Supporting Information:

Hierarchical N-Doped Porous Carbons for Zn-Air Batteries and

Supercapacitors

Beibei Guo,^{1,3} Ruguang Ma,¹ Zichuang Li,¹ Shaokui Guo,¹ Jun Luo,³ Minghui Yang,^{2,4} Qian Liu,^{1,2} Tiju Thomas,⁵ and Jiacheng Wang ^{1,2 *}

¹ State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

 ³ School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
⁴ Solid State functional Materials Research Laboratory, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

⁵ Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, Tamil Nadu, India

*Email: jiacheng.wang@mail.sic.ac.cn

Preparation of Ni-Fe layered double hydroxide (NiFe-LDH)

The Ni-Fe layered double hydroxide (NiFe-LDH) was fabricated by a hydrothermal method reported previously [S1]. Typically, 3.6 mmol Ni $(NO_3)_2 \cdot 6H_2O$, 1.8 mmol Fe $(NO_3)_3 \cdot 9H_2O$ and 126 mmol CO $(NH_2)_2$ were dissolved in 50 mL of deionized wate and stirred for 15 min. subsequently, the mixtures were hydrothermal treatment at 120 °C for 10 h. The resulting products were washed with deionized water and ethanol 3 times, and dried at 60 °C for 12 h.

Fig. S1 a) Nitrogen adsorption-desorption isotherms and b) pore-size distribution of NPC-800, NPC-1000 and NPC-1100, indicating that surface area (S_{BET}) and micropore area were gradually improved with the increasing of temperature; c) Nitrogen adsorption-desorption isotherms and b) pore-size distribution of NPC-1000, NPC-1000-0 and NPC-1000-2, implying that the introduction of SiO₂ template greatly increased the specific surface area of NPC, but excessive SiO₂ would lead to collapse of pore structure.

Fig. S2 a) The XPS full spectrum, b) high-resolution N 1s, and c) C1s of NPC-800; d) The XPS full spectrum, e) high-resolution N 1s, and f) C1s of NPC-1100.

Fig. S3 a) Current–time (i-t) chronoamperometric responses for NPC-1000 and 20% Pt/C at 0.4 V (vs. RHE) for the ORR at a rotating speed of 1600 rpm; b) comparison of chronoamperometric responses for NPC-1000 and commercial Pt/C in O_2 -saturated 0.1 M KOH electrolyte with 3 M methanol added at 100 s.

Fig. S4 ORR polarization curves in O₂-saturated 0.1 M KOH (rotation rate: 1600 rpm).

Fig. S5 ORR polarization curves in O₂-saturated 0.1 M KOH (rotation rate: 1600 rpm) indicating the porous carbon prepared by ball-milling and pyrolysis is also a good metal carrier.

Fig. S6 CV curves of a) NPC-700, b) NPC-800, c) NPC-1000 and d) NPC-1100 at different scan rates in 6M KOH solution.

Fig. S7 Galvanostatic charge-discharge (GCD) curves of a) NPC-700, b) NPC-800, c) NPC-1000 and d) NPC-1100 at different current density in 6M KOH solution.

Fig. S8 Deconvolution of diffusion-controlled (shaded area) and capacitive-like capacitance in a) NPC-700, b) NPC-800, c) NPC-1000 and d) NPC-1100 at 50 mV/s.

Fig. S9 Deconvolution of charge contribution as a function of scan rates.

Samples	BET Surface Area (m²/g)	Micropore Area(m²/g)	Pore Volume (cm ³ /g)	Micropore Volume (cm ³ /g)	Pore Size (nm)
NPC-800	641.3	464.0	0.64	0.22	3.97
NPC-1000	777.8	564.7	0.72	0.26	3.70
NPC-1100	1013.2	684.0	0.82	0.31	3.23
NPC-1000-0	139.6	118.1	0.07	0.05	1.95
NPC-1000-2	569.1	303.0	0.79	0.14	5.55

Table S1. The surface area, pore volume and pore size of the as prepared catalysts.

Table S2. A comparison in contents of Pyridinic N, Pyrrolic N and Quaternary N species for resultant NPC-800 and NPC-1000 and NPC-1100 catalysts calculated from their N 1s spectra.

Samples	Pyridinic N (at %)	Pyrrolic N (at %)	Quaternarty N (at %)	Total N Content (at %)
NPC-800	0.24	0.16	0.60	4.33
NPC-1000	0.20	0.16	0.64	2.18
NPC-1100	0.27	0.15	0.58	1.08

Table S3. Comparison of the ORR electrocatalyst performances of the prepared catalysts in 0.1 M KOH.

Catalysts	Eonset (V)	E _{1/2} (V)
NPC-700	0.83	0.69
NPC-800	0.84	0.73
NPC-900	0.86	0.75
NPC-1000	0.9	0.82
NPC-1100	0.88	0.80
PtC	0.93	0.85

Catalysta	E _{onset} (V vs E _{1/2} (V vs		Defenences	
Catalysis	RHE)	RHE)	Kelerences	
NPC-1000	0.9	0.82	This work	
N-doped C/CNTs-1000	0.92	0.82	Angew. Chem. Int. Ed., 2014, 53, 4102-4106	
NPMC-1000	0.94	0.85	Nat. Nanotechnol., 2015, 10, 444-452.	
CNF@NC	unknown	0.72	Appl. Surf. Sci.,2017, 443,266– 273	
a-C NH3 900	0.83 (900rpm)	~0.7 (900rpm)	Small, 2019, 1902081	
Ultra N-doped carbon nanosheet	0.95	0.82	Energy Environ. Sci.2019, 12,332	

Table S4.Summary of the ORR performances of reported heteroatom-doped porous carbons in0.1 M KOH.

Reference for SI

[S1] Zhong H, Liu T, Zhang S, Li D, Tang P, Alonso-Vante N, Feng Y. Template-free synthesis of three-dimensional nife-ldh hollow microsphere with enhanced oer performance in alkaline media. J. Energy Chem. **33**(130-137 (2019). doi:10.1016/j.jechem.2018.09.005