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Table. S1 Performance comparison of the nickel phosphide-based electrode materials in three-

electrode configuration with previously published results. 

S. 

No. 

Electrode 

material 

Electrolyte Current 

density 

( Ag-1) 

Specific 

capacitance  

(Fg−1)                             

Retention

 % 

No of 

cycles 

Ref. 

1 Ni2P 2.0M LiOH 1  418    1 

2 Ni-coated Ni2P 2.0M LiOH 1                             581  92.3 3,000 1 

3 Ni2P nano belt 0.5M H2SO4 0.625  1074  86.7 3000 2 

4 Ni2P/Ni12P5 2M KOH 1  1325.7  81 20,000 3 

5 Ni-P 2.0 M KOH 1  1338.7  71.4 1,000 4 

6 Ni2P 2.0 M KOH 1  843.3  100 1000 5 

7 Au/Ni12P5 2.0 M KOH 0.2  806.1   91.0  1,000 6 

8 Ni2P/rGO 2.0 M KOH 1  2354  100  2,500 7 

9 Ni2P NS/NF 6.0 M KOH 2.5 3496  61.0  5,000 8 

10 Ni2P 2.0 M KOH 1  600  82.5  1,000     9 

11 Ni2P@5%GR 3 M KOH 1  672.4  30 2000 10 

12 Ni2P nano particle 3M KOH 1  668.7  -- -- 11 

13 Ni2P 2M KOH 1  1526.6 88 2,500 Present 

work 

14 Ni2p 2M KOH 1  980 -- -- Present 

work 



 

Picture of the rP@rGO foam 

 

 

 

 

Figure. S1 Picture of red phosphorus@graphene foam. 

 

 

Assembled asymmetric supercapacitive device  

 

 

 

Figure. S2  Picture of assembled asymmetric supercapacitive device. 
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SEM, TEM, and HRTEM images of the B-rGO 

 

 

Figure. S3 (a-b) SEM images (c-d) TEM image and (e) HRTEM images of the B-rGO. 

 

Survey spectra of the rP@rGO 

 

 

 

 

 

 

 

 

 

 

Figure. S4 XPS surway spectra of the rP@rGO. 
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O 1s spectra of the rP@rGO 

 

 

Figure. S5 O 1s spectra of the rP@rGO. 

 

 

SEM and mapping images of the Ni2P-1 

 

 

Figure S6. (a and b) SEM images, and (c-f) corresponding elemental mapping of the Ni2P-1. 
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XPS spectra of Ni2P-2 

 

Figure S7. High magnification XPS spectra of Ni2P (a) Ni and (b) P. 

 

 

To estimate the specific capacitance of the as prepared positive and negative electrode inside the 

half-cell assembly the following equation were used.3,5 

                         𝐶 =
𝐼𝑑𝑡

𝑚𝑑𝑉
                       (S1) 

Where C is the specific capacitance (F/g), I is the applied current, t is the discharge time, m 

represent the mass of the active materials over the surface of the current collector, and dV is the 

applied potential window. 

To estimate the specific capacitance of the assembled asymmetric supercapacitor gadget the 

following equation are used.3,5  

                          𝐶 =
𝐼𝑑𝑡

𝑚𝑑𝑉
                      (S2) 

Where C is the specific capacitance (F/g), I is the applied current, t is the discharging time, m is 

active mass loading over the surface of the current collector, and dV is the applied potential 
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window. 

Whereas the power density and energy density were estimated from the following equation:5 

   𝐸 =
1

2
𝐶𝑉2               (S3) 

                                                            𝑃 =
𝐸

𝑡
                        (S4) 

Where C is the specific capacitance, V is the applied potential window and t is the discharging 

time of the device.  

 

The CV profile of all the Ni2P electrodes 

 

 

 

 

 

 

 

 

 

Figure S8. The CV (a) and CD (b) profile of Ni2P-1electrode. 
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Picture of the assembled device illumination of the LED light  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. (a-d) Picture of the assembled device illumination of the LED light. 

 

Picture of the assembled device and fan powered by the assembled device 

 

Figure S10. Picture of the assembled device and fan powered by the assembled device. 
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