et al. [14] have synthesized rutile-TiO2-
coated LTO nanosheets providing a significant improvement 
in specific capacity compared to that of the uncoated coun-
terpart. The  TiO2-coated LTO electrode reduced the charge-
transfer resistance to half of that of the uncoated sample 
while maintaining the good Li diffusion kinetics owing to 
the epitaxial growth of rutile  TiO2 along the [001] direc-
tion. Kang et al. [17] have demonstrated the potential of 

surface engineering on a cathode material by synthesizing an 
amorphous-lithium-phosphate-coated  LiFePO4, which pro-
vided an ultrahigh-rate capability (397C) with a discharge 
capacity of almost 60 mAh  g−1. The rapid ionic conduction 
through the amorphous surface has led to such high-rate per-
formances. Most of the studies on fast charge–discharge have 
demonstrated the same strategy on half-cell configurations, 
which limits the real-time applications. In this study, we use 
off-stoichiometric (Li-deficient) originators and synthesize 
surface-engineered lithium titanate by inhibiting the phase 
separation and crystallization of  TiO2. The flawless control 
of the surface chemistry of LTO enables a high-power Li-ion 
battery with charging/discharging as fast as 12 s and 66% of 
the LTO’s theoretical capacity. A high-rate operation is also 
demonstrated in a wide temperature range of − 10 to 55 °C.

2  Experimental Section

2.1  Synthesis

For the synthesis of LTO, an off-stoichiometric (Li-defi-
cient) proportion of lithium and titanium precursors was 
utilized. In a typical procedure, a molar ratio of lithium 
hydroxide to titanium iso-propoxide of 3.6:5 was used for 
the synthesis of LTO nanoparticles [18]. Initially, lithium 
hydroxide dissolved in distilled water was added to an eth-
ylene glycol solvent maintained at 100 °C and was allowed 
to stir for 15 min. A titanium precursor was then added 
dropwise and allowed to stir until the formation of a clear 
solution. Subsequently, an ammonia solution (4.2 mL) 
was added. The obtained mixture was transferred to an 
autoclave, which was then maintained at 180 °C for 36 h 
in an oven. Upon completion of the 36 h solvothermal 
process, the obtained sample was centrifuged, washed, and 
annealed at 500 °C for 6 h. After the 36 h solvothermal 
process, the whole autoclave was kept inside the oven at 
room temperature for 6 or 24 h (referred to as aging, and 
hence the resultant product is named as aged LTO). Sub-
sequently, the obtained sample was centrifuged, washed, 
and annealed at 500 °C for 6 h. The synthesis was repeated 
few times to evaluate the fabrication consistency of the 
aged LTO sample. For comparison, a sample with a ratio 
of 3.5:5 was fabricated through the aging process, denoted 
as aged LTO-3.5.
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2.2  Structural and Electrochemical Characterizations

The crystal structures and phases of the synthesized LTO-
based nanostructures were identified by using X-ray diffrac-
tion (XRD; Rigaku Ultimate IV, Japan) and Raman spectros-
copy (WITec Alpha 300R, Germany). Low-magnification 
and high-resolution imagings and selected-area electron dif-
fraction (SAED) were carried out using transmission elec-
tron microscopy (TEM; TECHNAI, FEI, The Netherlands). 
X-ray photo-electron spectroscopy (XPS; Kratos, Axis Ultra, 
UK) measurements were taken to obtain surface informa-
tion of the sample. The electrochemical performances of 
the synthesized nanostructures were evaluated by fabricating 
electrodes by slurry casting with an active material/CNT/
polyvinylidene fluoride ratio of 75:15:10 (except for the 
rate test up to 1200C carried out with a ratio of 70:20:10 in 
comparison with the literature). The electrode loading was 
maintained in the range of 1 ± 0.2 mg cm−2. The cells were 
fabricated inside an Ar-filled glove box  (O2 and  H2O main-
tained below 1.0 part per million) either as coin cells (CR 
2032) or Swagelok cells (diameter: 0.5 inch) with Li as the 

counter electrode in a half-cell assembly and electrolyte of 
1 M of  LiPF6 in ethylene carbonate/dimethyl carbonate. The 
half-cell electrochemical analysis was carried out in a volt-
age window of 0.8–3 V using an eight-channel battery cycler 
(BioLogic, USA). Li-ion battery full cells were fabricated 
by coupling the aged LTO sample with a  LiMn2O4 (LMO) 
cathode in an anode-limited assembly cycled in a potential 
window of 1.5–3 V.

