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HIGHLIGHTS

• Multifunctional  TiO2 nanostructures hold promise for advancing a wide range of biomedical applications due to a feasible integration 
of distinct theranostic features.

• Fabrication and post‑fabrication strategies implemented to generate multifunctional  TiO2 nanostructures for a broad range of bio‑
medical applications are briefly outlined. The opportunities and challenges of  TiO2 nanomaterials are highlighted in order to open the 
possibility of clinical translation.

ABSTRACT  Titanium dioxide 
 (TiO2) nanostructures exhibit a broad 
range of theranostic properties that 
make them attractive for biomedi‑
cal applications.  TiO2 nanostruc‑
tures promise to improve current 
theranostic strategies by leveraging 
the enhanced quantum confinement, 
thermal conversion, specific surface 
area, and surface activity. This review 
highlights certain important aspects 
of fabrication strategies, which are 
employed to generate multifunctional 
 TiO2 nanostructures, while outlining 
post‑fabrication techniques with an 
emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these 
nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The 
final section focuses on recent biomedical applications of  TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic 
and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
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1 Introduction

Titanium dioxide  (TiO2) bulk materials are often employed 
in medical applications and devices, including implants, 
facial cosmetic surgeries, cardiovascular devices, external 
prostheses, as well as surgical instruments. When approach‑
ing nanoscale dimensions of bulk  TiO2, quantum confine‑
ment occurs over superfine pieces and introduces new 
physical, mechanical, optical, and electronic properties [1, 
2]. Compared to conventional bulk materials,  TiO2 nano‑
structures (NSs), developed in different morphologies (i.e., 
sphere, tube, cylinder, fiber, sheet, whisker, wire, and rod) 
through feasible and reproducible fabrication strategies, have 
been employed in a wide range of leading‑edge biomedical 
applications [2–6]. These efforts, for example, have resulted 
in enhancing drug delivery systems through the fabrication 
of porous  TiO2 nanocarriers due to a huge surface‑to‑volume 
ratio, which can enlarge the therapeutic loading capacity 
[7–9]. The performance of  TiO2 nanomaterials in biomedi‑
cal applications can also depend on nanoscale morpholo‑
gies and their specific properties. Besides their improved 
surface area, one‑dimensional  TiO2 nanocarriers designed 
to adhere more on the vascular endothelium compared to 
spherical nanoparticles at the tumor microenvironment, have 
ameliorated the cellular uptake and intracellular therapeutic 
delivery [10, 11]. To achieve the best performance, the fab‑
rication of  TiO2 nanomaterials with a well‑designed com‑
position, morphology, crystalline structure, and integration 
is an advantage.

Besides their intrinsic properties, an elaborated surface 
modification, such as a harmless doping, deposition, and 
biomolecule conjugation, can completely generate unique 
 TiO2 nanomaterials with a specific biomedical application‑
oriented feature. The possibility of a thermal hydrogenation 
generating black  TiO2 nanomaterials, a thermal oxidization 
altering crystalline structure or even a solvothermal method 
fabricating mesoporous  TiO2 popcorn particles, can boost 
the photocatalyst activity compared to other nanomaterials 
(i.e., based on carbon or silicon) for photodynamic therapy 
[12–16]. Compared to other nanomaterials,  TiO2 NSs can 
also be easily modified to become thermo‑, pH‑, X‑ray‑, and 
ultraviolet (UV)‑responsive nanocarriers to advance drug 
delivery systems and eliminate such side effects of conven‑
tional chemotherapy [8, 10, 17–20]. In addition, accumula‑
tion of  TiO2 nanomaterials at target tissues in the body can 

be become improved through a conjugation of biomolecules 
(i.e., folic acid and antibody) and deposition of iron oxide 
nanomaterials (i.e., magnetically guided therapeutic deliv‑
ery) [8, 12, 21]. Biodistribution and accumulation of bare 
and surface‑modified  TiO2 nanomaterials in the body can 
also be visualized and verified using a magnetic resonance 
imaging (MRI) and fluorescence‑based microscopy to accu‑
rately detect the target tissue prior to therapy in order to 
minimize side effects [22–25].

The detection (e.g., of circulating cancer cells and patho‑
gens), as well as small biomolecules in clinical blood sam‑
ples, has been advanced through the use of  TiO2 platforms 
(i.e., label‑free microfluidic immunosensors, photoelectro‑
chemical biosensors, field‑effect transistors, and amperomet‑
rics) [26–30]. To improve the detection performance, the 
band gap engineering of  TiO2 NSs using a simple doping 
or deposition process is highly feasible and efficient com‑
pared to other nanoplatforms [31, 32]. Therefore, reusable 
and high‑precision biosensors are highly likely to enter the 
market with the aid of enhanced cost‑effective  TiO2 nano‑
materials, which possess a wide band gap and high surface 
activity [2, 29].

TiO2 nanomaterials are biocompatible and less toxic 
than other nanomaterials (i.e., copper oxide, zinc oxide, 
and manganese oxide) [33, 34]. The long‑term stability 
of  TiO2 nanomaterials in biological conditions is another 
advantage that can protect the loaded biomolecules from 
denaturation in comparison to other unstable (degradable) 
nanomaterials in an aqueous solution (i.e., a fast dissolution 
of silicon‑based nanomaterials can quickly disassociate and 
release the loaded therapeutics) [19]. Besides their biocom‑
patibility and stability,  TiO2 NSs are also well known for 
tissue regeneration owing to high tensile strength, flexibil‑
ity, corrosion resistance, as well as cellular adherence and 
proliferation [35–38]. Moreover, the photocatalytic activity 
of  TiO2 nanomaterials is another advantage used to fight 
against antibiotic resistant bacteria in order to accelerate 
chronic wound healing by enhancing cellular adhesion and 
proliferation [39, 40].

In this review, we re‑examine advanced strategies for the 
formation of  TiO2 nanomaterials and present a summary 
of post‑fabrication and surface chemistry approaches devel‑
oped to generate elaborated  TiO2 nanoplatforms for a broad 
range of biomedical applications. We briefly discuss bio‑
logical responses following the administration of bare and 
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surface‑modified  TiO2 nanomaterials in vitro and in vivo 
to highlight possible induced cytotoxicities and inflamma‑
tions. We further delineate recent research achievements 
in therapy, diagnostic biosensing, tissue regeneration, and 
wound healing in vitro and in vivo, and pay attention to the 
developed  TiO2 nanoplatforms for biomedical applications 
and address opportunities to initiate next‑generation tech‑
nologies and cutting‑edge nanoscale devices.

2  Fabrication of  TiO2 NSs

The fabrication of  TiO2 NSs can be broadly classified as 
bottom‑up (an individual element progresses through homo‑
geneous nucleation and growth) and top‑down processes (the 
successive fragmentation of a bulk material into a series 
of nanoscale structures) [1–3]. The most common  TiO2NSs 
(listed below) can be fabricated by both bottom‑up and top‑
down strategies to introduce a specific theranostic feature 
for biomedical applications. Strategies are summarized in 
this section that overviews the development of mono‑ and 
multifunctional  TiO2 NSs for nanomedicine.

2.1  Nanoparticles

TiO2 nanoparticles are the most common NSs widely 
employed for nanomedicine. An inexpensive mass produc‑
tion of pharmaceutical  TiO2 nanoparticles with a narrow size 
distribution, adjustable polymorphism, and surface property 
can feasibly accelerate their use for biomedical applications 
such as therapeutic delivery and diagnosis [41]. Bottom‑up 
techniques, including sono‑chemical strategies, hydrother‑
mal approaches, microwave processes, chemical/physical 
vapor deposition, microemulsion, and sol–gel techniques, 
have been mostly applied to generate narrow‑sized  TiO2 
nanoparticles with a flexible surface chemistry in compari‑
son to the top‑down processes [1, 41, 42].

For therapeutic delivery, the formation of nanoscale  TiO2 
with a high surface area (i.e., 587.7 m2  g−1 for particles 9 nm 
in diameter [43]) and porous structure are the compulsory 
properties [44]. Inducing porosity within the structure of 
 TiO2 nanoparticles can increase the specific surface area. 
An adjustable pore size from a couple of nanometers to a 
few nanometers is beneficial for packing a wide range of 
therapeutic agents [45]. For example, mesoporous  TiO2 

nanoparticles were prepared through a surfactant‑assisted 
hydrometallurgical procedure of ilmenite concentrate, and 
the pore size of the porous particles (around 30–60 nm in 
diameter) could be varied from 2 to 12 nm [46].

Multifunctional nanoparticles, which are employed in 
targeted drug delivery systems and photodynamic therapy, 
are the most common structure developed in this category. 
Multifunctional  TiO2 nanoparticles with a magnetic core 
are a favorite nanohybrid for implanting a wide range of 
theranostic features, which include magnetic‑guided and 
triggered therapeutic delivery systems [47, 48]. For exam‑
ple, mesoporous  TiO2‑coated  Fe3O4 nanoparticles have 
recently been developed through a combined fabrication 
strategy, i.e., the solvent thermal method to generate an 
amino‑functional magnetic core and homogeneous precipi‑
tation of  TiOSO4 to form a porous shell [48]. To generate 
hollow  TiO2 nanoparticles, fabrication of iron oxide  TiO2 
core–shell nanocomposites is an advantage due to the easy 
removal of the magnetic core within the process. As shown 
in Fig. 1a, a homogeneous deposition of anatase  TiO2 onto 
α‑Fe2O3 nanotemplates forms core–shell nanoparticles, and 
a subsequent etching procedure (HCl 0.2 M at 100 °C for 
6–24 h) removes the core template, resulting in a hollow 
structure [49]. A wide range of multifunctional nanoparticles 
can also be produced through the combination of a couple 
of approaches, including the template‑assisted technique and 
hydrothermal strategy for providing an individual crystalline 
phase, polymorphism, size distribution, and porosity in situ 
[50, 51]. Multifunctional polypyrrole‑coated mesoporous 
 TiO2 nanocomposites, for example, can be fabricated 
through pre‑hydrolysis of titanium precursors combined 
with the solvothermal treatment strategy for photothermal, 
sonodynamic, and chemotherapeutic treatments and dual‑
modal ultrasound/photoacoustic imaging of tumors [7, 52].

2.2  Nanowires and Nanorods

One‑dimensional (1D)  TiO2 nanowires and nanorods are 
one of the powerful platforms that play a critical role 
in capturing and transmitting the biological responses at 
the interface required for the development (e.g., of ultra‑
sensitive detection devices) [53, 54]. 1D  TiO2 nanowires 
and nanorods have been synthesized by means of template‑
assisted methods and solution‑ or vapor‑based approaches. 
Among these approaches, solution‑based fabrication of 
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 TiO2 nanowires and nanorods is well known due to an 
easy mass production and desirable growth length and 
properties. Generation of a supercritical fluid at a spe‑
cific temperature and pressure dissolves almost all solid 
 TiO2 precursors, followed by a precipitation process to 
form nanowires or nanorods [2].  TiO2 nanowire arrays 
can be generated using a substrate precoated with  TiO2 
nanoparticles via the hydrothermal method [55]. To grow 
long  TiO2 nanowire trunks with numerous short nanorod 
branches by a surfactant‑free procedure, a mixed homo‑
geneous solution  (K2TiO(C2O4)2, diethylene glycol and 
water) can be initially poured into a Teflon‑lined stain‑
less steel autoclave with FTO glass and then heated up to 
180 °C using a hydrothermal method for 1–12 h (Fig. 1b). 

