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ARTICLE HIGHLIGHTS

• An energy harvesting textile with an elegant trade-off of mechanical and triboelectric performance was constructed by hierarchical 
structural design.

• Modified rotor co-spinning technique was developed to produce triboelectric yarns in large scale.

• Mass-producible energy harvesting textiles show ultrahigh stability withstands millions of multi-type cyclic deformations and various 
applications.

ABSTRACT Energy harvesting textiles (EHTs) have 
attracted much attention in wearable electronics and the 
internet-of-things for real-time mechanical energy harvest-
ing associated with human activities. However, to satisfy 
practical application requirements, especially the demand 
for long-term use, it is challenging to construct an energy 
harvesting textile with elegant trade-off between mechani-
cal and triboelectric performance. In this study, an energy 
harvesting textile was constructed using natural silk inspired 
hierarchical structural designs combined with rational mate-
rial screening; this design strategy provides multiscale 
opportunities to optimize the mechanical and triboelectric 
performance of the final textile system. The resulting EHTs 
with traditional advantages of textiles showed good mechani-
cal properties (tensile strength of 237 ± 13 MPa and tough-
ness of 4.5 ± 0.4 MJ m−3 for single yarns), high power output 
(3.5 mW  m−2), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations 
without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, 
and human-interactive interfaces.
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1 Introduction

Integrated intelligent clothing has received much attention 
because of the urgent need of constantly monitoring human 
body conditions to prevent disease, providing extra protection, 
and other promising applications such as human enhancement 
and customized high fashion [1, 2]. With the ultra-rapid devel-
opment of various wearable devices, power supply for intel-
ligent clothing remains a challenge. Therefore, triboelectric 
nanogenerators (TENGs) have been developed for real-time 
mechanical energy harvesting associated with human activi-
ties [3–7]. Compared with conventional power supply systems 
such as electromagnetic generators, thermoelectric generators 
[8], and solar cells [9], TENGs have the advantages of light-
weight materials, mass production, wide choice of materi-
als, and efficient low-frequency energy harvesting [10–15]. 
Besides, TENGs show wide applications, such as sustainable 
micropower sources; active sensors for medical, infrastructure, 
environmental monitoring, and human–machine interfacing; 
low-frequency water energy harvesting; and power sources for 
high-voltage instruments [7].

Integration of polymer fibers/fabrics with conductive 
nanomaterials such as carbon nanomaterials and metal 
nanomaterials [16–20] is one of the most widely used strat-
egies for fabricating TENG-based energy harvesting textiles 
(EHTs) and has improved the energy harvesting efficiency. In 
most of these EHTs, the combination of polymers and inor-
ganic nanomaterials is often achieved through solution coat-
ing or atomic deposition [21–24]. The mechanical robust-
ness and structural stability of these EHTs are still unable to 
satisfy the requirements of practical applications, especially 
demands for long-term use. For example, EHTs produced 
by coating and atomic deposition generally cannot tolerate 
daily washing [17]. In practice, other wearable devices such 
as fiber-shaped energy storage devices and flexible sensors 
also suffer from incompatibility of mechanical robustness, 
structural stability, and high functional performance. For 
example, most functional fibers (e.g., fiber-shaped electrodes 
[25–27]), wearable devices (e.g., strain/press sensors [28, 
29]), and smart textiles (e.g., triboelectric textiles [30]) can 
only tolerate tens of thousands of single-form deformations. 
Such a performance is far below the required clothing per-
formance in practical applications. In general, a practical 
electronic garment should be able to withstand millions of 
times of friction and deformation, even if it is worn for 1 

year only. In this regard, natural materials such as silk and 
dactyl club provide inspiration because most of them are 
required to be constitutionally stable, mechanically strong, 
and tough to satisfy the need of versatile functional long-
term uses [31–34]. The nature uses hierarchical design to 
construct materials. This strategy offers multiscale oppor-
tunities to govern the “internal” structure–property relation-
ship of materials, thereby achieving “external” functions or 
requirements.

