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S1 Experimental Detail and Mechanism 

S1.1 Synthesis of Sulfur/carbon Black (CB) Composites 

To synthesize the S/CB composite, sulfur and CB were mixed at a mass ratio of 7:3. The mixture 

was then heated at 155 °C for 10 h under Ar atmosphere, in order to melt sulfur into the pores in 

carbon matrix. (The detailed sulfur content in Table S1) 

S1.2 Rolling Mechanism of Tube C3N4 

The formation process of C3N4 nanotube could follow a rolling-up mechanism [S1-S3]. During 

the calcination process, a large amount of NH3 gas was released from the pyrolysis of melamine. 

The released NH3 gas went vertically through the moderately packed melamine layers to form 

slightly rolled sheet like g-C3N4. Formed sheet like g-C3N4 tended to further roll into tubular 

structures to minimize the total surface free energy [S3, S4]. 

S1.3 Formation of Fe3O4 Nanosphere Decorated C3N4 Nanotube 

Fe3O4 nanospheres are prepared by the nucleation and growth of the nuclei [S5, S6]. A short 

single burst of nucleation occurs when the concentration of constituent species reaches critical 

supersaturation. Then, the nuclei so obtained are allowed to grow uniformly by diffusion of 

solutes from the solution to their surface of C3N4 nanotube until the final size is attained. In the 

high concentration of Fe3O4 precursor solution, the aggregation of Fe3O4 on the surface of C3N4 

nanotube could be formed. 
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S2 Supplementary Figures and Tables 

 

Fig. S1 Detailed XPS peaks Fe 2P (a) and N1s (b) of Fe3O4/t-C3N4 

In N1S XPS spectra, 398.9, 400.3, and 401.4 eV corresponding well to sp2-hybridized nitrogen 

(C-N=C), sp3-hybridized nitrogen (N-C3) and amino C-NH group are also found. The peak at 

398.9 eV is considered to be the dominative part in g-C3N4 [S7]. 

 

Fig. S2 Raman spectra of t-C3N4 and Fe3O4/t-C3N4 

Figure S2 presents the Raman spectra of t-C3N4 and Fe3O4/t-C3N4 at 785 nm. In spectra of t-

C3N4, there is a signature peak of C3N4 at 705 cm−1 from the vibration modes of CN heterocycles 

appear [S8]. The Raman spectra of Fe3O4/t-C3N4 showed down-shifted peak of 703 cm-1 which 

might be due to the polar interaction of Fe3O4 and t-C3N4 [S8, S9]. 
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Fig. S3 EDS spectrum of Fe3O4/t-C3N4 

 

Fig. S4 (a) EIS data for confirmation of electronic conductivity and (b) detailed results of Fig. 

S3a 

Re is electrolyte resistance and Rct (one depressed semicircle) is the charge transfer resistance 

which is related with conductivity of active materials. 
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Fig. S5 TEM images of Fe3O4/t-C3N4 according to the amounts of Fe3O4 (Scale bar: 50 nm) 

 

Fig. S6 BET surface area plots which obtained by N2 adsorption isotherm analysis. (a) g- C3N4, 

(b) t-C3N4, and (c) Fe3O4/t-C3N4 

P/Po: Relative Pressure 

Q: Quantity Adsorbed (cm³/g, STP) 

1/[Q(Po/P-1)]; Ratio of relative saturation (= P /(Po-P)) to adsorbed gas volume per gram of solid 
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Fig. S7 Cross-sectional SEM image of Fe3O4/t-C3N4 interlayer (Scale bar: 10 μm) 

 

Fig. S8 Optical images of folding test of separator modified with Fe3O4/t-C3N4 interlayer 

 

Fig. S9 Cyclic voltammograms of Li-S cells with prepared interlayers after 10 cycles with a scan 

rate of 0.1 mVs-1 

Figure S9 shows the cyclic voltammograms (CV) after 10 cycles from 1.7 to 2.8 V vs. Li/Li+ 

with a scan rate of 0.1 mV s-1.  
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Fig. S10 EIS circuits (a, b) and EIS data of Li-S cell after cycling (c) 

After cycling, Li-S cells showed two semicircles where the semicircle in the high-to-middle 

frequency region (right) is due to the charge-transfer resistance (Rct), while the semicircle in the 

high frequency region (left) can be ascribed to the interfacial contact resistance (Rint) between the 

electrolyte and the cathode [S10]. 

  

Fig. S11 Detailed EIS results about Li-S cell before (a) and after cycling (b) 

 

Fig. S12 Battery performance of Li-S cell with Fe3O4/t-C3N4 interlayer according to the amount 

of Fe3O4 
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Fig. S13 SEM images of the surface of Fe3O4/t-C3N4 interlayer before and after cycling 

 

Table S1 Elemental analysis of S/carbon black(CB) composite 

Elemental composition (wt. %) 
Sample 

S/CB composite 

Carbon 29.3 (±1.2) 

Hydrogen 0.5 (±1.0) 

Sulfur 70.1 (±1.0) 

 

The theoretical value of S and CB ratio is 7:3 (w/w). The S/C ratios in the cases of prepared 

sample is a similar result of theoretical value. 

 

 

Table S2 Elemental analysis of prepared materials (g-C3N4 and t-C3N4) 

Elemental composition (wt%) 

Sample 

g-C
3
N

4
 t-C

3
N

4
 

Carbon 33.5 (±1.2) 34.5 (±1.0) 

Hydrogen 1.3 (±1.0) 1.6 (±0.8) 

Nitrogen 58.7 (±2.0) 57.6 (±1.0) 

 

The theoretical value of C, N atomic ratio is 0.75. The C, N ratios in the cases of g-C3N4 and t-

C3N4 are found to be a similar result of theoretical value (0.66 and 0.69, respectively). 
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Table S3 Comparison about battery performance of Li-S batteries with various N-doped carbon- 

and carbon nitride-based interlayer 

Materials for interlayer 
N contents  

(wt. %) 

Capacity 

after cycling 

(mAh g
-1

) 

Cycle Rate 
Capacity retention  

decay per cycle (%) 
References 

N-doped porous carbon 9.50 689 200 0.5 C 0.210 [S11] 

N-doped graphene 10.46 956 50 0.1 C 0.710 [S12] 

Carbonized Polyacrylonitrile fiber unknown 710 200 0.3 C 0.127 [S13] 

N-doped graphene 2.68 666.8 300 0.5 C 0.037 [S14] 

N-doped carbon from newspaper unknown 504 200 0.5 C 0.260 [S15] 

g-C
3
N

4
 paper 33.87 1,271.5 400 0.1 C 0.068 [S16] 

Reduced graphene oxide/g-C
3
N

4
 47.9 ~500 800 1 C 0.056 [S17] 

MoS
2
/N-doped carbontube 9.2 896.7 200 0.2 A g

-1
 0.100 [S18] 

ZrO
2
/N-doped carbon nanofiber 9.7 759 500 0.2 C 0.039 [S19] 

N, S-doped porous carbon 3.47 609 300 0.5 C 0.060 [S20] 

C
3
N

4 
phosphorus unknown 850 700 0.5 C 0.041 [S21] 

Graphene/g-C
3
N

4
 unknown 612.4 1,000 1 C 0.048 [S22] 

N, B-doped carbon nanofiber unknown 443 1,000 1 C 0.058 [S23] 

N, O-doped carbon nanofiber 3.5 420 1,000 1 C 0.040 [S24] 

Hierarchical nanostructured    

C3N4 embedded with Fe3O4  
40.32 658 1,000 2 C 0.020 Our work 
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