The fabrication of branch‑type  TiO2 nanowires, whether 
anatase or rutile, can also be created by hydrothermal pro‑
cesses [2]. The mechanisms involved in the fast growth 
of one‑dimensional  TiO2NSs through the self‑assembly, 
require the crystal structure with superior anisotropic 
properties [56]. In the case of poor anisotropic  TiO2, the 
self‑assembly rate should be accelerated by introducing a 
precipitation interface, dislocation propagation direction, 
and higher constructive block concentrations [2]. The 
strategies and mechanisms involved in the fabrication of 
nanorods are largely similar to that of nanowires; how‑
ever, nanorods are shorter while reflecting a smaller aspect 
ratio and rigid structure [56, 57]. Rutile  TiO2 nanorods can 
also be precisely fabricated by a hydrothermal method (at 
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Fig. 1  Simplified schematic representation of fabrication techniques for  TiO2 nanomaterials. a Non‑spherical, hollow, and magnetically loaded 
particles fabricated through a template‑assisted, bottom‑up strategy. Adapted from Ref. [49] with permission from the John Wiley & Sons. b The 
hydrothermal approach is one of the bottom‑up strategies for the fabrication of a wide range of one‑dimensional  TiO2 NSs. The  TiO2 precursor, 
temperature, and incubation time determine the final nanostructure. Adapted from Ref. [55] with permission from the Springer Nature. c Well‑
aligned and ordered  TiO2 nanotubes can be fabricated through a top‑down strategy based on electrochemical anodization. Adapted from Ref. 
[74] with permission from the American Chemical Society
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180 °C) and controlled by adjusting the amount of HCl and 
ethanol during the reaction [2, 58].

2.3  Nanofibers

To fabricate ultrasensitive diagnostic devices (i.e., capturing 
cancer cells) or tissue regenerations,  TiO2 nanofibers are 
one of the best candidates due to an improved local topo‑
graphic interaction between the deposited nanofibers and 
extracellular matrix [59]. To produce long, fibrous nanoma‑
terials, the electrospinning technique has been developed 
using a precursor, binder, and stabilizer [59]. Compared 
to the electrospinning strategy, other strategies, including 
self‑assembly and template‑assisted approaches, have proven 
unwieldy for the generation of  TiO2 nanofibers [2]. Their 
diameter can mainly be altered by adjusting the diameter 
of the spin orifice, the conductivity, and the viscosity of the 
binding polymers as well as solvents [60, 61]. Employing a 
volatile solvent and less of the binder can further facilitate 
the removal of any residual organic substances from the final 
nanofiber structures [60]. Fabrication of porous and hollow 
 TiO2 nanofibers is also important for different biomedical 
applications such as bone regeneration. In this case, a poly‑
meric sol–gel solution composed of  CaCO3 and  TiO2 pre‑
cursor that flows through a coaxial nozzle electrospinning 
into a cross‑linker solution, produces  CaCO3/TiO2 nanofiber, 
and the subsequent etching of  CaCO3 on the calcined  TiO2 
fibers using dilute HCl fabricates porous and hollow  TiO2 
nanofibers [9]. Moreover, highly porous  TiO2 nanofibers 
with a surface area of about 128 m2  g−1 can be generated 
using an electrospinning under high humid environment 
without applying a secondary chemical process or removal 
of the glycerin component [62].

2.4  Nanowhiskers

Whiskers are one of crystalline materials with a distinct 
crystal anisotropy and possess high strength and fracture 
resistance close to the theoretical ultimate strength of a given 
material, whereas their size and length are smaller than short 
fibers. One‑dimensional  TiO2 nanowhiskers exhibit the high‑
est photocatalytic efficiency due to a unique morphology 
and monocrystalline defect‑free lattice structure in compari‑
son to nanoparticles [5]. To produce  TiO2 nanowhiskers, a 

reactant containing  TiO2/K2O needs to be sintered at 810 °C, 
and then, the interim product should undergo a wet ground‑
ing. The potassium‑rich nanophase gradually forms during 
a long incubation of the interim product in water (~ 7 days), 
and further HCl treatment and calcination generate a tetrago‑
nal crystal structure (anatase) [4, 5]. Rutile  TiO2 nanow‑
hiskers with diameters of ~ 10–50 nm and lengths of several 
micrometers can also be synthesized by annealing a precur‑
sor powder, in which NaCl and Ti(OH)4 particles (through 
an adjusted molar ratio) are homogeneously mixed [63].

2.5  Nanotubes

One‑dimensional  TiO2NSs offer specific properties, 
including quantum confinement effects, electron tunneling, 
as well as a high surface area, draw exclusive attention 
to biomedical applications (i.e., drug delivery systems and 
biosensors) [64]. A vast number of strategies, including 
electrochemical anodization and hydrothermal, sol–gel, 
and electrospinning methods, have been exploited to fab‑
ricate  TiO2 nanotubes.

While the fabrication of  TiO2 nanotubes through bot‑
tom‑up processes may be complex, variable, and low‑
yield, a cylindrical structure accompanied by a pure 
crystalline phase can be achieved [65, 66]. The self‑organ‑
ization of nanotubes through an alkaline treatment of  TiO2 
or titanium alkoxide powder can generate an anisotropic 
and open‑end structure [67, 68]. Conversely, the mecha‑
nism involved in the hydrothermal method initially forms 
nanosheets, and a subsequent neutralization step triggers a 
rolling procedure to generate  TiO2 nanotubes. The hydro‑
thermal method is cost‑effective due to the unprocessed 
metallic titanium source; however, the high concentration 
of the alkaline solution can often lead to excessive interca‑
lation, thus assembling disordered nanotubes [67].

To fabricate uniform and ordered  TiO2 nanotubes, tem‑
plate‑assisted methods as an interesting alternative can 
be employed by depositing titanium oxide components 
on the outer or inner wall of nanoporous templates; the 
former is called a positive template, and the latter a nega‑
tive template [69]. In both cases, a uniform, cylindrical 
structure made of either soft or hard anisotropic templates, 
including anodic aluminum oxide membranes (consisting 
of an array of monodisperse pores), multi‑walled carbon 
nanotubes, soft polymeric templates and well‑ordered zinc 
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oxide nanorod arrays, can be employed to fabricate well‑
ordered  TiO2 nanotubes [69–71]. The outer diameter and 
length of templates primarily determine the inner diameter 
and length of the final tubular structures, which can be 
open‑ or closed‑ended [64]. Mesoporous  TiO2 nanotubes 
can also be fabricated using a template‑assisted method 
mediated with a sol–gel, followed by the calcination and 
template removal procedures [2, 45]. Although the magni‑
tude of the specific surface area generally depends on the 
tubes’ length and diameter, features offered by mesoporous 
 TiO2 nanotubes can be adjusted to the requirements of 
the specific biomedical application [45, 64]. Although 
template‑assisted strategies certainly offer a wide variety 
of tubular structures and properties, their intractability 
restricts fine‑tuning the final diameter, length, and order 
of  TiO2 nanotubes.

To achieve well‑ordered and well‑aligned  TiO2 nanotubes 
with a high aspect ratio, the electrochemical anodization of 
titanium foils in the presence of fluoride‑rich electrolytes 

has proven practical [72, 73]. As depicted in Fig. 1c, elec‑
trochemical anodization offers systematic control over the 
morphology of  TiO2 nanotubes by adjusting certain param‑
eters, including viscosity, pH, fluoride concentration, stir‑
ring effect, temperature, water content of the electrolyte, 
anode–cathode working distance, potential applied, and 
processing time [74, 75]. To generate highly smooth nano‑
tube arrays, for instance, an electrolyte composed of glyc‑
erol and fluoride ions can be employed in a longer period 
of processing time [10, 21, 76]. The fabrication of free‑
standing tubular membranes, contrarily, is possible through 
sonication and post‑treatments (i.e., diluted hydrofluoric 
acid, hydrogen peroxide, and oxalic acid) [75]. Recently, 
we have expanded the electrochemical anodization to fab‑
ricate individual anodic  TiO2 nanotubes and nanocylinders 
through a controlled time‑varying protocol. By assembling 
a two‑electrode anodization Teflon cell (a mesh‑type plati‑
num counter electrode placed above the titanium surface) 
and adding the electrolyte composed of ammonium fluoride 
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(0.27 M) in glycerol/water (60/40, v/v) solution, a controlled 
three‑step anodization (consisted of (i) 35 V for 240 min, 
(ii) 5 V for 10 min, and (iii) 35 V for 60 min) can precisely 
generate weak points at the multilayer tubular array, which 
can break into individual tubes by using mild sonication 
(Fig. 2). The adjustment of the physiochemical features, 
such as the electrolyte composition and voltage applied, is 
also required to trigger the generation of individually sepa‑
rated  TiO2 nanotubes or nanocylinders on arrays by means 
of mild sonication. Moreover, the size of the area exposed to 
the electrolyte is critical for the formation of either  TiO2 
nanotubes (open on one end) or nanocylinders (open on 
both ends). For example, the use of the bigger exposed area 
(28.27 cm2) to the electrolyte fabricates  TiO2 nanotubes, 
whereas the small area (0.67 cm2) produces nanocylinders 
at the same anodization conditions [10]. In another study, an 
indirect fabrication based on a bamboo‑splitting mechanism 
(electrochemical anodization) has also been introduced for 
forming nanowires on the array, using a long‑term anodiza‑
tion of titanium foils in the presence of a viscous electrolyte 
containing fluoride ions [77]. However, the fabrication of 
well‑ordered and ‑aligned nanowires, nanorods, and nanor‑
ibbons has yet to be developed by means of electrochemical 
anodization.

2.6  Nanosheets

Quasi‑two‑dimensional nanomaterials can play a critical 
role in biomedical applications as a result of their interfa‑
cial and mechanical properties [78–81].  TiO2 nanosheets 
can be fabricated through bottom‑up strategies, including 
the hydrothermal approach, liquid‑phase exfoliation, and 
self‑assembly [79, 82]. In most cases,  TiO2 nanosheets have 
been fabricated using the hydrothermal strategy based on the 
starting materials (i.e., tetrabutyl titanate) and high concen‑
tration of hydrofluoric acid as a capping agent in an auto‑
clave at 200 °C for 24 h. Zhang and co‑workers fabricated 
 TiO2 nanosheets with the hydrothermal approach by adding 
48% hydrofluoric acid dropwise into the titanate isopropox‑
ide kept in a heated Teflon‑lined autoclave chamber (180 °C) 
for 24 h [6]. Similarly, hexagonal titanate nanosheets with a 
tunable thickness and length can be generated by adding lac‑
tic acid [79, 83]. During the last few years,  TiO2 nanosheets 
with different methods (i.e., the bacteria‑assisted synthesis 
of nanosheet‑assembled  TiO2 hierarchical architectures [84]) 

have been fabricated, but these developed nanosheets have 
not been verified for biomedical applications.