In this study, TENG-based EHTs were constructed using 
hierarchical designs to improve their overall performance 
(Fig. 1) including high mechanical strength and flexibility, 
long-term stability, outstanding processability, wearability, 
as well as useful triboelectric performance. Among them, 
mechanical strength and ductility are crucial for long-term 
stability, processability, and wearability. Accordingly, the 
trade-off between structure, mechanics, and triboelectric 
properties should be considered. A de novo and mass-pro-
ducible textile technology was developed to fabricate these 
predesigned EHTs using silk fiber (SF), polytetrafluoroeth-
ylene fiber (PTFEF), and stainless steel fiber (SSF) as the 
starting materials. The resulting SF/PTFEF EHT features 
unique hierarchical structures and thus provide multiscale 
opportunities to optimize the mechanical and triboelectric 
performance of the final system, including a high tensile 
strength of 237 ± 13 MPa and toughness of 4.5 ± 0.4 MJ m−3 
for single yarns, high power output of 3.5 mW  m−2, and 
ultrahigh stability with a performance of almost no differ-
ence after 2.3 millions of multi-type cyclic deformations. 
The designed EHTs show broad application prospects in 
wearable electronics, motion tracking, artificial intelligence, 
and human-interactive interfaces.

2  Experimental

2.1  Fabrication of SF/SSF and PTFEF/SSF Yarns

Commercial SF (~ 150 μm in diameter), PTFEF (~ 180 μm 
in diameter), and SSF (~ 200  μm in diameter) were 
selected as raw materials to fabricate EHTs. A custom 
made co-wrapping spinning apparatus was used for fabri-
cating SF/SSF yarns and PTFEF/SSF yarns. The apparatus 
is composed of three key parts. The first part is a feeding 
motor to provide the core fibers, the second is a co-wrap-
ping system made by a rotator and a force controller, the 
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third part is a motor-based collecting system. During the 
co-wrapping spinning, the wrap angle, namely wrapping 
density of shell fibers, can be modulated by changing the 
speed ratio between the drawing speed of core fiber, v 
(mm/min), and the rotating speed of shell fibers, �(rpm). 
The quantitative relationship among them can be predicted 
as Eq. 1:

(1)tan � =
2�(r + D

1
∕2)�

v

where � is the wrapping angle of shell fibers, r is the radius 
of core fiber (SSF), D1 is the diameter of shell fibers vertical 
to composite yarn axis.

In addition, �
v
 is critical for producing fully wrapped 

wormlike structure. According to the geometry of full-
packaged core–shell structure, when wrapping angle � 
matches (Eq. 2)

(2)cos � =
D

2

2�(r + D
1
∕2)
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Fig. 1  Schematic illustration of the SF/PTFEF EHT
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full-packaged core–shell yarns can be obtained, where D
2
 

is the diameter of the shell fibers parallel to the composite 
yarn axis. On this condition, �

v
 can be deduced according to 

Eqs. 1 and 2, that is,

In other words, to produce the wormlike shell structure, �
v
 

needs to match Eq. 3. When 𝜔
v
<

√

1

D2

2

−
1

4𝜋2(r+D
1
∕2)2

 , the 

core SSF will be partially uncovered. In contrast, when 
𝜔

v
>

√

1

D2

2

−
1

4𝜋2(r+D
1
∕2)2

 , the core SSF will be covered by 

the multilayer shell yarns. By following this criterion, in 
typical processing of SF/SSF yarns, the speed of wrap-
ping unit and speed of drawing unit were fixed at 700 rpm 
and 120 mm min−1, respectively. For the PTFEF/SSF 
yarns, the speed of drawing unit was changed to 
150 mm min−1 because of the larger diameter of PTFEF. 
The resultant SF/SSF and PTFEF/SSF yarns feature with 
a high helix wrapping angle (approach to 90°). The mor-
phology of the SF/SSF and PTFEF/SSF yarns was char-
acterized by scanning electron microscopy (SEM, 
JSM7800MF, JEOL).