3  Results and Discussion

The synthesis of the surface-engineered spinel LTO by 
the solvothermal process is illustrated in Fig. 1. Scheme 1 
describes the Li-deficient (ratio of Li/Ti of 3.6:5 against the 
nominal 4:5) process, which leads to LTO nanoparticles 
along with phase separation and crystallization of anatase 
 TiO2. The XRD data are presented in the right panel of 
Fig. 1. The relative phase (weight) fractions of the com-
ponents (LTO and  TiO2) in the sample were quantitatively 
calculated by using the XRD pattern and Klug’s equation 
(Eq. 1):
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Fig. 1  Solvothermal Schemes 1–3 with the physical and chemical characteristics of the unaged LTO, aged LTO, and aged LTO-3.5 samples and 
their XRD patterns
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where Wa is the weight fraction of component “a” (LTO) in 
the mixed sample of LTO and  TiO2, Ia and Ib are the inte-
grated intensities of the highest peaks of components “a” 
and “b,” respectively, and Kb

a
 (Eq. 2) is the ratio of the mass 

attenuation coefficients of components “b” and “a”:

The mass attenuation coefficients of LTO (Ra) and  TiO2 
(Rb) are 103.94 and 118.65 cm2/g, respectively. Ia and Ib of 
the unaged LTO sample were 444.54 and 79.96, respectively. 
The weight fraction of component “b” (Wb, Eq. 3) is

Using these equations, the weight proportion of LTO/TiO2 
in the unaged LTO sample was calculated to be 84:16.

Scheme 2 describes the aging at the end of the 36 h solvo-
thermal process, which inhibited the  TiO2 phase separation 
and crystallization, as confirmed by the XRD pattern, show-
ing the absence of  TiO2. Scheme 3 illustrates the synthesis 
with a decreased Li concentration (or increased Li defi-
ciency) and aging leading to a phase-separated and crystal-
ized  TiO2 along with LTO. The XRD analysis confirmed that 
the  TiO2 weight fraction was approximately 7 wt% (against 
the expected 20 wt%) [18]. This could be attributed to the 
aging enabling a certain weight fraction of  TiO2 to self-
assemble on the surface of LTO, while the remaining frac-
tion was phase-separated and crystalized, which indicates 
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that the surface layer thickness was possibly self-limited. 
The anatase  TiO2 (101) peak at 24° was observed in the 
XRD pattern (not observed for Scheme 2).

A Raman analysis was carried out to investigate the 
phases in the samples. Figure S1a shows the Raman spec-
tra of the aged and unaged LTO samples. The unaged LTO 
sample exhibited peaks matching with both LTO and  TiO2. 
However, the Eg peak was shifted to a larger wave number, 
which can be associated with two factors, (1) phonon con-
finement and (2) surface strain induced by the oxygen defi-
ciency in the lattice [19, 20]. The  TiO2 signature was absent 
in the aged LTO, which confirms the absence of crystalline 
 TiO2 particles in the sample. The 144 cm−1 (Eg) vibration 
mode of  TiO2 is very sensitive and is typically observed even 
for a small quantity of  TiO2. The Raman analysis is consist-
ent with the above XRD results, which confirms the pres-
ence and absence of  TiO2 in the unaged and aged LTO sam-
ples, respectively. High-resolution Ti 2p XP spectra of both 
samples are presented in Fig. S1c. Both samples exhibited 
similar profiles with a binding energy of 458.4 eV, which 
suggests the presence of octahedrally coordinated Ti species. 
The spin–orbit coupling of 5.7 eV confirms the existence of 
Ti in the 4+ oxidation state. As both LTO and  TiO2 have Ti 
in the 4+ oxidation state, it is challenging to independently 
identify their presence (as the XPS peaks overlay at the same 
binding energies). However, a small increase in peak width 
(~ 0.2 eV) was observed for the aged LTO sample, which 
could be originated from the formation of a disordered sur-
face layer. Figure S1c shows a survey XP spectrum of the 
aged LTO sample, which confirms the absence of other sur-
face impurities in the sample.