3  Post‑fabrication of  TiO2 NSs

3.1  Crystalline Structure

In most cases, fabricated  TiO2 NSs are amorphous and 
require additional thermal treatments to achieve a single or 
polymorphic crystalline structure. The crystalline structure 
of  TiO2 NSs directly influences the photocatalytic activity 
upon UV irradiation. For example,  TiO2 films with crystal‑
line phases (anatase and a mixture of anatase and rutile) can 
generate higher amounts of reactive oxygen species (ROS) 
compared to the rutile phase [39]. A wide range of anneal‑
ing temperatures can form different crystalline structures 
including anatase, brookite, rutile, and polymorph. Brookite 
crystals are always within crystalline  TiO2 NSs, and pure 
brookite crystalline structures can be generated using the 
hydrothermal strategy [31, 32, 57, 85]. Annealing tempera‑
tures between 280 and 800 °C first create a polymorphic 
structure, and raising the annealing temperature toward 
900 °C then increases rutile crystals within the polymor‑
phic structure [74, 86]. Note that the annealing process in a 
vacuum or gaseous atmosphere, including nitrogen, argon, 
and nitrogen/hydrogen, also generates different polymorphic 
structures [74]. Interestingly, bottom‑up strategies are able to 
directly synthesize crystalline structures consisting of differ‑
ent proportions of polymorphism compared to the top‑down 
strategies [67]. On the other hand, the annealing process can 
be a major drawback with mesoporous  TiO2NSs due to the 
pores potentially collapsing, their specific surface area being 
reduced or other properties changed (i.e., hydrophobicity). 
These changes may directly impact a number of biological 
responses, including cellular adsorption, interaction, and 
adhesion [87].

3.2  Doping

The insertion of electronically active atoms into the lattice of 
 TiO2NSs is an astounding strategy to engineer the original 
band gap (between 1.8 and 4.1 eV) for generating ultrasen‑
sitive biosensors and elaborated optical devices [31, 32]. 
Both transition‑metallic (i.e., gold, platinum, iron, silver, 
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lithium, and copper) and nonmetallic ions (i.e., nitrogen, 
carbon, fluoride, and sulfur) can be incorporated into  TiO2 
NSs to improve the valence and energy bands [88]. The dop‑
ing can be performed through: (i) fabrication process into 
a solution composed of doping elements, (ii) thermal treat‑
ment in the presence of gaseous doping elements, (iii) ion 
implantation, (iv) anodic formation of alloys containing the 
transition‑metallic elements, and (v) electrochemical dop‑
ing approaches [32]. These doping strategies incorporate 
elements into the substitutional and interstitial sites of the 
lattice [89]. The most well‑known doping elements (i.e., 
nitrogen, carbon, and sulfur) narrow the optical band gap 
by improving the valence band. The calcination of  TiO2 NSs 
fabricated through wet approaches (precursors composed of 
glucose and tetrabutylammonium hydroxide) also generates 
a well‑incorporated carbon doping within the structure [31, 
90]. The other doping elements such as silicon, chrome, 
vanadium, and nickel incorporated into  TiO2 NSs using an 
ion implantation can also improve the optical band gap. 
Although doping of  TiO2 NSs can be performed through 
both wet and dry strategies, resulted properties are different. 
For example, nitrogen wet doping of  TiO2 NSs quenches 
visible photocurrent and photocatalytic activities; however, 
these activities remain untouched by doping at the nitrogen/
argon or ammonia atmosphere [31].

3.3  Deposition

Another alternative strategy to lower the original band gap 
(e.g., n‑type  TiO2 semiconductor, ~ 3.2 eV) is the incorpo‑
ration of metallic nanomaterials with a desired band gap 
into  TiO2 NSs, to significantly improve optical, electronic, 
and catalytic properties. A wide range of strategies have 
been developed to deposit and coat (core–shell nanomateri‑
als) different metals (i.e., platinum, gold, or silver) as well 
as quantum dots onto the  TiO2 NSs. In addition, deposi‑
tion of the nanostructured materials can remarkably affect 
cellular behaviors and responses, recognition of biomol‑
ecules, and ions at the interface [91]. For example, a simple 
deposition of gold nanoparticles on the surface of  TiO2 
nanotubes can significantly improve the glucose detection 
[92]. Deposition strategies, ranging from electrodeposi‑
tion, chemical bath deposition, and the hydrolysis of pre‑
cursors, have been developed to randomly decorate or fill 

 TiO2 nanomaterials [93, 94]. Porous gold nanoparticles, for 
example, can be incorporated into  TiO2 nanotubes by using 
combined approaches, including sputtering, dewetting, and 
etching [95]. To generate one‑dimensional magnetic  TiO2 
nanomaterials, anodic  TiO2 nanotubes can be soaked into a 
magnetic solution (i.e., ferrofluids) and the magnetic nano‑
particles from the solution can be deposited on the tubes 
through an external magnetic field placed at the bottom 
of the tubular array. The fabricated magnetic anodic  TiO2 
nanotubes have a potential for being loaded with different 
therapeutics and guided with a magnetic field (i.e., a per‑
manent magnet and magnetic tweezer device) to a target 
tissue [21]. In the case of nanofibers,  TiO2‑based precur‑
sors can be mixed with metallic nanoparticles in order to 
be easily incorporated into  TiO2 nanofibers through the 
electrospinning technique [2].

3.4  Self‑Assembled Monolayers and Carbonization

A self‑assembled functional monolayer on the surface of 
 TiO2 NSs can lead to a selective conjugation of biomol‑
ecules, including proteins, ligands and antibodies, as well 
as the adhesion of mammalian cells. The formation of self‑
assembled monolayers on the surface of  TiO2 NSs is more 
or less limited to carbonyldiimidazole, phosphonic acid, 
and organosilane‑based reactive components [96]. Salonen 
and co‑workers have also introduced a functional combi‑
nation of carbon into the lattice and onto their surface to 
improve bioactivities [97, 98]. Hydrocarbonization process, 
an indirect short incubation of  TiO2 nanomaterials in the 
presence of acetylene gas at high temperature (i.e., 850 °C), 
creates a graphitic monolayer on the surface to improve 
the mechanical stability [98]. The structure of the carbon 
monolayer in titanium oxycarbide depends on the incuba‑
tion time and temperature. A hydrothermal reduction in 
graphene oxide can also warp the carbon monolayer on the 
surface of  TiO2 nanoparticles [99]. A thermal annealing of 
the surfactant‑coated nanomaterials (i.e., nanosheets) is an 
interesting alternative for the carbonization [100].

3.5  Polymer and Biomolecule Conjugation

Bioconjugation strategies are an essential step for clinical 
translation of  TiO2 nanomaterials in order to detect, track, 
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visualize, target, and treat a wide range of diseases. To 
generate smart and flexible nanocarriers, polymeric cover‑
age can impart a broad spectrum of new properties to  TiO2 
NSs. A thermo‑, pH‑ and enzyme‑responsive coverage 
can create smart, multistage theranostic nanoplatforms. 
A wide range of synthesized or natural polymers, includ‑
ing chitosan, polyethylene glycol, and polydopamine, have 
been employed for the conjugation, coating, and capping 
of  TiO2 NSs [101–103]. Certain biochemical linkers, 
developed to temporary conjugate therapeutic agents, 
can be cleaved in a specific physiochemical condition by 
enzymes, irradiation, and the physiological environment 
(i.e., acidic pH of the endocytic compartments) [17]. In 
addition, the conjugation of biomolecules such as proteins, 
enzymes, and antibodies on the surface of nanomaterials 
plays a critical role in facilitating the detection of specific 
cells and therapeutic delivery to intracellular compart‑
ments, while reducing the risk of macrophages [104]. The 
biomolecules can be conjugated on the surface of  TiO2NSs 
through various functional chemical linkers that can pro‑
vide a rapid conjugation strategy to limit any bioactivity 
losses [96, 102]. Polymers, antibodies, and therapeutics 
can be conjugated through one of the following strategies 
(see Bioconjugate Techniques [105]):

• Carbodiimide chemistry A specific and practical con‑
jugation strategy binds the primary amines of biomol‑
ecules and polymers to the surface of carboxyl‑reactive 
 TiO2NSs by means of the water‑soluble 1‑ethyl‑3‑(‑3‑di‑
methylaminopropyl) carbodiimide hydrochloride (EDC 
for an aqueous synthesis) and water‑insoluble dicy‑
clohexyl carbodiimide (DCC for an organic reaction). 
The carbodiimide coupling reaction at the physiological 
pH is less effective compared to the most efficient cou‑
pling condition at the acidic pH (~ 4.5), a simultaneous 
use of N‑hydroxysuccinimide (NHS) or water‑soluble 
Sulfo‑NHS, and EDC is therefore recommended to pro‑
vide the highest coupling efficiency at the physiological 
pH [106].

• Click chemistry A highly selective, high yield, and fast 
coupling reaction occurs between copper‑catalyzed Huis‑
gen cycloadditions of azides and alkynes to conjugate 
biomolecules, fluorophores, therapeutics, as well as poly‑
mers on the surface of  TiO2 nanomaterials [107]. The 
surface of biomolecules and  TiO2 nanomaterials can be 
modified by either the azide‑ or the alkyne‑reactive moie‑
ties for the click coupling chemistry. However, a copper‑
free click chemistry is a point in order to eliminate the 

cytotoxic effects of the copper catalysts in biomedical 
applications. The activated biomolecules by means of 
a cyclooctyne (i.e., dibenzocyclooctyne = DBCO) can 
also bind to azide‑labeled  TiO2 nanomaterials.

• Maleimide chemistry Sulfhydryl‑reactive chemical 
groups (–SH, thiols) are the most common cross‑linker 
moieties for the conjugation of biomolecules on the 
surface of nanomaterials. In most cases, maleimide 
groups can specifically react with sulfhydryl groups at 
pH between ~ 6.5 and 7.5 to form a stable and irrevers‑
ible thioether linkage. The coupling by the sulfhydryl 
groups is more selective and precise due to their limited 
available number on the biomolecules [108]. However, 
sulfhydryl‑reactive chemical groups can be easily added 
through a reaction with available primary amines using 
the Traut’s reagent. Interestingly, plasmonic‑deposited or 
‑coated  TiO2NSs can also be directly conjugated through 
a reaction with sulfhydryl‑reactive chemical groups of 
the biomolecules to generate a bio‑monolayer on the sur‑
face [109]. Moreover, the reduction in antibodies (i.e., 
using Tris(2‑carboxyethyl)phosphine hydrochloride to 
cleave disulfide bonds) can expose their free sulfhydryl‑
reactive chemical groups to plasmonic‑ or maleimide‑
modified surfaces and create a direct conjugation [110].