2.2  Fabrication of EHTs

A shuttle loom and an embroidery machine were used to 
weaving SF/SSF or PTFEF yarns into fabric EHTs. For the 
embroidery processing, the SF/SSF and PTFEF/SSF yarns 
were used as base yarns and a commercial polyester fiber 
was used as facial yarns. To fabricate the EHT-based floor 
tiles, two pieces of poly(methyl methacrylate) (PMMA) 
were shaped by a laser cutter as substrates with the dimen-
sion of 30 × 30 cm2. Four holes were drilled at each corner 
of PMMA substrates for spring installation. SF/SSF fabric 
and PTFEF/SSF fabric with a dimension of 20 × 20 cm2 
were then assembled onto inner sides of two PMMA sub-
strates. At last, four springs were anchored to connect the 
top and bottom substrate. To prepare the multilayer struc-
tured EHTs, four positive and negative floor tiles with sizes 
of 5 × 5 cm2 were arranged parallelly along their normal 
direction, and two ends of these tiles are fixed and held by 
Kapton films, which can serve as linkers and spacers to 
connect the positive and negative EHT tiles.

(3)
�

v
=

√

1

D2

2

−
1

4�2(r + D
1
∕2)2

2.3  Mechanical Testing of the SF/SSF Yarns

The SF/SSF yarns were first cut into 40 mm segments for 
tensile tests. For tensile testing, the 40 mm segments were 
mounted onto the testing machine (Instron 5966 machine, 
Instron, Norwood, MA, USA). Meanwhile, the initial length 
of the yarn was measured with a caliper at zero load point 
(the point in which the yarns are tight, but no force exerted 
on it). All the tensile tests were carried out at 23 °C and 
75% relative humidity with a tensile speed of 0.5 mm min−1. 
For bending tests, the yarn segments with length of 40 mm 
were firstly mounted onto the tensile machine. A beading 
force was then employed on the yarn segment using com-
pression test mode. All the bending tests were carried out 
at 22 °C and 70% relative humidity with a bending speed of 
1 mm min−1.

2.4  Electric Measurements of the EHTs

For the electric output measurement of the EHTs, a liner 
motor (SA-JZ010, SHIAO Company, China) was applied to 
mimic human motions, operating the contact and separation 
of the EHTs. A programmable electrometer (Keithley 6514) 
was adopted to test the open-circuit voltage, short-circuit 
current, transferred charge, and output voltage at different 
external load. The software platform is constructed based 
on LabView, which can realize real-time data acquisition 
control and analysis. The output performance of the EHTs 
was tested at relative humidity of 40%. For calculating the 
Jsc, transferred charge density and power density of the EHT, 
the effective area (area occupied by SF/SSF or PTFEF/SSF 
yarns) of the 5 × 5 cm2 EHT was calculated by pixel statistics 
based on the fact that the SF/SSF or PTFEF/SSF yarns are 
white and the base fabrics are black. The calculated area of 
the EHT is about 19 cm2.

3  Results and Discussion

3.1  Material Screening

Compared with widely developed transfer printed and 
atomic deposited EHTs [2], coaxial yarn-based EHTs have 
advantages in scalable-manufacturing and structural stabil-
ity [35]. Therefore, in this study, coaxial yarn-based EHTs 
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were designed. Material screening is the initial and essential 
step in EHT design. For coaxial yarn-based EHTs, the con-
tact–separation mode is the most widely used configuration 
(Fig. 2a, b), where both electrically positive and negative 
yarns are needed [36]. The positive yarn loses electrons dur-
ing friction with other materials, whereas the negative yarn 
gains electrons. When these two types of yarns with different 
electron-attracting abilities are brought into contact, friction 
occurs, and then an electric potential is formed between the 
two interfaces. Once they are separated, an alternate poten-
tial can drive electrons in the outer circuit to flow back and 
forth to balance the potential. Therefore, the shell layer 
works as a dielectric layer, while the core layer should be 
highly conductive. Compared with other highly conductive 
materials such as copper wires, SSF has the advantages of 
low cost and excellent mechanical tenacity; therefore, SSF is 
selected as the core fiber in both positive and negative yarns.