Fig. 2  High-resolution TEM analysis of the fabricated materials. a Unaged LTO with both LTO and  TiO2 phases, b aged LTO with a disordered 
surface layer (indicated by arrows), and c aged LTO-3.5 with both disordered surface layer (indicated by arrows) and  TiO2 phase
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The TEM results confirm the crystalline structures of all 
three samples, with average particle sizes of approximately 
20 nm (Fig. 2a–c). This confirms that the aging did not lead 
to Ostwald ripening, but the particle size was preserved 
even after the aging. In addition, three striking features were 
observed in the TEM images. (1) The unaged sample con-
tained both LTO and  TiO2, (2) the aged LTO sample exhib-
ited only an LTO plate-like morphology with a disordered 
surface layer, and (3) the aged LTO-3.5 contained a plate-
like LTO with a disordered surface layer as well as  TiO2. 
These observations are consistent with the XRD results 
in Fig. 1. Notably, the unaged and aged samples exhibited 
similar morphologies before the annealing (Fig. S2a, b). 
However, after the annealing, the unaged sample exhibited 
a particle-like morphology, while the aged sample retained 
the plate-like morphology, as shown in the TEM images 
(Fig. 2a, b). Additional TEM images showing the surface 
disordered layer and plate-like morphology of the aged LTO 
sample are presented in Fig. S2c, d for reference. Figure 
S3 shows SAED patterns, which confirms the coexistence 
of crystalline LTO–TiO2 phases in the unaged sample and 

only spinel LTO phase in the aged LTO sample, consistent 
with the XRD results. To correlate the morphology changes 
of the unaged and aged samples with the phase changes, 
XRD patterns were recorded before the annealing in com-
parison with those after the annealing. Before the annealing, 
all samples exhibited identical patterns (Fig. S4) with broad 
peaks, which could be indexed to the orthorhombic lithium 
titanate hydrate phase (JCPDS No. 00-047-0123). Upon the 
annealing, the unaged sample crystallized to LTO–TiO2 
(dual phase), while the aged sample crystallized to LTO 
(single phase). The formation of such a disordered surface 
layer could be explained as follows. Upon the completion of 
the solvothermal reaction, the lithium titanate hydrate phase 
formed in the Li-deficient precursor ratio. Annealing the 
solveothermal product immediately led to phase-separated 
crystalline  TiO2 particles (dual phase) in the unaged LTO 
sample. However, before annealing, if these nanostructures 
are allowed to age, self-assembling could occur on the sur-
face of LTO, which forms a disordered thin layer without 
crystallization of  TiO2. For the aged LTO sample, this is 
confirmed by the absence of crystalline  TiO2 according to 
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both XRD and TEM analyses. The aging requires approx-
imately 24 h. In this regard, another sample subjected to 
6 h of aging was analyzed. It still exhibited the LTO–TiO2 
dual phase (weight proportion of LTO/TiO2 = 88/12) with a 
very small decrease in  TiO2 fraction compared to that of the 
unaged sample (Fig. S5). This indicates that a larger aging 
time is required to inhibit the  TiO2 phase separation and 
crystallization from the hydrated phase.

To evaluate the electrochemical performances of the 
surface-engineered nanostructures, we carried out a rate 
test (Fig. 3a) in the range of 50C to 300C (charge and 
discharge for five cycles at each rate). The aged LTO sam-
ple exhibited an exceptionally high performance with a 
value of 155.9 mAh  g−1 at 50C and retained 72% of the 
initial capacity even at 300C with a Coulombic efficiency 
of almost 100%. According to the charge–discharge pro-
files in Fig. S6, the voltage plateau even at such ultrahigh 
rates indicates that the material underwent bulk lithiation/
delithiation rather than mere surface/interface storage. 
The charge–discharge voltage polarization of the aged 
LTO sample was smaller than that of the unaged LTO. 
The lower polarization indicates that the CNT additive 
formed a percolated conductive pathway with the small-
est resistance for the electron transport across the thick-
ness of the electrode. Even upon reversion from 300C to 
50C, the aged LTO electrode retained 100% of the value 
at the initial 50C cycles, which demonstrates the excellent 
reversibility and stability of the sample. The aged LTO-3.5 
sample exhibited an inferior performance, though at 50C 
the performance was similar to that of the aged LTO; at 
300C, the specific capacity was 156 mAh  g−1. On the other 
hand, the unaged LTO sample exhibited a considerably 
lower performance, only 136 mAh  g−1 at 50C and only 49 
mAh  g−1 at 300C. The specific capacity of the aged LTO at 
300C was 134% higher than that of the unaged LTO sam-
ple. This difference is also reflected in the electrochemical 
impedance spectra (EIS) of cycled cells consisting of both 
samples, presented in Fig. S7. The lower charge-transfer 
resistance of the aged LTO can be related to the better 
transport of ions across the surface disordered layer. The 
diffusion coefficient of the aged LTO, calculated by using 
the EIS, was 0.75 × 10−9  cm2  s−1, comparable or higher 
than those in the literature, mostly in the range of  10−9 
to  10−13  cm2  s−1 [1, 14]. However, diffusion coefficients 
higher than those in this study have been reported [6]. 
The better diffusion coefficient could be attributed to the 

plate-like morphology promoting a better diffusion of Li 
ions. The electrochemical results demonstrate that ultra-
high-rate (300C) capabilities (both charge and discharge 
within 12 s) can be achieved for a lithium-ion battery elec-
trode while maintaining the high specific capacity.