• Hydrazide‑reactive chemistry Targeted drug deliv‑
ery based on antibody (an affinity‑based binding) for 
the detection of exposed antigens, e.g., of cancer cell 
population, requires a precise conjugation strategy to 
less disrupt the Fab region of the antibodies. The oxida‑
tion of the carbohydrate at the Fc region of the antibody 
by using sodium periodate generates aldehyde groups, 
which can bind to the hydrazide moieties at the surface 
of nanomaterials [111]. The use of the hydrazone linkage 
can also create pH‑cleavable linkers for certain biomedi‑
cal applications (i.e., intracellular therapeutic delivery 
systems) in order to target specific subcellular compart‑
ments. Through a reaction between a carbonyl‑reactive 
group (i.e., anticancer doxorubicin drug) and hydrazide 
moiety (i.e., on the surface of  TiO2NTs) a pH‑cleavable 
linkage can therefore be generated [10].

4  Biological Responses to  TiO2 NSs

4.1  In vitro Cytotoxicity Assessments

The fundamental evaluation of potential health hazards 
caused by exposure to nanomaterials is now a crucial 
step. At the nanoscale, the size reduction in nanomateri‑
als can trigger an excessive cellular uptake and subcellular 
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accumulation and may disrupt activities of organelles [44, 
97]. Transporting nanomaterials across the plasma mem‑
brane and accessing subcellular compartments rely on a 
multitude of factors, spanning surface properties and bio‑
conjugation to size and morphology [112]. Internalization is 
initially affected by the cellular interactions between recep‑
tors located on the membrane and the surface of nanomateri‑
als. Therefore, the communication between the cell receptors 
and nanostructure activates multiple endocytosis pathways, 
including clathrin‑mediated endocytosis, caveolae, micro‑
pinocytosis, and phagocytosis [113]. Both aggregated and 
agglomerated  TiO2 nanoparticles can be internalized into 
cells by phagocytosis, and monodispersed  TiO2 nanoparti‑
cles can mainly be internalized through an energy‑depend‑
ent endocytosis [114, 115]. Although the energy‑dependent 
mechanisms are highly active for the endocytosis (e.g., of 
nanowires), the internalization efficiency depends on the 
aspect ratio of one‑dimensional nanomaterials [116]. The 
rate of cellular uptake can be boosted through post‑fabrica‑
tions and surface modifications. A common size‑dependent 
intracellular mechanism and localization roughly show 
an intracellular trafficking pathway, mostly ending up in 
endosomes and lysosomes [117, 118].

The incubation of  TiO2 nanomaterials can induce both 
cytotoxic and genotoxic effects on mammalian cells by dis‑
rupting mitochondrial membranes [119, 120]. The toxicity 
can become exacerbated by increasing the dosage of  TiO2 
nanomaterials [121].  TiO2 NSs can primarily cause the pro‑
duction of ROS, DNA fragmentation, and oxidative stress 
and lesions (i.e., rendering nucleotides and inactivating 
base excision repair pathways) [122, 123]. The production 
of ROS, DNA damages, and chromosomal aberrations can 
arrest the cell cycle and subsequently trigger apoptosis [124, 
125].  TiO2 nanoparticles can also cause a structural damage 
(i.e., mitochondrial damage and downregulation of ERK‑
pathway‑related factor proteins), reduce the cell activity, and 
disturb the testosterone generation or secretion in the treated 
Leydig cells [126].

Bioactivity of nanomaterials is shape‑ and length‑depend‑
ent. Cylindrical  TiO2 nanomaterials, for instance, can induce 
significant apoptosis compared to spherical NSs [69, 127]. It 
was also observed that one‑dimensional  TiO2 nanomaterials 
can accelerate the formation of autophagosome‑like vacuoles 
and the reduction in the mitochondrial calcium concentration 
[128]. Correspondingly, long  TiO2 nanofibers can also dis‑
turb the transepithelial electrical resistance and perturbation, 

and generate a significant hemolysis and macrophage activa‑
tion [127]. Anodic freestanding  TiO2 nanotubes, for exam‑
ple, can also induce genotoxic cellular responses, including 
ROS production, without a significant cell death, while the 
non‑anodic tubes are less toxic [125, 129].

The cellular responses to  TiO2 nanomaterials can also be 
manipulated according to crystalline structures and surface 
chemistries in order to maximize cell viability and cellular 
uptake [130–132]. The super reactive crystalline structures 
induce a wide variety of toxicities related to the defect sites 
and distinctive crystal orientations [85, 133]. Both brook‑
ite and anatase  TiO2 nanorods, for example, can reduce 
cell viability through the ROS production and expression 
of autophagosome proteins. However, an extensive distribu‑
tion of lysosome and expression of endoplasmic reticulum 
proteins can be induced by anatase  TiO2 nanorods [128]. On 
the other hand, polymeric surface modifications can reduce 
or diminish hazard risks caused by the administration of 
 TiO2 nanomaterials [134–137]. The surface modifications 
may suppress the reactivity of crystals and minimize cel‑
lular and subcellular obstructive interactions [44, 125, 138]. 
However, polymeric surface modifications must be consci‑
entiously optimized, because a hydrophilic and positively 
charged polymeric layer on the surface of nanomaterials may 
cause severe obstructive interactions within the subcellular 
compartments and consequently produce greater ROS and 
cytotoxicity [139].

The cellular responses are different toward one‑dimen‑
sional arrays, such as implants and scaffolds with varying 
morphologies and structures [140–142]. The morphology, 
including pore size (or top‑side diameter) and length of the 
tubular  TiO2 arrays, mainly determines cell viability and 
proliferation through the modulation of the focal adhesion 
kinase and Ras homolog family member A (RhoA) path‑
ways [35, 143, 144]. The macrophage inflammatory effect 
of tubular arrays is also controllable through the inhibition 
of mitogen‑activated protein kinases and nuclear factor‑κB 
pathways [145]. In addition, the change of the crystalline 
phase of tubular arrays can be another influencing factor in 
the adhesion and activation (e.g., platelets). The anatase 
nanotubes (annealed at 450 °C) can trigger the adhesion and 
activation behavior (i.e., spreading tendency and filopodia 
connections) of the platelets compared to as‑formed amor‑
phous nanotubes [66]. However, an elaborated surface mod‑
ification including biomolecule conjugations alternatively 
improves cell viability, adhesion, and proliferation [144].
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4.2  In Vivo Inflammatory Responses

Partitioning of nanomaterials into organs and tissues occurs 
after entering into the cardiovascular system and may 
induce inflammation. The translocation of  TiO2 nanopar‑
ticles depends on the injection site. Intravenous injection, 
for example, exhibits a high number of nanoparticles in the 
liver and a relatively smaller number in the spleen, lung, 
and kidneys [146–148]. Inhaled  TiO2 nanoparticles that 
have quickly transferred into the circulatory system may 
randomly affect gene expression in the heart and lung [149]. 
 TiO2 nanoparticles can then cause pulmonary inflammation 
through ROS production and the expression of inflammatory 
cytokines [150]. A recent study on the zebrafish exposed to 
 TiO2 nanoparticles reveals no side effects on the hatching 
rate of zebrafish embryos and deformity; however, a long‑
term incubation of the nanoparticles with the adult zebrafish 
can cause an oxidative damage to the liver and gill (high 
expression of three antioxidant enzymes: superoxide dis‑
mutase, catalase, and glutathione S transferase) [151].  TiO2 
nanoparticles can injure the liver through DNA breaks and 
chromosomal damages [147].  TiO2 nanoparticles localized 
in the spleen may cause apoptosis through the splenocyte 
dysfunction and proliferation of lymph nodules [152]. More‑
over,  TiO2 nanomaterials accumulating in the kidney can 
primarily cause severe dysfunction due to nephric inflam‑
mation and necrosis [147]. The translocation of  TiO2 nano‑
particles (5 nm in diameter, anatase) injected daily into the 
abdominal cavity for 2 weeks indicated the harmful results 
by triggering a consecutive series of intramolecular inter‑
actions, including a lipid peroxidation and a reduction in 
the capacities and functionalities of antioxidative enzymes 
in the brain [153]. Administering two‑dimensional  TiO2 
NSs can also induce significant liver toxicity when chang‑
ing the level of malondialdehyde, superoxide dismutase, 
and oxidative stress responses [6, 154, 155]. However, an 
elaborated surface modification may alter the partitioning 
or toxicity of  TiO2NSs, thereby eliminating or reducing 
potential inflammation after their administration. Both free‑
standing anatase and brookite  TiO2 nanorods, for instance, 
trigger immune responses and proinflammatory cytokines, 
but anatase nanorods cause fewer lesions compared to the 
brookite structure [128, 156]. In addition, normal spleen 
and thymus indexes without triggering immune responses 
after the administration of PEGylated  TiO2 nanosheets, were 
reported [6]. The surface modification should also facilitate 

the clearance of the nanomaterials used for therapies. For 
example, after an intravenous injection,  TiO2 nanoparticles 
(agglomerated with 73.3–95% of agglomerates with a peak 
size around 1400–1800 nm), which were quickly elimi‑
nated from blood and relocated in liver, spleen, and lungs, 
were interestingly cleared from the body with a half‑life of 
12.7 days [157].

5  Biomedical Applications

5.1  TiO2 NSs for Therapy

5.1.1  Therapeutic Delivery

Therapeutic vehicles based on  TiO2 nanomaterials have 
been developed to deliver small molecules, proteins, and 
genes to target tissues and organs in the body. Increas‑
ing the surface area by generating pores within the nano‑
materials maximizes therapeutic loading compared to 
their nonporous counterparts. As previously reported, the 
charge interactions between the therapeutic agents and 
nanomaterials mainly facilitate physical adsorption [158, 
159]. In certain cases, the loading capacity can be alter‑
natively increased by means of an external driving force 
such as voltage [160]. Apart from that, controlled release 
kinetics are also favorable for drug delivery systems. 
The release rate can be tuned using different strategies 
including polymeric capping or coatings on the surface of 
 TiO2NSs [161, 162]. The controlled filling of nanotubes 
with drug‑loaded polymeric micelles can generally slow 
down the release rate [163]. Drug reservoirs composed of 
 TiO2 nanorods, nanofibers, and nanotubes also exhibit a 
sustained drug release for dermal drug delivery applica‑
tions [164–166].