However, the shell layer should be constructed using 
materials with either positive or negative triboelectric 
properties [37]. Almost all materials have triboelectrifica-
tion activity, but their ability to gain and lose electrons is 

different depending on their polarity. This ability has been 
quantitatively evaluated by measuring the charge density 
produced on dielectric surfaces by contact with metals of 
known difference in work function in vacuo [38]. Hence, the 
positions of the most used materials can be directly found in 
“triboelectric series” [38–41]. In this study, SF was selected 
for constructing the shell layer of positive yarns because of 
their two intrinsic advantages. First, SF has a high dielec-
tric property with a strong tendency to lose electrons and 
become positively charged when SF undergoes friction with 
other materials [42, 43]. Second, benefiting from unique 
natural hierarchical structures, SF has a high mechanical 
performance (with a strength of 600 MPa and toughness of 
70 MJ m−3) [44] and excellent fracture resistance than most 
other fiber materials [45–48] (Fig. S1).

Once the material for positive yarns is determined, the 
key criterion to select the negative material is that its dis-
tance from SF in the “triboelectric series” should be large 
enough to ensure an adequate charge transfer during the 
contact-and-separate process. Meanwhile, the appropriate 
mechanical strength and flexibility of resulting yarns should 

Separating

Substrate
Silk yarns
Steel fibers
PTFE fibers

Contacting

(a) (b) Origin Pressed

Pressing Released

Releasing

e−

e−

Fig. 2  Schematic illustration and working principle of SF/PTFEF EHT: a schematic diagram of SF/PTFEF EHT during working. b schematic 
illustration of charge generation and transfer of contact–separation mode of SF/PTFEF EHT during contacting and separating
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be ensured. Herein, PTFEF was selected to construct nega-
tive yarns because it has the most different charge affinity 
with SF, which is particularly significant for surface charge 
generation on dielectric surfaces.

3.2  Geometrical and Structural Design of Yarns 
for Mechanical Optimization

For coaxial yarns, the helix wrapping angle ( � ) controls the 
mechanical and triboelectric properties of yarns. Thus, in 
this section, � was designed for optimizing both mechani-
cal and triboelectrification performance. Figure 3a shows 
the geometry and forces acting on a warping pitch of the 
co-wrapped yarn [49–52]. When the co-wrapped yarn is 
subjected to longitudinal force ( FY ), the force is separately 
shared by the warp ( FW ) and core ( FC ) sections. The con-
tribution of wrapper stress to the yarn strength ( FS ) can be 
expressed as Eq. 4 [49, 50]:

Thus, as the wrapping density is increased, � is increased, 
and the contribution of wrapped fiber to the yarn strength 
is decreased. In our cases, the contribution of wrapper fib-
ers can be ignored because SSF is much stiffer and ductile 
than both SF and PTFEF. SSF is the main component for 
providing both tensile and bending strength and hardness of 
yarns in both yarns (Fig. 3b). On the other hand, the com-
ponent of wrapper stress, the key source of lateral force ( FL ) 
exerted on the core SSF, can be dramatically increased with 
the increase in � with a quantitative relationship that can be 
expressed as Eq. 5:

(4)FS = FW cos �

According to this equation, the wrapper stress can signifi-
cantly reduce the freedom of SSF movement in yarn core, 
and thereby the core SSF can be contacted more closely than 
the yarns with a smaller �.

Notably, the flexural rigidity of yarns is considerably 
higher than those of ply or parallel yarns without a wrapper 
layer [53]. The increase in flexural rigidity obtained by 
wrapping can be estimated from the factor N

y
 , where N is the 

number of SSFs in the cross section and y is the yarn density 
or fiber density [54]. This indicates that for co-wrapped 
yarns with no freedom of fiber movement, the flexural rigid-
ity should be about 200 times as large as that of parallel 
yarns. The increase in flexural rigidity has two distinct 
effects on yarn processability. On the one hand, the high 
flexural rigidity can improve the ability of yarns against the 
deformation; on the other hand, it has a negative impact on 
machine weaving. Therefore, an appropriate flexural rigidity 
is desired for the yarns. For coaxial yarns, this trade-off can 
be achieved by � increasing. According to Backer’s theory 
[55], the high twisted co-wrapped yarns have a lower flex-
ural rigidity than low twisted yarns (Fig. 3c). Based on these 
mechanical assessments, both positive and negative yarns 
were designed as wormlike core–shell structure with a high 
helix wrapping angle of ~ 90° (Fig. 3a). In practice, such 
wormlike co-warping structures indeed have been widely 
used in friction tolerance applications such as music instru-
ment strings; they are often designed as a “core” of one 
material and an over winding of another material. This struc-
ture can make the string vibrate at the desired pitch while 