Figure 3b shows the long-cycling performances of the 
aged LTO samples cycled at a charge/discharge rate of 50C. 
The electrode delivered a first-cycle specific capacity of 156 
mAh  g−1 and retained 82.6% of the initial capacity at the 
2000th cycle. In addition, the electrode provided a charge 
capacity of 156 mAh  g−1 and retention of approximately 
70% at 100C (discharge limited to 50C) for 2000 cycles (Fig. 
S8). Further, we investigated the ultrahigh-rate capability 
of the aged LTO through a rate test beyond 300C. Figure 3c 
shows the rate performance of the aged LTO electrode (10
0C–200C–400C–600C–900C–1200C; all discharge rates 
were limited to 100C). The charge–discharge profiles are 
presented in Fig. S9. The electrode delivered specific capaci-
ties of 149 mAh  g−1 at 100C and 129 mAh  g−1 at 600C. 
The obtained results are compared to ultrahigh-rate (100C or 
above) data reported in the literature in Fig. 3c [10, 21–29]. 
At the maximum charge rate of 1200C (theoretically, equiv-
alent to 100% delithiation in 3 s), the electrode delivered 
almost 60 mAh  g−1. The ultrahigh-rate supercapacitor-like 
battery performance of the aged LTO electrode confirms the 
potential of the surface engineering strategy for the fabrica-
tion of lithium-ion battery electrodes for high-power battery 
applications. We also compared the electrochemical perfor-
mances of the aged LTO to those of other high-rate lithium-
ion battery electrode materials (Table S1) [17, 30–38].

The formation of the defective surface layer in the aged 
LTO enabled a faster charge transfer than those of the unaged 
LTO and even aged LTO 3.5. Moreover, in combination 
with the surface layer enabling the better charge transfer, 
the smaller particle size and nanoplate morphology led to 
a high diffusion coefficient. Additionally, the blending with 
the CNT additive provided a better electrode conductivity. 
Thus, by combining the principles of nanoengineering (syn-
thesis of LTO nanoplates), surface engineering (formation of 
a defective surface layer), and electrode engineering (aged 
LTO composited with the high-aspect-ratio CNT additive), 
a battery with an ultrahigh-rate capacity, high cycling stabil-
ity, and wide temperature range of operation was fabricated. 
In other words, the aged LTO sample addresses the above 
three aspects, which limit the rate performance of LTO, 
owing to the (1) synthesis of the nanoplate-like structure 
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and improved diffusion kinetics, (2) electrode engineer-
ing by compositing with the CNT additive, and (3) surface 
engineering by creating a disordered surface layer, which 
facilitated the charge transfer at the electrode–electrolyte 
interface.

Considering the superior performance of the electrode, we 
also investigated its practical use by evaluating the effect of 
the active material loading through the delivered areal capac-
ity. Figure S10 shows a high areal capacity of 0.6 mAh  cm−2 
at 10C (loading: 3.56 mg cm−2) for 100 cycles. A detailed 
analysis is presented in Supplementary Material. Moreover, 
we investigated the structural stability of the aged LTO sam-
ple by ex situ TEM imaging on an electrode cycled at a rate 
of 10C for 250 cycles. As shown in Fig. S11, the particles 
retained the surface-coated plate-like structure even after the 
long cycling, which demonstrates the structural stability.

To demonstrate the potential of the aged LTO for use in 
an ultrafast-charging battery, a full cell was fabricated by 
coupling the aged LTO with a spinel LMO cathode [39]. 
An anode-limited full cell was fabricated, and the cycling 