A stimuli‑responsive drug release for a precise chem‑
otherapy in order to minimize side effects is achievable 
through the conjugation of pH‑, thermo‑, and enzyme‑
responsive polymers on the surface [44]. Multifunctional 
mesoporous  TiO2 nanocarriers that had been conjugated 
with polyethyleneimine (PEI) and folic acid, for instance, 
were prepared for a drug delivery system based on the NIR 
laser‑controlled drug release system [8]. X‑ray illumina‑
tion of  TiO2 nanomaterials can create electron–hole pairs 
within the structure (degrading organic linkers) and gen‑
erate a triggered release [18]. A combined strategy for a 
stimuli‑responsive drug release, for example, has also been 
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reported by allocating a hydrophobic cap for amphiphilic 
 TiO2 tubular arrays sensitive to the UV light irradiation 
[17]. The multifunctional porous  TiO2 nanoparticles, con‑
jugated with PEI and folic acid, have also been developed 
for UV‑responsive drug release as well as targeted drug 
delivery (Fig. 3a). The burst release of loaded anticancer 
drug paclitaxel from  TiO2‑based nanocarriers was con‑
trolled by the PEI capping, and the exposure to UV light 
irradiation, which accelerated the degradation of PEI on 
the surface by the generation of free‑radicals, released the 
entrapped anticancer drugs (Fig. 3b). The improved cel‑
lular internalization of the folic‑conjugated nanocarriers 
into KB cells (7.4 times higher than nonfunctionalized 
carriers) was obtained after 5 h of incubation (Fig. 3c). 
Compared to the treated KB cells (i.e., higher cellular 
uptake and cell death), the folic‑conjugated nanocarriers 
induced less cytotoxicity in A549 cells due to the small 
cellular uptake (5.3 times less than that of KB cells) and 
demonstrated the selective cancer killing feature (Fig. 3d). 
In vivo fluorescence images of tissue, including the heart, 
liver, spleen, lung, kidney, and tumor, collected at different 

times (post‑injection), also confirmed the improved cel‑
lular internalization and accumulation of the folic‑con‑
jugated nanocarriers into the target tumor after 4 h post‑
injection (Fig. 3e) [8]. In addition, PEI on the surface of 
the nanocarriers is also able to be swollen at the acidic 
pH of the intracellular compartments to cause a proton‑
sponge effect, which allows the cargo to be delivered to 
the cytoplasm [8, 19].

Targeted therapeutic delivery system is a key approach 
to accumulating therapeutics into the site of action in order 
to boost the therapeutic efficacy. The post‑fabrication of 
nanocarriers by using biomolecules and ligands (i.e., folic 
acid, hyaluronic acid, and antibody) is a promising strategy, 
which can precisely accumulate nanomaterials at a specific 
tissue [8, 167, 168]. For example, the conjugation of CD133 
monoclonal antibodies on black  TiO2 nanoparticles to target 
the transmembrane glycoprotein highly expressed at pan‑
creatic cancer stem cells has been developed to guide the 
nanoparticles for a site‑specific cancer therapy [12]. Moreo‑
ver, folic acid immobilization on the surface of anticancer‑
loaded nanocarriers can effectively promote the cellular 
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uptake through a receptor‑mediated endocytosis [8]. The 
penetration of therapeutic agents and nanomaterials is lim‑
ited in solid malignant tumors [44]. However, the enhanced 
permeability and retention (EPR) effects, which occur in 
solid tumors, permit the nanomaterials to gain access to the 
restricted microenvironments [44, 97]. Correspondingly, a 
successful delivery of DOX to the orthotopic breast tumor 
has been achieved by the administration of polyethylene 
glycol‑coated  TiO2 nanoparticles based on the EPR effects 
[169]. After a long circulation time, an intracellular drug 
release is also an advantage for provision of a sufficient 

therapeutic effect. Intercellular drug delivery systems can be 
obtained by using different cleavable linkers (pH‑, thermo‑, 
and UV light irradiation), which temporary bind therapeutics 
on the surface of nanocarriers. The NIR light has also been 
employed to trigger an intracellular DOX release from zwit‑
terionic polymer‑gated Au@TiO2 core–shell nanoparticles. 
The NIR light irradiation (at 635 nm) to the internalized 
nanocarriers caused an efficient cell death via the accelerated 
DOX release into the cytoplasm and nucleus in comparison 
to the treatment without the laser irradiation [170].
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Fig. 4  Internalization of DOX‑loaded  TiO2 nanotubes and nanocylinders into HeLa cells. (I) The cellular uptake and intracellular DOX release 
from  TiO2NSs confirmed by scanning electron microscopy (SEM) and confocal microscopy images of control (‑I‑control) HeLa cells without 
the nanocarriers, DOX‑conjugated  TiO2NTs (‑I‑DOX‑TiO2NTs, red demarcation) and DOX‑conjugated  TiO2NCs (‑I‑DOX‑TiO2NCs, red demar‑
cation) after 1 h and 24 h of incubation. Cells were stained with fluorescein diacetate (green). Insets indicate the magnified images of internal‑
izing  TiO2 nanotubes and nanocylinders. Scale bars of the inset frames are 500 nm. Adapted from Ref. [10] with permission from the American 
Chemical Society
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Freestanding, one‑dimensional  TiO2NSs have been 
demonstrated to be remarkable platforms for drug delivery 
systems and cancer therapy. The shape of nanocarriers is 
a key parameter directly affecting circulation time, bio‑
distribution, and cellular uptake in drug delivery systems. 
One‑dimensional nanocarriers tend to adhere more to vas‑
cular endothelium compared to spherical nanocarriers, and 
improve endothelial targeting, e.g., of a solid tumor and 
intracellular localization [11, 44]. Recently, an intracellu‑
lar DOX delivery has been developed by using individual 
anodic  TiO2 nanotubes and nanocyliners to take advan‑
tage of a cleavable release based on a hydrazone linker in 
endolysosomes (Fig. 4). When the conjugated DOX mol‑
ecules on the surface of freestanding  TiO2 nanotubes and 
nanocylinders were exposed to the acidic environment (pH 
5), the punctate red dots (related to DOX‑loaded nanocar‑
riers) were diminished and spread into the entire cell body. 
The endosomes with the acidic environment triggered the 
cellular death by cleaving covalently‑bound DOX molecules 
from the nanocarriers. A short incubation (30 min) of nano‑
carriers (DOX‑conjugated and DOX‑loaded) with HeLa cells 
and the subsequent replacement of the culture medium (i.e., 
to eliminate all unbound nanocarriers and released cargo) 
indicated higher toxicity for the cells treated with pH‑cleav‑
able nanocarriers after 72 h, compared to the treatment with 
DOX‑loaded nanocarriers [10].

Magnetically guided drug delivery systems possessing 
 TiO2 nanocarriers functionalized with magnetic responsive 
materials can alternatively deliver therapeutics into the site 
of action. It might seem an impractical effort to employ an 
external magnetic force to target deep tissues under the skin 
(more than 5 cm) owing to a rapid reduction in the magnetic 
strength. However, it can be partially solved by implanting 
magnets in the body near the target site [171].  TiO2 nanoma‑
terials are not susceptible to an external magnetic force, and 
in order to achieve this, the magnetic nanoparticles (i.e., iron 
oxide) can be embedded into the structure of the nanocarri‑
ers [159, 172]. For example, ferrofluid, a magnetic solution 
(composed of 3–15% iron oxide (magnetite) and 6–30% oil‑
soluble dispersant in 55–91% distillates (petroleum), viscos‑
ity of 6 mPa s, saturation magnetization 44 mT), can be incu‑
bated with  TiO2 tubular arrays in order to deposit magnetic 
nanoparticles (~ 10 nm) and generate magnetic  TiO2 tubular 
arrays. In comparison to relatively large magnetically guided 
 TiO2 tubular arrays, their limited displacement at the target 
tissue, and the necessity for surgery to insert them into the 

body, freestanding magnetic  TiO2 nanomaterials as an alter‑
native can be potentially guided and accumulated into the 
site of action (Fig. 5). Moreover, magnetic nanotubes, which 
are sensitive to an external magnetic force (i.e., magnetic 
tweezer), can undergo displacements up to one micrometer 
(depends on the amount of deposited ferrofluid and posi‑
tion of nanotubes) after the attachment to the cells. A short 
exposure to the magnetic field can also improve the cellular 
binding, e.g., of the magnetic  TiO2 nanotubes (~ 6 nano‑
tubes per cell on average) and cause an enhanced delivery 
of anticancer camptothecin into the target cells (~ 90% kill‑
ing efficiency) compared to the control groups without the 
magnetic force in vitro (~ 2 nanotubes per cell on average) 
[21, 173]. An increased deposition of magnetic nanoparti‑
cles into nanotubes might raise and improve the obtained 
small force (~ 2 pN) compared to commercially available 
magnetic beads (i.e., Dynabeads M‑450 with ~ 54 pN force); 
however, a balance between the magnetic deposition and 
drug loading needs to be considered, without affecting the 
therapeutic efficiency.

Gene therapy as an efficient means of therapeutically 
delivering oligonucleotides can lead to curing and prevent‑
ing a broad range of diseases. The short interfering RNA 
(siRNA) can be transferred to the intracellular compart‑
ments of targeted organs in order to silence specific mes‑
senger RNA [174, 175].  TiO2 nanoparticles have also been 
developed to deliver nucleic acid derivatives into the nuclei 
of target cells. Nanocomposite‑based  TiO2 nanoparticles and 
polylysine have been recently fabricated to deliver oligo‑
nucleotides as antiviral agents into nucleus of the Madin‑
Darby Canine Kidney cells. Oligonucleotide delivery to 
nuclei, found to be a cell division phase‑dependent process, 
can happen during the interphase activity of cells, and the 
prophase condition mostly inhibits the internalization [176]. 
A sustained release of viral vector encoding proteins from 
the  TiO2 tubular implants can diminish disadvantages of 
local delivery systems (i.e., short effective time, large dose 
requirement, repetitive administration, and poor distribu‑
tion) [177]. To overcome these disadvantages, lentiviral 
vectors encoding BMP‑2 loaded into the nanotubes by the 
lyophilization were released over 8 days and promoted osteo‑
genic differentiation. This delivery system (lyophilization 
of the loaded vectors) has shown an advantage because of 
maintaining the stability of the vectors over the therapeutic 
period. Moreover, the sustained release of the lentiviral vec‑
tor encoding BMP‑2 improved the local cell accumulation 
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by recruiting circulating bone marrow stromal cells around 
the  TiO2 nanotubes and facilitated the differentiation into 
osteoblasts [177].

A combined strategy for cancer therapy has been exhib‑
ited through the administration of  TiO2‑coated  Fe3O4 
core–shell nanocarriers loaded with doxorubicin (DOX) 
and β‑catenin siRNA (Fig. 6). When mice treated with 
magnetic  TiO2 core–shell nanoparticles were exposed to 
a magnetic force, a strong signal  (T2‑weighted MRI and 
fluorescence) was detected in the tumor site compared to 

the liver and other normal tissues within a fairly short 
period of time. The maximum accumulation of magnetic 
 TiO2 core–shell nanoparticles in the tumors was reached 
at 3 h post‑injection (based on  T2‑weighted MRI). The 
developed multifunctional carriers effectively silenced 
the β‑catenin gene and caused remarkable apoptosis while 
suppressing proliferation. Exposure to NIR laser irradia‑
tion can also generate ROS and triggers tumor cell apop‑
tosis in vitro and in vivo. The intracellular ROS and glu‑
tathione S‑transferase level in treated cells by β‑catenin 
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siRNA‑ and DOX‑co‑loaded core–shell nanocarriers were 
intensively raised in a time‑ and laser‑dependent manner 
(i.e., 3.7 W cm2 at 980 nm for 5 min) compared to the con‑
trol groups in vitro. Moreover, the NIR irradiation showed 
higher ROS generation (3.74‑fold) than that of the irradi‑
ated cells at 365 nm (UV region). The tumor volume of the 
mice treated with siRNA and DOX‑loaded magnetic  TiO2 
core–shell nanoparticles (the effective co‑delivery system) 
was dramatically reduced to 255 ± 32.2 mm3 compared to 
the control group (mean volume of 1914 ± 122.8 mm3), 
and the combined therapy exhibited 92.4% of tumor 
growth inhibition without inducing acute toxicity to the 
vital organs [175].