(5)FL = Fw sin � sin
d�
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Fig. 3  Geometrical and structural design of SF/SSF and PTFEF/SSF yarns for mechanical optimization: a Schematic illustration of geometry 
and forces acting on a warping pitch of co-wrapped yarn. b Stress–strain curves of SF/SSF yarns with different wrapping angles of shell SF 
yarns. c Bending stress–bending strain curves of SF/SSF yarns with different wrapping angles of shell SFs
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maintaining a low profile and sufficient flexibility for 
playability.

3.3  Structural Design of Yarns for the Modulation 
of Triboelectrification Performance

As mentioned, SF/PTFEF EHTs generate voltage through 
the contact–separation mode; therefore, the thickness of 
shell layers ( d ) is important in controlling the triboelec-
trification performance (i.e., output energy E ) of the final 
system. To quantitatively evaluate these effects, SF/PTFEF 
EHTs were simplified into the contact–separation mode in 
plane (Fig. 4a) [56]. In this mode, the inner SSF consti-
tutes the two electrodes, whereas cortical SF and PTFEF are 
positive (dielectric 1) and negative dielectric (dielectric 2), 
respectively. When the dielectrics layers were contacted with 
each other by mechanical force, opposite and equal amount 
of � is generated on the surface of two triboelectric layers 

due to electrostatic induction. For dielectrics, it is reasonable 
to assume that the electrostatic charge is evenly distributed 
on both surfaces, and the electrostatic charge could stay for 
a long time [57, 58]. When the separation distance starts to 
increase under the mechanical force, an alternative potential 
difference between the two electrodes, i.e., output voltage V  , 
is induced. The output voltage ( V  ) can be evaluated using 
V−Q−x equation and expressed as Eq. 6 [59]:

where S is the contact area of two shell layers during work-
ing, �r is the relative permittivity of dielectric layers, �r0 is 
the vacuum permittivity, � is the electrostatic charge density, 
Q is the amount of transferred charge between electrode lay-
ers, x is the separation distance between the two dielectric 
layers. The potential difference between two sides of the 
EHT can drive electrons in the outer circuit to move direc-
tionally. As a result, when dielectric 1 and 2 layers were 
periodically driven to contact and separate with each other 

(6)V(t) = R
dQ

dt
= −

Q
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at a constant velocity (v) , the real-time output energy ( E ) can 
be evaluated by solving the differential of Eq. 6. The detailed 
derivation process is given in Supporting Information. The 
resulting equation can be expressed as Eq. 7:

By substituting the empirical parameters (as listed in 
Table S1) into these equations, the effect of thickness and 
relative permittivity of shell SF/PTFEF yarns can be directly 
predicted on real-time output voltage and energy of SF/
PTFEF EHT (Fig. 4b–e). As shown in Fig. 4b, c, output 
voltage peak (V) and output energy (E) of EHT decrease 
with the increase in thickness of SF and PTFEF layers. Same 
relationship can be also seen between transferred charge ( Q ) 
and thickness of shell layers (Fig. S2a), indicating that the 
thinner shell layer is better for achieving a high triboelectri-
fication performance. Hence, in EHT fabrication, a single 
shell layer of SF or PTFEF was wrapped around the SSF to 
promote the elegant balance of lightweight, mechanical, and 
triboelectric properties.