rates, specific capacity, and energy/power densities were 
calculated with respect to the active weight of the aged 
LTO [40]. Figure 4a shows the rate performance of the full 
cell in the voltage window of 1.5 to 3.0 V. The full cell 
exhibited discharge capacities of 170, 157, 140, 127, and 
115 mAh  g−1 at ultrahigh rates of 25C, 50C, 100C, 150C, 
and 200C, respectively, with respect to the LTO electrode. 
The ultrahigh-rate lithium-ion battery is beneficial for prac-
tical applications such as electric vehicles for fast charging 
and even for on-route charging. The first-cycle charge–dis-
charge profiles of the full cell at different rates are shown 
in Fig. 4b. At 200C, the power and energy densities of the 
full cell were 76 kW kg−1 and 249 Wh  kg−1, respectively 
(Table S2), which demonstrates the potential of the aged 
LTO-based full cell for high-power applications. Consider-
ing the theoretical specific capacity of the aged LTO, 65% 
of the theoretical capacity was delivered in 12 s (at the rate 
of 200C). Figure 4c shows dQ dV−1 of the full cell at dif-
ferent rates, as indicated in the legend. Sharp peaks of the 
full cell were observed even at rates as high as 200C. The 
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inset shows the voltage polarization as a function of the 
C-rate, which shows a linear increase indicating a good rate 
capability. The voltage polarization was symmetric (at all 
rates) in the lithiation/delithiation, which indicates a fast 
intercalation/deintercalation of lithium. Figure 4d shows the 
measured discharge voltages at different states of discharge 
corresponding to specific capacities of 25, 50, 75, and 100 
mAh  g−1. The smooth and linear voltage drop of the full cell 
confirms that the overvoltage was smaller than 0.5 V for the 
increase in C-rate from 25C up to 200C. This was achieved 
by both electrode engineering at large scales and surface 
engineering at the nanoscale. These results show the excel-
lent performances of the full cell at high charge–discharge 
rates reported in the literature so far.

In addition to the ultrahigh-rate capability, the full cell 
also exhibited a high cycling stability for 1000 cycles with a 
retention of approximately 82% at 50C (after the rate test), as 
presented in Fig. 5a. As shown in the inset, four high-power 
light-emitting diodes could be lit with a single coin cell, 
which shows its power-delivering capability. Figure S12 pre-
sents results for the full cell consisting of the aged LTO-3.5 
and LMO cathode, which exhibited a reasonably high-rate 
performance, though inferior to that of the aged LTO full 
cell. To evaluate the full-cell high-rate performances in a 
wide temperature range, the full cell (aged LTO and LMO) 
was tested at room temperature (25 °C), high temperature 

(55 °C), and low temperature (− 10 °C). Figure 5b shows 
the specific capacity as a function of the cycle number for 
the full cell operated at various temperatures for 50 cycles 
(at each temperature, as indicated in the legend) at 100C. 
The data show that the full cell retained almost 150 mAh 
 g−1 at the high temperature and above 75 mAh  g−1 at the 
low temperature. After the thermal cycles and reversal to 
room temperature, the full cell was stable over 500 cycles 
and retained a capacity of 116 mAh  g−1. Although LTO/
LMO full cells have been investigated by different groups, 
we report improved results in terms of rate capability and 
corresponding specific capacities [41–44]. The proposed 
structure is one of the safest electrode combinations with 
potentials for use in high-end electric vehicle applications 
[45, 46].

4  Conclusions

Surface-engineered LTO nanostructures fabricated through 
the off-stoichiometric (Li-deficient) solvothermal process 
and following aging exhibited an ultrahigh-rate capability. 
The aging had significant effects; it not only inhibited the 
 TiO2 phase separation and crystallization, but also provided 
a self-assembled disordered surface layer on LTO. The fur-
ther increase in Li deficiency led to the phase separation 
of  TiO2 apart from the formation of the surface disordered 
layer, which indicates that its thickness was self-limited. The 
aged LTO plates as an anode for the Li-ion battery provided 
excellent electrochemical performances in terms of specific 
capacity, cycling life, and ultrahigh-rate capability. The elec-
trode exhibited high specific capacities of 129 mAh  g−1 at 
the high rate of 600C and 60 mAh  g−1 at 1200C. Further, the 
aged LTO/LMO full cell exhibited a fast charging–discharg-
ing (up to 200C with a time equivalent of 12 s) and long-
cycling capability without affected capacity and nominal 
voltage. The high diffusion coefficient enabled the improved 
kinetics, the CNTs enabled the good electrode conductiv-
ity, and the surface disorder layer enabled the better charge 
transfer, which led to the ultrahigh-rate performance and 
cycling stability in the wide temperature range. This dem-
onstrates that the control of the surfaces of the nanoma-
terials could enable high-power Li-ion batteries. This is a 
commercially viable strategy and can even be extended to 
other electrode materials to materialize the ultrahigh-power 
lithium-ion battery chemistries.
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