Alternatively, laser irradiation of gold‑decorated  TiO2 
nanomaterials might be effective for the optoporation pro‑
cess. By using an ultrafast continuous or pulsed NIR laser 
irradiation of the nanomaterials bound on the cell mem‑
brane, optoporation can gently perforate the membrane 
lipid bilayer of target cells and internalize transgenes into 
the cytoplasm [178]. Compared to the nanocarriers, which 
are internalized based on the endocytosis mechanisms and 
need to trigger an endosomal escape pathway for releasing 

the transgenes into the cytoplasm, optoporation strategy can 
directly internalize the transgenes (i.e., mRNA and siRNA 
delivery) into the cytoplasm and accelerate either an expres‑
sion or suppression of target proteins [19, 178]. For example, 
gold nanomaterials have been frequently used for the opto‑
poration and subsequent delivery of siRNAs into the eye; 
however, this optoporation process is limited for the inter‑
nalization of transgenes in deep tissues [179]. Therefore, a 
combined strategy based on laser and other treatments (i.e., 
ultrasound) may provide an adequate non‑toxic energy and 
trigger plasmonic‑modified  TiO2 nanomaterials to perforate 
the cellular membrane in deep tissues for gene therapy.

5.1.2  Photo‑ and Sonodynamic Therapy

TiO2 nanomaterials that are sensitive to two‑photon irra‑
diation generate remarkable amounts of the oxidative stress 
(ROS affects mitochondrial depolarization and caspase pro‑
tein up‑regulation) and induce hyperthermia that in turn ini‑
tiates tumor cell apoptosis and necrosis [180]. For example, 
the hyperthermia effects appearing at temperatures higher 
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than 46 °C can be generated by exposing the treated cells to 
NIR laser irradiation. Nevertheless, hyperthermia and ROS 
generation depend on the concentration, structure, geometry, 
and crystallinity of  TiO2 nanomaterials employed [14–16]. 
Regardless of the photocatalytic efficiency and photosta‑
bility of  TiO2NSs, their low quantum yield is a significant 
drawback. Therefore, a lattice modification of  TiO2 (i.e., 
conversion to the magnéli‑phase  Ti8O15) can significantly 
improve the originally low quantum yield and weak photo‑
dynamic properties [181]. Alternatively, a thermal hydro‑
genation of  TiO2 NSs can generate black nanomaterials, 
with the presence of  Ti3

+ ions, oxygen vacancies, structural 
disorder/defects in the surface, Ti–OH groups, Ti‑H groups, 
or modified valence band edge, which can improve photo‑
catalytic activities [12, 13]. A short exposure of black  TiO2 
nanoparticles to a NIR laser irradiation can kill almost all 
treated cancer cells and significantly reduced tumor volume 
compared to the control groups in vivo [13]. The NIR irra‑
diation‑responsive drug release system based on black  TiO2 
nanoplatforms (DOX@TiO2−x@PDA‑Cy5.5) has also been 
employed as a powerful strategy (a combined chemo/pho‑
todynamic/photothermal therapy) to inhibit the growth of 
breast cancer tumor in vivo (Fig. 7a). The DOX‑loaded black 
 TiO2 nanoparticles capped by polydopamine (1 mg mL−1) 
under NIR irradiation (808 nm, 1.0 W cm−2) were able to 
generate a temperature raise (ΔT up to ~ 24 °C) and caused 
a significant intracellular ROS generation and cell death 
(~ 95%) compared to each strategy carried out separately 
in vitro. Although the release of DOX from the nanocar‑
riers is pH dependent, the use of NIR laser irradiation has 
additionally brought a switchable (on/off) release for the 
encapsulated DOX from the nanocarriers at both acidic and 
natural environments. The black  TiO2 nanoparticles taking 
advantage of the combined chemo/photodynamic/photother‑
mal therapies have also indicated a tumor growth inhibi‑
tion feature in vivo, because those control groups receiv‑
ing only photodynamic or photothermal therapy have met 
a poor therapeutic effect, and the irradiated tumors began 
growing 10 days after the treatment. The evaluation of his‑
tological sections of the irradiated tumor (treated animal 
models with DOX@TiO2−x@PDA‑Cy5.5) also pointed out a 
massive cell necrosis and apoptosis compared to the control 
groups [47]. The biocompatible, mesoporous,  TiO2 popcorn 
nanoarchitectures also offer a super‑photocatalytic activity, 
which generates high‑turnover, flash intracellular ROS (on/
off‑switchable photon‑triggered ROS production) compared 

to smooth  TiO2 particles (Fig. 7b). A solvothermal treat‑
ment  (TiO2 beads mixed with ethanol/DI water (2:1 v/v) 
and 0.55 M ammonia solution and kept at 170 °C for 18 h) 
generates non‑toxic  TiO2 Pops (500 ± 50 nm in diameter and 
surface area up to 100 m2 g−1) with the anatase crystallinity 
and interacts much better with the complexity of the cellular 
membrane (i.e., lipid bilayer leakage) in comparison to the 
rutile structure. The intracellular ROS can be generated in 
prostate cancer cells (2.5‑fold higher) by the photon excita‑
tion (3.5 mW  cm−2 at 365 nm) of non‑toxic  TiO2 popcorn 
nanoarchitectures compared to the control groups without 
photoinduction [15].

A simple incorporation of noble metals into the surface of 
 TiO2NSs alternatively improves quantum properties required 
for the generation of functional anticancer ROS [14]. For 
example, cobalt and nitrogen‑doped  TiO2 nanocrystals and 
 TiO2‑coated gold nanoparticles can enhance the photoac‑
tivation in the visible/NIR region [182]. An electrochemi‑
cal deposition, e.g., of silver on the surface and a nitrogen 
doping of  TiO2 nanoparticles can also change the treated 
cell morphology and increase ROS generation in human 
keratinocytes (HaCaT) and human lung epithelial cells 
(A549) and cause cell death via a late apoptosis/necrosis 
[183]. Due to a fast growth of new blood vessels for supply‑
ing oxygen and nutrients in tumors, antiangiogenesis is an 
advantage preventing the vascular growth and causes a sig‑
nificant tumor necrosis. Exposing tumors with internalized 
 TiO2 nanomaterials to the second NIR irradiation (NIR‑II) 
region (1000–1350 nm) can create efficient photoreactive 
effects against malignant tumors.  TiO2‑coated Au nanobipy‑
ramids, for example, have shown a high photothermal con‑
version efficiency up to ~ 93% (ΔT: ~ 27 °C) under NIR‑II 
irradiation (at 1064 nm). The incorporation of anticancer 
combretastatin A‑4 phosphate drug into the  TiO2‑coated Au 
nanobipyramids combined anticancer and antiangiogenesis 
activities has inhibited a lung tumor growth (0.4‑fold smaller 
compared to the initial tumor size) in vivo [184].

Alternatively, ROS generation through the use of  TiO2 
nanomaterials sensitive to ultrasound has been recently 
improved as a means to kill cancer cells in deep tissues 
[185]. Au nanocrystals grown on the edge of the  TiO2 
nanosheets (band gap 2.90 eV) can induce an effective ROS 
generation through an ultrasound irradiation compared to 
pure  TiO2 nanosheets (band gap 3.2 eV), and the engineered 
band gap prevents the fast recombination of excited electrons 
and holes that can improve the quantum yield of the ROS 
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generation in vitro and in vivo [186]. The hydrophilized 
 TiO2 nanoparticles activated by ultrasound can also generate 
ROS in the superficial tumors (i.e., intense vascular damage 
and proinflammatory cytokines) and suppress the growth 
of deep liver tumors (~ 15‑fold) far more extensively than 
in the tumor‑bearing mice without the ultrasound treatment 
[185]. In fact, sonodynamic therapy is limited to generating 
sufficient ROS against multidrug‑resistant cancer due to the 
efflux of photosensitizer molecules from the P‑glycoprotein 
[187]. Conjugating the trans‑activator of transcription pep‑
tides on the surface of  TiO2NSs can therefore overwhelm the 
effects of the P‑glycoprotein and generate sufficient amounts 
of ROS, which directly breaks double‑stranded DNA [187, 

188]. Due to the nature of  TiO2 nanomaterials sensitive to 
photo‑ and sono‑dynamic therapy, a combined strategy may 
significantly improve the ROS generation and therapeutic 
efficacy.

5.2  Medical Diagnosis

5.2.1  Bioimaging

Early‑stage diagnosis and comprehensive understanding of 
diseases for employing an efficient therapy can be estab‑
lished through using ultrasensitive bioprobes [189]. A non‑
toxic surface modification by using a fluorescent molecule 
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such as rhodamine B on the surface of anatase  TiO2 nano‑
particles can be the easiest option for the bioimaging of the 
target cells [190]. The sandwich‑type electrochemilumines‑
cence based on the tetragonal rutile  TiO2 mesocrystals has 
also been developed to detect zearalenone, which is a myco‑
toxin secreted by Fusarium (human food contaminants). In 
most cases, a solution probe containing Ru (bpy)3

2+ is incu‑
bated with an electrochemiluminescence setup to detect the 
target molecules; however, their immobilization on the sur‑
face of the  TiO2 mesocrystals can amplify the emitted signal 
from the detected zearalenone [22]. However, long‑term and 
real‑time imaging, which is limited to conventional organic 
dyes and fluorescent proteins due to their short emission 
lifetimes, requires elaborated, stable bioprobes [44]. Recent 
studies also show that an extra doping procedure with gase‑
ous nitrogen and other metallic elements generates photo‑
luminescent  TiO2 nanomaterials by changing the electron 
movement within the lattice and energy levels [191, 192].