(7)E =

xmax

v

∫
0

V(t)2

R
dt =

1

v

x
max

∫
0

V(x)2

R
dx

3.4  Modified Rotor Co‑wrapping Spinning 
for the Fabrication of Wormlike Yarns

To produce wormlike coaxial yarns made of two types of 
continuous filaments, rotor co-wrapping spinning techniques 
(RCWSTs) are used. A series of advanced yarns (known 
as the fifth generation of yarns) can be fabricated using 
RCWSTs, such as technical yarns, hybrid yarns, and con-
ductive yarns [60]. However, the commercial RCWSTs are 
not suitable for this study because they are difficult to spin 
hybrid yarns with a high α angle, especially yarns with no 
gaps between two pitches. Therefore, we designed a rational 
RSWST for spinning wormlike positive SF/SSF and negative 
PTFEF/SSF yarns based on the rotor co-wrapping principle.

As shown in Fig.  5a and Video S1, during the rotor 
co-wrapping spinning, the SSF was continuously passed 
through the hollow tube with a constant rate, which is con-
trolled by the drawing rollers. At the same time, a metal rotor 
loaded with SF or PTFEF rotated counterclockwise, so that 

(a)

(b) SSF

Silk PTFE

SSF(c)

Stepless motor

Worm-like fiber Tensioner
Force

controller Tensioner Core (conductive) fiber

Stepless motor
Motor

Shell fiber

200 µm200 µm

Fig. 5  Fabrication of SF/SSF and PTFEF/SSF yarns: a schematic diagram of the apparatus for fabricating SF/SSF and PTFEF/SSF yarns. Sche-
matic illustration and SEM image of b SF/SSF yarns and c PTFEF/SSF yarns. The insets are SEM image of cross section of these yarns
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the SF/PTFEF were wrapped on the SSFs to produce the 
final yarns. In this process, the wrap angle can be tailored 
by changing the drawing speed ratio between the drawing 
speed of core fiber and the rotating speed of wrapper fibers 
to obtain different wrapping density of core–shell yarns (Fig. 
S3). To achieve the fully package of shell yarns (namely no 
gap exists between two adjacent wrapping fibers), the ratio 
between the wrapping speed ( � , rpm) and the drawing speed 
of core fiber (v, mm min−1) needs to match Eq. 8:

where r is the radius of core fiber (SSF), D1 is the diam-
eter of shell fibers vertical to composite yarn axis, D

2
 is the 

diameter of the shell fibers parallel to composite yarn axis. 
The detailed derivation for such equation can be found in 
Experimental Section. The speed ratio of �

v
 thus can directly 

obtained by substituting the diameters of the shell SF/
PTFEF and core SSF (Table S2) into Eq. 8. Following this 
criterion, in co-wrapping spinning, the speed of wrapping 
unit and speed of drawing unit were fixed at 700 rpm and 
120 mm min−1, respectively. Under these conditions, pre-
designed SF/SSF yarns can be generated (Fig. S4a) with a 
length of 7.2 m per hour. For the negative PTFEF/SSF yarns 
(Fig. S4b), the speed of drawing unit, instead, was changed to 
150 mm min−1 due to a larger diameter of PTFEF (Table S2).

(8)
�

v
=

√

1

D2

2

−
1

4�2(r + D
1
∕2)2

3.5  Structure and Mechanical Properties of Wormlike 
Yarns

Figures 5b, c show the structures of a SF/SSF yarn and 
PTFEF/SSF yarn spun with ~ 5800 and ~ 4700 turns/m, 
respectively. In both the yarns, the wrapping fibers fully 
cover the SSF core with no gaps between two pitches. How-
ever, careful examination of the surface of SF layer showed 
the presence of micro-interstices between SFs. This often 
results in the decrease in relative permittivity due to the 
existence of air in these micro-interstices. As evaluated 
from Eq. 7, by decreasing the relative permittivity of SF 
layer from 4.5 to 2.5, the output voltage of the entire sys-
tem decreases by 3.9% (Fig. 4d), output energy decreases 
by 1.4% (Fig. 4e), and transferred charge decreases by 0.6% 
(Fig. S2b), respectively. An SF welding strategy can be 
applied to solve this problem. Specifically, hexafluoroiso-
propanol (HFIP) can be used to selectively etch the surface 
of SF, and the silk proteins thereby can act as a solid glue 
to fill the microinterstices and to obtain a fully covered SF 
dielectric layer (Fig. S5).

SF/SSF yarns have a tensile strength of 237 ± 13 MPa and 
toughness of 4.5 ± 0.4 MJ m−3 (Fig. 3b), comparable with 
other high-performance functional yarns such as MWCNT-
glass fiber [61] and graphene fiber [62]. More importantly, 
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no significant mechanical differences were observed between 
wormlike yarns and parallel SSFs (without a wrapping layer, 
Fig. S6), confirming that the core SSF indeed controls the 
mechanical strength of yarns. The cross-sectional scanning 
electron microscopy (SEM) images verify that the core SSF 
is intensively contacted due to the high lateral force contrib-
uted by the wrapped fibers (insert in Fig. 5b, c). This makes 
the core fiber bundles remain compact even when the yarns 
undergo tensile failure (Fig. S7).

The mechanical advantages of these yarns support 
their diverse processability. They can be directly weaved 
into any desired pattern using an automatic embroidery 
machine (Fig. 6a, b). SEM images of the pattern (Fig. S8) 
show that the yarns were intact and bound with the sub-
strate fabric well. These yarns can also be weaved into 
large-scale textile using a loom, enabling the applications 
of these textiles in non-apparel fabric (Fig. S9). Because 
of the ultrastable yarn structure, the resulting textile shows 
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outstanding tolerance to multi-type fierce deformations. 
As shown in Figs. 6c and S10, SF/SSF textile weaved by 
embroidery machine exhibits almost no change in conduc-
tivity and appearance after millions of cyclic deformations 
along the longitudinal and transverse directions (Video 
S2), superior than most conductive wires. In addition, 
SEM image of the SF/SSF yarn has undergone 2.3 million 
bends shows that the SF still firmly winds on the SSF (Fig. 
S10f), which is essential to achieve long-term wearability.

3.6  Preparation and Performance of SF/PTFEF EHTs

The output performance of SF/PTFEF EHT was tested using 
a device shown in Fig. 7a. Two pieces of fabric with the 
same dimension (5 × 5 cm2) made of SF/SSF and PTFEF/
SSF yarns were placed on the upper and lower sides of poly-
methyl methacrylate plates, respectively. Then, four springs 
were anchored to connect the bottom and top substrates for 
assisting in the separation of two substrates. Figure 7b–f 
shows the typical electrical signals of EHTs. When the SF/
SSF and PTFEF/SSF textiles were periodically pressed to 
contact with each other at a frequency of 2 Hz, an open-
circuit voltage (Voc) of ~ 45 V (Fig. 7b), a short-circuit cur-
rent density (Jsc) of ~ 0.2 mA m−2 (Fig. 7c), and a transferred 
charge density of ~ 8.6 mC  m−2 (Fig. 7d) were obtained.

The dependence of current and voltage output of EHTs on 
the external loading resistance was also evaluated. As shown 
in Fig. 7e, with the increase in load resistance, the voltage 
showed an increasing trend, whereas the current exhibited 
a reducing tendency as a result of ohmic loss [63]. The out-
put voltage and output current peak can reach up to 27 V 
and 0.43 μA, respectively. The maximum power density at a 
resistance of 50 MΩ was ~ 3.5 mW  m−2 (Fig. 7f). The gener-
ated output power is enough to reduce the power consump-
tion of some electronics, thus effectively addressing the big 
concern of sustainable power supply for wearable systems 
reliably. Moreover, the output voltage peak of EHTs on the 
external loading resistance can be increased by increasing the 
working frequency. As shown in Fig. 7g, the output voltage 
peak of EHTs on the external loading of 100 MΩ increased 
from 22 to 32 V when the work frequency increased from 
1.5 to 5 Hz. The relation between the voltage and the trans-
fer time (or frequency) in this condition can be estimated 
through the equation of V = QR/t. Here, the transfer charge 
(Q) generated by each contact with different frequency can be 