Noninvasive detective and tracking strategies have been 
developed based on  TiO2 nanomaterials in vivo. Tetera sul‑
fonatophenyl porphyrin (TSPP)‑conjugated  TiO2 nanow‑
hiskers, for example, have been developed as an effective 
fluorescence bioimaging and photodynamic agent for rheu‑
matoid arthritis (RA) theranostics in vivo (Fig. 8). Fluores‑
cence images can illustrate the tissue localization and cel‑
lular internalization of nanowhiskers in the RA synovium 
due to the excitation between 500 and 550 nm. An overview 
image of the infected feet and tibia‑tarsal joint with the 
arthritis revealed a very strong fluorescence on day 16, and 
the exact location of the arthritis in the infected foot has been 
determined through imaging of the sagittal sections of the 
infected joints, which only emitted the fluorescence signal. 
These nanocomposites (TSPP‑TiO2) can also produce singlet 
oxygens upon the green light excitation to necrotize the local 
cells (i.e., fibroblasts, and lymphocytes) due to an interfer‑
ence with the cellular pathways of adjacent cells. Although 
1O2 lifespan of singlet oxygens generated within the tissue 
is short (~ 3 μs), the ROS resides for a longer period of time 
(~ 18 h) in the target tissue, efficiently causing apoptosis to 
the cells [23]. A simple surface modification (e.g., of gold 
grown on the edge of  TiO2 nanosheets by using mitochon‑
dria‑targeted triphenylphosphine and AS1411 aptamer) can 
enhance the computed tomography imaging of intracellular 
compartments due to the high atomic number of the grown 
gold nanomaterials [186].

Nuclear medicine imaging strategies, such as the positron 
emission tomography, are an alternative tool for a noninva‑
sive detection and tracking in vivo due to their relatively 
long‑time stability. For example, the incorporation of α and 
β emitters with  TiO2 nanomaterials (i.e., 48V radionuclides) 
has been developed to generate supersensitive theranos‑
tic nanoprobes. The study on an animal model indicated a 
quantitative 48V  TiO2 nanoparticles balancing of all organs 
(largely accumulated in the liver) without an interfering 
chemical background, and following the clearance process 
from 1 h to 4 weeks after the administration [193].

A magnetic resonance imaging (MRI) is a noninvasive 
clinical imaging technology, which has often been employed 
for disease diagnosis. In certain cases, MRI requires a con‑
tract agent, such as gadolinium (Gd), manganese, and iron 
oxide nanoparticles to enhance the visibility of tissues 
[194]. The development of MRI contrast agents based on 
Gd‑enriched nanoprobes (i.e., enhance  T1 MRI contrast) and 
superparamagnetic  Fe3O4 and  CoFe2O4 nanoparticles (i.e., 
improve  T2 MRI contrast) is an advantage due to the adjust‑
able conjugation of biomolecules on the surface, biodistri‑
bution, and magnetic property. A noninvasive tracing MRI 
agent, such as Gd‑modified  TiO2 nanoparticles, can visual‑
ize and verify the desired accumulation at the target tissue 
before triggering the release of cargo from stimuli‑respon‑
sive nanocarriers and minimizing the side effects [24]. The 
biodistribution and accumulation of Gd‑ or  Fe3O4‑modified 
black  TiO2 nanoparticles (high photothermal conversion 
efficiency) in the tumor can be precisely monitored for an 
effective photothermal therapy [12, 13]. Interestingly, the 
non‑modified  TiO2 nanoparticles (without adding magnetic 
or other contrast agents) can also improve MRI  T2 proton 
relaxation time‑weighted sequences as a contrast agent 
with the high concentration [25].

5.2.2  Biosensors

Diagnosing and monitoring diseases rely on the pre‑
cise detection of biomolecules (proteins, genes, and cells, 
etc.) and can easily indicate a possible abnormality in the 
body. Both passive and active detection strategies must offer 
the ability to perform rapid in situ monitoring for health 
maintenance [195, 196]. Label‑free  TiO2 biosensors have 
been employed for the rapid detection of biological inter‑
actions converted to optical, electrical, and thermal signals. 
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Amperometric biosensors, which consist of an oxidase and 
peroxidase, have proven critical in preventing issues related 
to enzyme instability and degradation [197, 198]. Enzymatic 
biosensors composed of an immobilized Prussian blue and 
an enzyme glucose oxidase on the surface of gold/TiO2 tubu‑
lar nanocomposites have exhibited a rapid responsiveness, 
wide linear range, and stability [92]. Conversely, optical 
interferometric and surface‑plasmon‑based biosensors have 
been successfully used to design label‑free  TiO2 biosensors. 
For example, stable  TiO2 nanotubes fabricated to sense rab‑
bit immunoglobulin G (IgG) with optical interferometry 
(reflective interferometric Fourier‑transform spectroscopy) 
exhibited super‑sensitivity as well as real‑time detection [30]. 
In fact, the porous structure of  TiO2 nanotubes has a strong 
impact on the sensitivity of biosensors due to higher surface 
activity and greater electron transfer rates. The mesoporous 
nanostructures (glucose oxidase electrode), easily coordinate 
amine and carboxyl groups on the surface, behave as an elec‑
tron mediator and improve the electron transfer between the 
redox centers of the enzymes and the electrode surface [199].

Photoelectrochemical biosensors are the alternative detec‑
tion device based on the charge separation and transfer upon 
illumination and are highly dependent on substrates as a 
photoactive material. Modified  TiO2 tubular arrays, absorb 
and respond to the visible light and can also play a critical 
role in the generation of cost‑effective ultrasensitive biosen‑
sors [200, 201]. The surface modification of  TiO2 nanotube 
arrays by means of polydopamine can facilitate the horse‑
radish peroxidase decoration for a quantitative  H2O2 detec‑
tion (range from 1 nM to 5 μM) combined with an enzyme‑
induced biocatalytic precipitation amplification [200]. The 
copper‑doped  TiO2‑grafted  C3N4 as a photosensitizer, for 
example, has improved the detection of the emitted signal 
from the alkaline phosphatase and catalyzed the ascorbic 
acid 2‑phosphate to ascorbic acid as a direct electron donor 
(reduced background signal interference) [202].

An ultrasensitive photoelectrochemical cytosensing plat‑
form has been developed through an electrochemical reduc‑
tion in graphene (EG)/ZnIn2S4‑co‑sensitized  TiO2 and immo‑
bilization of phosphatidylserine‑binding peptides to capture 
apoptotic cells. Compared to other assays, a stable and non‑
toxic photoelectrochemical cytosensing platform based on 
the reduction in the photocurrent signal can exactly detect 
and capture apoptotic cells (a linear range from 1 × 103 to 
5 × 107 cells  mL−1). This platform can also retain the normal 
cell growth and proliferation for further precise assessments 

of therapeutic effects [201]. A label‑free microfluidic immu‑
nosensor with high sensitivity (a range from 1 × 10−15 to 
0.1 × 10−6 M) and selectivity has also been developed for an 
early detection of epidermal growth factor receptor 2 (quan‑
tify breast cancer biomarkers) based on an immunoelectrode 
made of porous hierarchical graphene foam modified with 
electrospun carbon‑doped titanium dioxide nanofibers (as an 
electrochemical working electrode). This porous hierarchical 
graphene foam composition with functional carbon‑doped 
 TiO2 nanofibers has shown an increased charge transfer 
resistance, surface area, as well as improved porous access 
to the sensor surface by the analyte [27].

The post‑fabrication of  TiO2 electrodes with recep‑
tors associated with targeted molecules makes field‑effect 
transistor (FET) biosensors a versatile probing device. A 
real‑time, selective, and sensitive FET biosensor accom‑
panied by an electrode composed of  TiO2 nanowires has 
been furthered for targeting IgG proteins at the nanogram 
level [203]. As a matter of fact, a contamination of biosen‑
sors in the non‑labeled area can reduce the sensitivity of 
functional substrates. Biosensors also face the obstacle of 
remaining analytes making FET biosensors non‑reusable 
after detection. However, a reusable FET biosensor based on 
 TiO2 composites encapsulated in graphene oxide has been 
recently introduced for a protein detection without sensitiv‑
ity losses [29]. The immobilization of monoclonal antibod‑
ies on the surface of  TiO2 nanowire bundles can also create 
a microelectrode‑based FET sensor for a rapid and sensitive 
detection of Listeria monocytogenes without interfering with 
other foodborne pathogens [204].

TiO2 nanofibers outfitted with cell‑capture agents exhibit a 
remarkable ability to capture circulating colorectal and gastric 
tumor cells [108]. Moreover, gold‑coated  TiO2 butterfly‑like 
three‑dimensional membranes decorated by lectin molecules 
have demonstrated a selective recognition between highly 
invasive (T47D) and less invasive (MCF7) cancer cell lines 
[26]. Capturing the cancer cells in order to culture them for 
further investigations is an advantage that has been obtained 
by using gelatin film‑coated  TiO2 nanopillar arrays. Due to the 
high surface area and the interaction with the cell membrane’s 
antigens, the capture efficiency was achieved up to 94.98%, and 
a rapid digestion of the gelatin layer provided a nondestruc‑
tive release of the captured cells for future proliferation [205]. 
Replacing the antibodies and other biomolecules with aptam‑
ers can be an alternative strategy for amplifying the detection 
sensitivity beyond that of conventional biosensors. Mesoporous 
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 TiO2‑coated magnetic nanoparticles have been decorated with 
a sensitive aptamer to fabricate a pathogen capture platform in 
the blood stream (Fig. 9). The presence of aptamers and iron 
nanoparticles (core) facilitates the identification, capture, and 
separation of the bacteria. The conjugation of aptamer on the 
nanoparticles to detect S. aureus cells indicated that the capture 
efficiency of the platform was about 83%. Current strategy in 
clinics uses a continuous blood culture system, which is incu‑
bated with the blood sample collected from the patient, and 
the production of metabolite in the culture indicates possible 
bacterial infections in a time‑consuming manner (up to several 

days). However, aptamer‑functionalized nanoplatforms can 
precisely capture and then separate the target bacteria from the 
blood sample (using a magnetic force) with a negligible cap‑
ture of other cells (i.e., white and red blood cells, hemoglobin, 
and platelets) (Fig. 9d). In addition, an efficient capture of S. 
aureus by the aptamer‑modified nanoparticles was found, and 
highlighted this selectivity mechanism based on the creation 
of a sequence‑defined unique structure (Fig. 9e, f). The inocu‑
lated bacteria on solid medium can be further used for different 
examinations such as colony counting, owing to quick enrich‑
ment within 2 h. The bacterial enrichment of clinical blood 

(a)

(b)

(d) (e) (f)

(c)

200 nm

2 µm 2 µm

200 nm

SeparationCapture

Capture

Culture

Separation

100

80

60

40

20

0

C
ap

tu
re

 e
ffi

ci
en

cy
 (%

)

Sedimentation Supernatant

WBC RBC HGB PLT S.aureus

Fig. 9  a The illustration represents the strategy for the identification and capture of pathogenic bacteria (S. aureus). b The photograph exhibits 
the capture (left) and separation (right) of bacteria with  Fe3O4/TiO2 core–shell nanoparticles from an infected blood. c The number of colony‑
forming units in the re‑cultured S. aureus from sediment and supernatant in agar plates after the separation. d Capture efficiency of different 
compounds in blood after being treated with  AptS.aureus‑Fe3O4@mTiO2. SEM images of the captured S. aureus (e) and non‑captured E. coli (f) 
with the aptamer decorated nanoparticles. Adapted from Ref. [28] with permission from the American Chemical Society



Nano‑Micro Lett.           (2020) 12:22  Page 23 of 35    22 

1 3

samples due to the high selectivity and strong affinity of the 
aptamers might be an elaborate strategy to regulate adminis‑
tration of an effective antibiotic therapy at an early stage [28].