regarded as a constant since the area in each contact is almost 
the same. Accordingly, this equation reveals that the higher 
working frequency [namely less charge transfer time (t)] can 
result in faster charge transfer between two electrodes of the 
SF/PTFEF EHT and thereby lead to the increase in the out-
put voltage on a certain external load. Figure 7h shows good 
stability of EHTs validated by a 14,000-cycling test (working 
frequency: 5 Hz). This is particularly important for practi-
cality in wearable fabrics. Although the output performance 
of SF/PTFEF EHT is inferior to those TENGs feature with 
nanostructures on the dielectric surface and ultrahigh charge 
density [64, 65], SF/PTFEF EHT is comparable with other 
fabric TENGs [16, 18, 30]. Further, the power density can 
be enhanced by increasing the layers of SF/SSF and PTFEF/
SSF textiles to fabricate 3D structure EHTs [12].

3.7  Potential Applications of SF/PTFEF EHTs

The mechanical advantages and mass production of EHTs 
allow them to be used as wearable power generation fabrics 
(Fig. S11a and Video S3) and large-scale energy harvesting 
devices such as energy harvesting floors (Fig. 8a and S11b). 
To demonstrate the capability of EHTs as a power source 
for power electronics, 106 commercial light-emitting diodes 
(LEDs) were connected to the two electrodes of EHTs. The 
LEDs were divided into two groups: One group was con-
nected in series to the shape of letters “STU.” Another 
group was also connected in series but to the shape of letters 
“BMG.” Then, these two groups of LEDs were connected to 
the device with opposite polarity. The aforementioned EHT-
based floor tiles with an active area of 20 × 20 cm2 were 
used. As shown in Fig. 8bi, bii), when stepping on the floor, 
the “STU” of 53 LEDs was lighted up. Once the foot was 
removed from the floor, another group of 53 LEDs “BMG” 
would light up, connected to the EHT-based floor tiles in 
reverse (Fig. 8biii, biv; Video S4).

Except for using a direct power source to power electron-
ics, the electric energy produced by the EHT can also be 
stored in capacitors using a rectifier. Figure 8c shows the 
circuit diagram of charging a 10-μF capacitor at different 
frequencies. The measured voltage of the capacitor is shown 
in Fig. 8d, indicating that the charging rate can be increased 
at higher working frequencies. The EHT-based floor tiles 
were also tested to charge capacitors with capacitance from 
10 to 330 μF at a frequency of 1 Hz (Fig. S12). In a practical 
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application, the power generation floor was integrated with a 
100-μF capacitor and an electronic watch to form a self-pow-
ered system. As shown in Fig. 8e, the 100-μF capacitor can 
be charged from 0 to 2.7 V in about 400 s by an EHT-based 
floor (charging frequency 5 Hz). The stored energy could 

continuously drive an electronic watch working for ~ 100 s 
(inset in Fig. 8e). Benefitting from its easy processing, sev-
eral EHT units (typically four) can be integrated together and 
connected in parallel to enable high-power energy harvest-
ing. Figure 8f shows the photograph of a multilayered EHT 
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with four 5 × 5 cm2 units. This fabricated multilayered EHT 
easily lighted up 46 LEDs with one tap by hand (Fig. 8g).

4  Conclusions

In this work, a de novo design strategy is proposed for 
advanced energy textiles, start with material screening, 
geometrical and structural design, modulation of tribo-
electrifications and automatic fabrication process, down 
to evaluation and optimization of the mechanical and tri-
boelectric performance, and finally reach to the practical 
applications. Different from other EHT systems which 
commonly introduce functions to the existed textiles, this 
work aims to develop functional yarns which can toler-
ate mechanized processing and long-term use. Following 
with theoretical analysis from both mechanical and elec-
tric aspects, a core–shell structure was finally selected to 
construct triboelectric yarns. Such a predesigned structure 
provides the possibility to balance the mechanical and tri-
boelectric performance of the resultant EHT system and 
therefore allow to maintain EHT’s high energy output and 
structural stability in practice long-term use, considering 
the merits of SF/PTFEF EHTs in processability and long 
durability to explore broader application prospects, includ-
ing wearable electronics, motion tracking, artificial intel-
ligence, and human-interactive interfaces.
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