5.3  Tissue Regeneration and Chronic Wound Healing

The human body’s self‑healing process is slow when the 
injury is severe. However, the body indeed accepts external 
aids from implanted biological tissues and organs grown in 
the laboratory as a means to accelerate the healing process. It 
is crucial that scaffolds or implants in the body communicate 
with the surrounding microenvironment since the recipient’s 
immune system may very likely cause rejection. Biocompat‑
ible  TiO2 nanomaterials are one of the greatest implantable 
materials for tissue regeneration owing to their properties 
of high tensile strength, flexibility, and corrosion resistance. 
The morphology of  TiO2 nanomaterials (i.e., nanotubes) is, 
nevertheless, the most important factor in improving cell 
adhesion, proliferation, and differentiation [35, 36]. A scaf‑
fold composed of polylactic‑co‑glycolic acid (PLGA) and 
 TiO2 nanoparticles as well as decorated glass with  TiO2 
nanoparticles can improve the amount of precipitated cal‑
cium for bone regeneration compared to the scaffold without 
 TiO2 nanoparticles [206, 207]. The adhesion and spreading 
of osteoblast cells with a complete integration can also be 
attained with composites made of polylactic acid (PLA), 
poly‑ε‑caprolactone (PCL), and  TiO2 particles or nanofiber 
meshes mimicking the bone regeneration properties [37, 38]. 
Compared to functionalized nanomaterials, it was observed 
that mesenchymal stem cells prefer to migrate without the 
interfering features of bare  TiO2 nanoparticles. It was shown 
that bare  TiO2 nanoparticles with different sizes can induce 
negative impacts on viability, adhesion, migration, prolif‑
eration, and differentiation of mesenchymal stem cells in a 
size‑ and dose‑dependent manner in vitro; however, small 
bare  TiO2 nanoparticles can activate the migration of mes‑
enchymal stem cells compared to larger bare nanoparticles 
(Fig. 10a). The alkaline phosphatase activity, which deter‑
mines an early mineralization‑related protein marker for 
osteogenesis of osteoblasts, was also increased in the mes‑
enchymal stem cells treated with  TiO2 nanoparticles (14 nm 
in diameter) after 2 weeks compared to those treated with 
bigger nanoparticles (108 and 196 nm in diameter) [208]. 
Biomolecule‑TiO2 nanohybrids can be an advantage due 
to improving antibacterial and ‑inflammatory features and 

biocompatibility without increasing the content of  TiO2 in 
vital organs.

In the case of  TiO2 tubular arrays, for example, the 
diameter, porosity, and curved surface regions of the tube 
directly affect cell viability and proliferation [35, 36]. Slight 
changes in the microenvironment can alternatively regulate 
osteoblast responses during integration of implants with host 
bones. Iron‑doped  TiO2 nanotubes (4.25 wt% Fe), for exam‑
ple, can alter the microenvironment and enhance the pro‑
liferation, gene expression of osteogenesis‑related proteins, 
collagen secretion, and extracellular matrix mineralization 
of osteoblasts compared to as‑formed tubular implants [209]. 
Icariin, a traditional Chinese medicine with a strong antia‑
poptotic ability in osteocytes and osteogenic function, can 
also be loaded into  TiO2 nanotubular implant to obtain a 
slow release of the cargo (over 2 weeks) and promote osteo‑
blast cell adhesion, proliferation, and differentiation in vivo 
[210]. Among other things, biomolecule coverage, which 
uses bone morphogenetic protein 2 and a peptide fragment 
of bone sialoprotein on the surface (e.g.,  TiO2 nanotubes 
and nanofibers), alternatively exhibits significant prolifera‑
tion and osseointegration [211, 212]. Recently, a conjugation 
of sclerostin antibody on the surface of nanotubes, which 
stimulated Wnt signaling pathway by the reduction in the 
sclerostin secretion from MLO‑Y4 cells (murine osteocyte‑
like cell line), also promoted the differentiation of osteo‑
blasts in a co‑culture [213].

The use of  TiO2 nanoparticles can also effectively accel‑
erate the wound‑healing procedure in vivo for both second‑
degree and fourth‑degree burns. Triggering factor XII (FXII) 
and contact system‑triggered pathways can cause blood 
coagulation and clot formation for wound healing. There‑
fore,  TiO2 sol sprayed on the burn wounds in rats adapted 
to a second‑degree burn (groups 1 and 2, untreated and 
treated, respectively), and a fourth‑degree burn (groups 3 
and 4, untreated and treated, respectively) showed a boosted 
reduction in the exposed wound area (Fig. 10b). The treated 
wounds with nanoparticles (group 2) have revealed a healing 
outcome comparable to the normal skin conditions with‑
out showing a skin structure alteration, whereas the group 1 
without the treatment was subjected to the thickened fibers 
lying tightly in the papillary layer with a reduced popula‑
tion of glands and flattened sweat epithelium. The activa‑
tion of fibroblasts and overproduction of the basic substance 
were also observed at the reticular layer of these rats (group 
1). Severe abnormalities (i.e., damaged epithelium and 
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vascularization and increased fibrosis hypodermis) have 
been investigated for rats in the group 3 without the treat‑
ment. However, a daily base treatment using  TiO2 nanopar‑
ticles for rats in group 4 brought obvious wound‑healing 
effects by thickening epithelium layer, reducing dermal 
thickness, as well as increasing the formation of new blood 
vessels and base materials [214].

Nevertheless, either bone and wound infections or dental 
abscesses are highly likely because of possible contamination 
of implants and systemic diseases; infections can be minimized 
by the physical adsorption of anti‑inflammatory drugs or silver 
nanoparticles onto  TiO2 NSs [140, 215]. Moreover, it has been 
proved that antimicrobial activity of  TiO2 nanomaterials elimi‑
nates infections and accelerates the proliferation of cells in the 
wound area compared to other materials [216–219]. For exam‑
ple, a mat composed of silk fibroin nanofibrous and  TiO2 nano‑
particles has been developed not only to improve the adhesion 
and proliferation of fibroblasts, but also trigger an antibacterial 
activity against Escherichia coli under UV light irradiation 
[40]. In another study, electrospun polyurethane membranes 
with  TiO2 nanomaterials assembled in situ have exhibited an 
antibacterial effect in fighting Pseudomonas aeruginosa and 
Staphylococcus aureus and then caused a promoted adhesion 
of fibroblasts [220]. A quick UV light irradiation can activate 
bacteriostatic features in  TiO2 nanomaterials and accelerate 
the wound‑healing process [221].  TiO2 films with crystalline 
phases (anatase and a mixture of anatase and rutile) can pro‑
duce higher amounts of ROS and biofilm reduction (composed 
of Streptococcus sanguinis, Actinomyces naeslundii, and Fuso‑
bacterium nucleatum) after the UV light activation compared 
to pure rutile  TiO2 films [39]. Among metallic nanomaterials, 
silver nanomaterials are one of the well‑known anti‑infective 
agents used for wound dressing, but their resistance to silver is 
an emerging issue impairing the wound‑healing process [222, 
223]. Hence, a composition of  TiO2 nanomaterials and anti‑
microbial polymers can improve the wound‑healing process, 
because the antimicrobial activity of  TiO2 nanomaterials under 
UV light irradiation can be harnessed against heavy‑metal‑
resistant bacteria.

6  Conclusions and Future Perspectives

TiO2 is a promising biomaterial for decoding a wide 
variety of limitations present in nanomedicine, and 
also thanks to its easy fabrication, post‑fabrication, and 

biocompatibility. This review focused on the theranostic 
properties of  TiO2 nanomaterials developed for a variety 
of unique and limited applications in nanomedicine. A 
broad range of  TiO2 nanomaterials have been fabricated 
with high precision and post‑fabricated with adjustable 
physiochemical properties. Biocompatible  TiO2 nanoma‑
terials are unique due to a wide range of features (i.e., a 
tunable geometry, dimension, porosity, as well as quan‑
tum effect, its photoactivity and well‑established surface 
chemistry) that generate less toxic biological responses. 
There has also been substantial progress in fabrication and 
post‑fabrication of  TiO2 nanomaterials to obtain the best 
performance for different biomedical applications in vivo. 
However, to realize their theranostic potential and predict 
clinical outcomes, there are critical limitations and chal‑
lenges that need to be addressed.

Many promising studies show the successful development 
of  TiO2 NSs for therapies in vitro and in vivo; however, their 
translation into a clinical setting remains unexplored mainly 
due to long‑term biocompatibility uncertainties.  TiO2 nano‑
materials are not biodegradable, and it is crucial to focus 
on procedures to accelerate their clearance after the thera‑
pies. Preclinical studies show that administered NSs can be 
diminished from organs for a period of 1 week to 1 month 
after  the treatment without harm; however, the removal 
process in these cases proved to be size, shape, and dosage 
dependent [157, 224]. Therefore, an elaborated design of 
 TiO2 nanomaterials based on biological microenvironments 
and responses is still needed to minimize long‑term cytotox‑
icity and accelerate the clearance process.

Recently, significant advances have also been made with 
respect to sensitivity, specificity, and reproducibility, thus 
furthering real‑time, wearable, and implantable  TiO2 nano‑
material‑based biosensors. Nevertheless, many challenges, 
including false detection from complex biological fluids, 
still remain and must be overcome for practical and clini‑
cal purposes. In doing so, the long‑term stability of such 
bio‑detectors has to be improved, biofouling diminished 
and supersensitive receptors integrated regardless of other 
interfering biomolecules.

Clinical‑use implants based on orthopedic  TiO2 nano‑
materials, offering significant osseointegration and greatly 
imitating the strength of bone structure, are well known. 
However, cellular responses to nanoscale  TiO2 biomaterials 
used to directly or indirectly support the cellular differen‑
tiation and proliferation are ambiguous due to an unknown 
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long‑term biocompatibility. A multicomplex nanohybrid 
system composed of smart biocompatible polymers and 
 TiO2 NSs still needs to be developed to successfully regen‑
erate and repair tissues, hereby extending human life. Our 
knowledge of the clinical potential of  TiO2 nanomaterials in 
biomedical applications is extremely limited, and ongoing, 
comprehensive, and multidisciplinary studies are required to 
adjust the inherent properties of  TiO2 nanomaterials.

All things considered, most of the studies as a proof of 
principle have demonstrated that  TiO2 nanomaterials have 
the potential to overcome challenges in certain aspects 
associated with nanomedicine. An elaborated design of 
multifunctional  TiO2 nanomaterials based on biological 
microenvironments and responses may improve the lim‑
ited theranostic efficacy. Thus, further preclinical studies of 
functionalized  TiO2 NSs still need to be taken into account 
in order to improve biological responses and to diminish 
side effects before these nanomaterials can be translated into 
clinical settings.
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